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Section S1  Derivation of the coupled effect between the piezoelectric 

beam and sphere 

The dynamics of vortex-induced vibration of an elastically mounted sphere are simplified as 

a linear oscillator, and its motion equation is 
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where ( )sw t , ( )sw t , ( )sw t  are the displacement, velocity, and acceleration of the sphere, 

respectively. ms, c, k1 and k2 are the total mass of the sphere and springs, the structural damping 

and the stiffness of spring 1 and spring 2, respectively. The term FVIV stands for the vortex-induced 

force exerted by the wind flow on the sphere, and it is defined as 
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where    denotes the steady mean lift coefficient and    denotes the steady mean drag coefficient. 

U denotes the wind speeds. D represents the diameter of the sphere. ρair denotes the density of the 

air. q(t) denotes a fluid–structure coupling term, given by 
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Here, A represents a constant of the van der Pol wake oscillator model, A=23.   is a constant 

describing vortex street fluctuation,  =0.1. Both   and A are determined by experiment according 

to Facchinetti
[41]

.    denotes the vortex shedding frequency. The work of Facchinetti et al.
[41]

 

provided us with the theoretical foundation for vortex-induced forces and wake oscillator behavior. 

Equation (S2) is used to calculate the vortex-induced force, taking into account the periodicity of 

vortex shedding and the fluid pressure distribution on the surface of the sphere. Equation (S3) 

describes the dynamic behavior of the vortex-induced force wake oscillator. It considers the mass 

and damping characteristics of the wake oscillator, as well as the torque induced by the vortex force. 

 The vortex-induced force is transmitted to the piezoelectric beam through spring 2. 

According to Hooke's Law, the spring force is given by 
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where wb(L,t) denotes the end displacement of the piezoelectric beam. Δl1 and Δl2 represent the 

initial elongation of spring 1 and spring 2, which are given by 
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where L0, l1 and l2 represent the total height of the sphere-spring system, the length of spring 1, 



and the length of spring 2, respectively. These values can be obtained through measurements. 

Assuming the vibrational response of the piezoelectric beam is denoted as wb(x,t), it can be 

expressed as the product of the beam mode function matrix and the generalized time coordinate 

matrix, given by 
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where Yi(t) is the mode vector and  i x  is the vibration mode amplitude of the piezoelectric 

beam. The calculation process of Galerkin method refers to the study of Dai et al
[42]

.  

The kinetic energy T of the system is given by 
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where Vb and ρb represent the volume and the density of the beam. Vp and ρp respectively represent 

the volume and the density of the piezoelectric layer. The potential energy U of the system is 

expressed as 
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where    denotes the electric field induced by the piezoelectric effect. In unimorph piezoelectric 

layer, it is given by E3=-VP/tP. b

x  and p

x  represent the strains of the beam and the piezoelectric 

layer in x direction, while b

x  and p

x  represent the stresses of the beam and the piezoelectric 

layer in x direction. The strains and stresses of the beam and piezoelectric layers are calculated by 
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where d31 denotes the strain coefficient of the piezoelectric layer. e31 denotes the piezoelectric 

stress coefficient and is given by e31=E
p
d31. D3 denotes the electric displacement obtained by  
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where ε33 is the permittivity component under constant strain. According to Ohm's law, the 

voltage V(t) across a resistor is directly proportional to the current passing through it. Considering 

the definition of current, the following equation is obtained 
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Non-conservative work includes the electric work of resistance load R, the work of 

vortex-induced force FVIV and the work of damping force. 
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Equation (S7) is introduced into Equations (S8), (S9), and (S13) to facilitate the 

discretization process. Based on the Euler-Lagrange equation, where L=T-U, the following 

equations are obtained 

 
i i i

L L W

t Y Y Y

L L W

t Q Q Q

   

   

   

   

 

 

 (S14) 

Substituting equations (S1), (S3), (S4) concerning vortex-induced force into the 

Euler-Lagrange equation (S14), the analysis model of the coupled effect between the piezoelectric 

beam and sphere is obtained 
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Section S2  The setups of wind tunnel experiment and the fabrication 

of the proposed device 

In this study, we validated the proposed theoretical model through wind tunnel experiments 

and investigated the potential for energy harvesting by coupling VIV of a sphere with the 

oscillations of a piezoelectric cantilever beam. The experiments were conducted in a wind tunnel 

with dimensions of 260 mm × 260 mm × 2000 mm. Wind speed was controlled by adjusting the fan 

speed with a velocity controller and was measured precisely using an anemometer. The wind speed 

during experiments ranged from 2.39 m/s to 9.48 m/s. 

The polystyrene foam sphere was transversely supported in the airflow. The sphere's structural 

stiffness was controlled by springs at both ends, with each spring connected to an upper and lower 

steel frame. Free decay tests were performed to determine the system's natural frequency and 

structural damping in air. The displacement of the sphere was recorded at 240 fps and a resolution of 

1280×720 pixels using a high-speed camera. Experimental data were analyzed using a custom 

MATLAB-based machine vision processing program. For each dataset, displacement signals were 

sampled at 240 Hz over at least 50 vibration cycles to ensure high accuracy, enabling reliable 

measurements of velocity, acceleration, and frequency. 

For energy harvesting experiments involving VIV of the sphere, the experimental setup was 

adjusted accordingly. Each end of the sphere was attached to a spring; the upper spring was 

connected to the upper steel frame, and the lower spring was connected to the free end of a 

cantilevered piezoelectric beam. The beam's fixed end was attached to the steel frame. This setup 

enabled the VIV of the sphere to generate electrical energy through the periodic bending of the 

cantilevered piezoelectric beam. The experimental setup consisted of a polystyrene foam sphere, 

two springs, a flexible aluminum beam substrate, a piezoelectric patch (MFC-M2807P2), and a 

fixed frame. The generated voltage was monitored using a resistance box and an oscilloscope by 

adjusting the load resistance on the piezoelectric patch. 

 

Section S3  The expression of the aeroelectromechanical efficiency 

ψaem and the electromechanical efficiency ψem 

The aeroelectromechanical efficiency is defined as 
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where 
avgP  is the average output power and 

fP  is the input mechanical power extracted 

from fluid flow. This input mechanical power is calculated by 
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Here, Af is the fontal area of the harvester in operation and given by 
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The electromechanical efficiency refers to conversion of mechanical vibration power, and is 

given by 
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where mP  is the average mechanical power and is calculated by the instantaneous mechanical 

power 

 m bspP F w  (S24) 

The mechanical energy of the piezoelectric beam is then given by 
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 Therefore, the average mechanical power is 
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Fig. S1  (a) The RMS voltage and (b) the average power varies with load resistance under three 

representative wind speeds. 
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Fig. S2  (a) The natural frequency of the sphere-spring (fs) system varies with the stiffness of springs of 

various diameters. (b) The natural frequency of the piezoelectric beam system (fb) varies with beam 

length for various widths. (c) The vibration amplitude of the harvester's sphere varies with dimensionless 

frequency (η). (d) The output power (P) of the harvester varies with dimensionless frequency (η). 
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Fig. S3  FFT of the output power signal at a wind speed of U=3.90m/s for various dimensionless 

frequencies of (a) η=0.569 and (b) η=1.341. 

 


