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Section S1  Parameter calibration for strain-hardening model 

Wang et al. (2024) developed the stochastic structural models of sandy cobble soil with different VBPs 

considering the random distribution of cobbles. Numerical tests under biaxial compression were performed to 

obtain the stress-strain curves for different VBPs. Subsequently, the material parameters in the Hardening-Soil 

model were calibrated based on these stress-strain curves. The densities ρ were calculated through the volumetric 

weighting of cobbles and soil matrix (Du et al., 2019). p
ref

 was commonly assumed as the standard atmospheric 

pressure (i.e. 100kPa). A typical value of 0.2 was commonly adopted for vur. The value of Rf was fixed at 0.99. 

Due to the low clay content in sandy cobble soil, the soil was assumed to be cohesionless. The calibration of φ 

was consistent with that of the Mohr-Coulomb model. The parameter ψ was adjusted through trial and error to 

ensure the stress-strain curve evolves in a stable, continuous manner, devoid of significant oscillations. E50
ref

 and 

m were determined through fitting the linear form of the hyperbolic relationship between the deviatoric stress and 

axial strain. E50
ref

 and Eoed
ref

 control the magnitude of plastic strains that originate from the yield surface and yield 

cap, respectively (Schanz et al., 1999). Eur
ref

 typically employs a value within the range of 3 to 5 times E50
ref

 for 

most soils. It is generally assumed that these three parameters follow a relationship, expressed as Eur
ref

 = 3E50
ref

 

and Eoed
ref

 = E50
ref

. The detail process of parameter calibration refers to Wang et al. (2024). 

Table S1 Material parameters for different VBPs 

VBP/% ρ / kgm-3 E50
ref / MPa Eoed

ref / MPa Eur
ref / MPa pref / kPa vur m Rf c / kPa φ / ° ψ / ° 

30 2210 25 25 75 100 0.2 0.776 0.99 0 27.57 10 

50 2350 40 40 120 100 0.2 0.736 0.99 0 34.95 20 

70 2490 70 70 210 100 0.2 0.5 0.99 0 49 30 

Note: The meaning of each symbol in the table from left to right is the volumetric block proportion, density, reference secant 

modulus, reference tangent modulus for primary oedometer loading, reference Young's modulus for unloading and reloading, 

reference stress, Poisson's ratio for uploading-reloading, amount of stress dependency, failure ratio, cohesion, friction angle, dilation 

angle, respectively. 



 

Section S2  Discretization of random field using the Karhunen-Loève series expansion 

For practical application, only a finite number of terms (M) are enough to satisfy the minimum mean square 

approximation error (Huang et al., 2001). The Karhunen-Loève series expansion for the two-dimensional random 

field X can be expressed as follows: 
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where (x, y) is the coordinate of a point in the two-dimensional computational domain. μX and σX are the mean 

value and standard deviation, respectively. λn and fn(x, y) represent the eigenvalue and eigenfunction of the 

autocorrelation function ρX(x, y), respectively. ξX,n is a set of orthogonal and uncorrelated random variables with 

zero mean value and unit variance. The value of M depends on the desired accuracy and the autocorrelation 

function. According to the existing researches (Laloy et al., 2013; Jiang et al., 2014), the number M can be 

measured by the ratio of the expected energy (i.e., 
1 1

/
M

n n

n n
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  ). When ε ≥ 95%, the desired accuracy is 

achieved. 

The series expansion of the lognormal random field can be denoted as follows: 
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where μlnX and σlnX are the mean value and standard deviation of Gaussian random field lnX, respectively. The 

relationship between X and lnX is expressed by: 

 

 

2

ln
ln

2

ln

ln
2

ln 1

X
X X

X X X


 

  


 


   

 

  (S3) 

Section S3  Representation in FLAC3D of random field modeling for E50ref and φ 

Fig. S1 displays the representation in FLAC
3D

 of random field modeling for E50
ref

 and φ when VBP =50%, 

respectively. The input parameters are as follows: μE = 40 MPa, μφ = 34.95
°
, COVE = COVφ = 0.1, ρφ,E = 0, h = 40 

m, and v = 4 m. It is found that the random fields generated by the Gaussian autocorrelation function behave 

good stationarity and continuity. 

   
(a)                                                  (b) 

Fig. S1 Representation in FLAC3D of random field modeling: (a) E50
ref (unit: Pa); (b) φ (unit: degree) 



Section S4  Results and comparisons of surface settlement 

Fig. S2 compares the profiles of surface settlement trough obtained by stochastic and deterministic analyses. 

S(x) represents the surface settlement at the point (x, 0). It can be seen that the stochastic results fluctuate 

randomly above and below the deterministic results. All the stochastic analysis results of surface settlement 

decrease with the increase of VBP and the decrease of ηt, which is consistent with the deterministic analysis 

results. Furthermore, the higher the VBP or the greater the ηt, the higher the dispersion of stochastic analysis 

results. 
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Fig. S2 Comparison of the profiles of surface settlement trough between stochastic and deterministic analyses: (a)VBP = 30%, 

ηt = 0.5%; (b) VBP = 50%, ηt = 0.5%; (c) VBP = 70%, ηt = 0.5%; (d) VBP = 30%, ηt = 4.0%; (e) VBP = 50%, ηt = 4.0%; (f) 

VBP = 70%, ηt = 4.0% 

 

Section S5  Volumetric deformation modes of sandy cobble soil 

 Wang et al. (2024) defined expressions of ηs(z)/ηt and ηs
'
(z) (i.e., the first derivative of ηs(z)) to determine the 

overall and localized responses of volumetric deformation of the soil at a certain depth z. Note that the overall 

response of volumetric deformation refers to the cumulative volumetric deformation of the soil beneath the given 

depth z, while the localized response refers to the volumetric deformation of an infinitesimal soil layer with the 

thickness of dz at the given depth z. The criterions of ηs(z)/ηt > 1.0, ηs(z)/ηt = 1.0, and ηs(z)/ηt < 1.0 correspond to 

the contractive, constant and dilative overall volumetric deformation responses at the given depth, respectively. 

The criterions of ηs
'
(z) > 0, ηs

'
(z) = 0, and ηs

'
(z) < 0 correspond to the dilative, constant and contractive localized 

volumetric deformation responses at the given depth, respectively. According to the localized response of 



volumetric deformation, Wang et al. (2024) proposed three volumetric deformation modes of sandy cobble soil, as 

shown in Fig. S3. The detail description about the volumetric deformation modes refers to Wang et al. (2024). 
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Fig. S3 Three volumetric deformation modes of sandy cobble soil 

 

Section S6  Variation of the mean of stochastic analysis results with depth 
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(a)                                                (b) 

Fig. S4 Mean of stochastic analysis results under different COVφ: (a) Normalized subsurface maximum settlement; (b) 

Normalized subsurface soil volume loss rate 
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(a)                                                (b) 

Fig. S5 Mean of stochastic analysis results under different COVE: (a) Normalized subsurface maximum settlement; (b) 

Normalized subsurface soil volume loss rate 
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(a)                                                (b) 

Fig. S6 Mean of stochastic analysis results under different h: (a) Normalized subsurface maximum settlement; (b) 

Normalized subsurface soil volume loss rate 
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(a)                                                (b) 

Fig. S7 Mean of stochastic analysis results under different v: (a) Normalized subsurface maximum settlement; (b) 

Normalized subsurface soil volume loss rate 
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(a)                                                (b) 

Fig. S8 Mean of stochastic analysis results under different ρφ,E: (a) Normalized subsurface maximum settlement; (b) 

Normalized subsurface soil volume loss rate 
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