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Section S1. Virtual environment modelling 

Given the imported geometric and semantic resources, the physical properties should be 

created for the virtual camera, as illustrated in Fig. S1. 

 

Fig. S1. Virtual camera modelling. 

(1) Parameter setting: The spatial position and rotation angle of the virtual camera model 

should be first set to enable it to capture images from a specific orientation. Other physical 

properties of the camera, such as focal length, field of view, and sensor size, can also be 
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configured. 

(2) Image recording: scripting application programming interfaces (in C#) are created to 

capture and save images, allowing users to adjust the image resolution. 

(3) Image sample: An interface enabling for viewing of images captured by the virtual 

camera in real time. When observing a 2D screen image of the 3D world, the virtual camera is 

used to capture a view for display. 

The navigational environment should be modelled after deploying the virtual camera, 

mainly including ship and water area modelling (Fig. S2).  

 

Fig. S2. Ship navigation modelling. 

(1) Ship model: The position of the ship model varies within the field of view of the 

virtual camera. The dimensions of the ship model are determined by the scale parameter; a 

larger scale factor results in greater height and width of the ship model.  

(2) Water area: A range of variables, including the mesh, the angle of direct sunlight, and 

the intensity of the light, are used to characterize the water area. 

 

Section S2. You Only Look Once Version 8 (YOLOv8) model 
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The structure of the YOLOv8 network is displayed in Fig. S3. In YOLOv8, the 

significant improvement is reflected by the Spatial Pyramid Pooling-Fast (SPPF) and Cross 

Stage Partial Bottleneck with Two Convolutions (C2f) structures. The SPPF module enables 

adaptive output sizes, enhancing sensitivity and capturing feature information at various 

levels within the image, contributing to improved feature extraction at the end of the 

backbone. The C2f module, inspired by the efficient layer aggregation network, is a 

lightweight convolutional structure designed to enhance gradient propagation efficiency and 

enable faster network convergence [S1].  

 

Fig. S3. The structure of the YOLOv8 network. 

Section S3. Calculation formulas for K, R, and t 

The alignment between a ship’s 3D spatial and 2D pixel information can be established 
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by mapping the relationship between the local and pixel coordinate systems (Yoon et al., 

2018), as illustrated in Fig. S4. 

 

Fig. S4. Mapping between the two coordinate systems. 

The calculation formulas for K, R, and t are given by [S2] 
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where fx and fy are the focal lengths of the camera in the horizontal and vertical directions, 

respectively, (cx, cy) is the principal point, which is the point where the optical axis intersects 

the image plane,  represents the yaw angle of the virtual camera (in this study, only yaw 

rotation is required for the virtual camera), and (xc, yc, zc) denote the local coordinates of the 

installation position for the virtual camera. The above formulas are used to convert the 3D 

spatial coordinates of all ships into 2D-pixel coordinates. 
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Section S4. Mapping real-world ship coordinates to the virtual environment 

The latitude-longitude coordinates of ships can be converted to Earth-Cantered, 

Earth-Fixed (ECEF) coordinates by [S3] 
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where (Xe, Ye, Ze) are points in the ECEF coordinate system, (lat, lon) refers to geographic 

coordinates in latitude and longitude, N0 denotes the radius of curvature of the Earth 

corresponding to different latitudes, typically expressed by the formula 

0
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a
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e
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
, a is the equatorial radius, e represents the first eccentricity of the 

Earth’s ellipsoid, with a value approximately equal to 0.081819, and h denotes the apparent 

height of the observation point relative to the Earth’s surface. 

The latitude-longitude coordinates of the real-world camera are converted into the ECEF 

coordinates (xr, yr, zr) through Eq. (S4), from which the translation vector (tx, ty, tz) between 

the ECEF and local coordinate systems can be derived as 
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where (xc, yc, zc) is the coordinates of the virtual camera in the local coordinate system of the 

simulated space. 
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All latitude-longitude coordinates of real-world ships can be further transformed into the 

local coordinate system using  
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where (Xs, Ys, Zs) are the transformed points in the local coordinate system of the virtual 

world. 

 

Section S5. Synthetic ship images and detection results 

Fig. S5 provides image samples of synthetic ships at varying camera-to-ship distances. 

