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Fig. S1: (a) The ELF of Metal elements (Al, Fe, Cu, Cr, Co, Zn, V, Ni, Mn) doped MoS2 

surfaces with Li atom absorbed,(b) Schematic diagram of adsorption structure, the black 

line marks the plane of ELF 
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where Ebarrier represents the diffusion barrier, Esystem−vp/Esystem−sp  represents the 

system energy of Li atom located at saddle/valley point, Eb−vp/Eb−sp represents the 

binding energy of Li atom located at saddle/valley point, ELi represents the energy of 

single Li atom, and Esurface represents the energy of metal element doped surface. 

 

Fig. S2: The electrostatic potential distribution of 106 TMDs surfaces metal element 

doped 
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Fig. S3: Correlation between Eb of Li atoms on metal elements ((a) Al, (b) V, (c) Cr, 

(d) Mn, (e) Fe, (f) Co, (g) Ni, (h) Cu, (i) Zn) doped IVB-TMDs surfaces and MEP 

of saddle/valley points. 
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Fig. S4: Correlation between Eb  of lithium atoms on metal elements ((a) Al, (b) V, (c) Cr, 

(d) Mn, (e) Fe, (f) Co, (g) Ni, (h) Cu, (i) Zn) doped VB-TMDs surfaces and MEP of 

saddle/valley points. 
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Fig. S5: The parity plot of (a) VGG19-TL, (b) ResNet101-TL and (c) DenseNet121-TL 

testing set, and (b) the cumulative distribution function of VGG19-TL, ResNet101-TL 

and DenseNet121-T
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Fig. S6:  The perdiction performance of lithium diffusion minimum energy profile for 

(a)Al, (b)Cu, (c)Co, (d)Cr, (e)Mn, (f)Fe, (g)Ni and (h)V doped MoS2 
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Fig. S7: The DFT calculated and TL predicted values of total diffusion barrier for 

metal-doped-IVB-TMDs; The reference line is the diffusion barrier of the 

stoichiometric surface
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Fig. S8:  The DFT calculated and TL predicted values of total diffusion barrier for 

metal-doped-VB-TMDs; The reference line is the diffusion barrier of the 

stoichiometric surface. 
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Fig. S9: The DFT calculated and TL predicted values of total diffusion barrier for 

metal-doped-VIB-TMDs; The reference line is the diffusion barrier of the 

stoichiometric surface. 
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Diffusion-path Ework (eV) Erf (eV)V 

MoS2 0.24 0.21[1] 

MoSe2 0.23 0.24[2] 

WS2 0.24 0.24[2] 

WSe2 0.24 0.275[2] 

VS2 0.21 0.22[3] 

VSe2 0.22 0.33[4] 

NbS2 0.21 0.24[5] 

TaS2 0.22 0.21[6] 

TiS2 0.18 0.19[7] 

ZrS2 0.26 0.24[8] 

HfS2 0.22  

HfSe2 0.21  

Table S1: Li diffusion barrier of stoichiometric TMDs surface 
 

Github link for Python scripts of Data post-processing 

 

https://github.com/cjone/Data-post-processing-scripts.git 
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