   

(a) 100~200m (b) 200~300m (c) 300~400m 

   

(d) 400~500m (e) 500~600m (f) 600~700m 

   

(g) 700~800m (h) 800~900m (i) 900~1000m 

Fig. S5. Image samples of synthetic ships. 

The image dataset comprised 210 training images, with 45 images designated for 
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validation and another 45 for testing. The adaptive moment estimation optimiser is employed 

with an initial learning rate of 0.001, a momentum of 0.937, and a weight decay of 0.0005. 

YOLOv8 is trained using a batch size of 32 for 300 epochs. Mean Average Precision (mAP) is 

used to evaluate the performance of the detection model, with higher mAP values indicating 

better detection accuracy. Specifically, mAP@0.5 refers to the mAP calculated at Intersection 

over Union (IoU) = 0.5, and mAP@0.5:0.95 denotes the mAP within the IoU range of (0.5, 

0.95) with a step size of 0.05 [S4]. 

Under the aforementioned experimental conditions, YOLOv8 achieved mAP@0.5 and 

mAP@0.5:0.95 scores of 97.8% and 91.7%, respectively, on the synthetic image dataset. The 

detection results in Fig. S6 showcase that YOLOv8 provides complete and accurate bounding 

boxes for ships located within 1000 meters of the bridge in the virtual environment.  

   

   

   

(a) 100~400m (b) 400~700m (c) 700~1000m 

Fig. S6. Detection results from the YOLOv8. 
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Section S6. Euclidean distance distribution 

Fig. S7 presents the scatter plot of the Euclidean distance distribution for the nine pixels 

following target matching. 

   

(a) (u0, v0) (b) (u1, v1) (c) (u2, v2) 

   

(d) (u3, v3) (e) (u4, v4) (f) (u5, v5) 

   

(g) (u6, v6) (h) (u7, v7) (i) (u8, v8) 

Fig. S7. Euclidean distance distribution for the nine pixels after object matching. 

According to Fig. S7, for the extracted point (u4, v4), the Euclidean distance between 

each ship’s corresponding P
*
 and P

o
 in the simulated environment is generally within 150 
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pixels, representing the smallest distance among all extracted points. 

 

Section S7. Model configuration parameters and comparison 

Seven benchmark models, including Multi-Layer Perceptron (MLP), Convolutional 

Neural Network (CNN), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), 

CNN-LSTM, CNN-BiLSTM, and Transformer are selected for comparison [S5]. Their model 

architectures are illustrated in Fig. S8, and the corresponding hyperparameters are provided in 

Table S1. 
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Fig. S8. Seven benchmark DL models. 

Table S1. Hyperparameters of typical benchmark models. 

Models Hidden 

layers 

CNN 

layers 

LSTM 

layers 

BiLSTM 

layers 

Encoders Decoders Multi-head 

attention 

Neurons Number of 

Parameters 

MLP 5 / / / / / / 640 87946 

CNN 3 2 / / / / / 384 132160 

LSTM 3 / 3 / / / / 496 190630 

BiLSTM 3 / / 2 / / / 512 605218 

CNN-LSTM 2 2 2 / / / / 224 535306 

CNN-BiLSTM 2 2 / 1 / / / 128 2316482 
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Transformer 2 / / / 6 6 8 164 9702274 

The batch size for all models is set to 32, and each model is trained for 200 epochs. The 

solver used is Stochastic Gradient Descent (SGD) optimiser with an initial learning rate of 

0.01 [S6]. 1080 ship samples are allocated for model training, while the remaining 270 ship 

samples are reserved for evaluating model performance. 

Formulas for Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean 

Absolute Percent Error (MAPE), and coefficient of determination (R
2
) are given by 
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where iy  and ˆ
iy  are the observed and predicted value of the ship size, respectively, iy  is 

the mean of iy  values, and N is the number of samples. 

Fig. S9 describes the distribution of actual values, predicted values, and their relative 

errors for ship sizes across the test dataset for the seven models. It is evident that MLP 

exhibits the lowest measurement accuracy, mainly due to its simpler network structure. For 

the other models, the majority of points cluster near the 1:1 reference line, indicating high 

predictive accuracy.  
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(a) MLP (b) CNN (c) LSTM (d) BiLSTM 

   

(e) CNN-LSTM (f) CNN-BiLSTM (g) Transformer 

Fig. S9. The distribution of actual values, predicted values, and their relative errors for the 

different models 

 

The MAE, RMSE, MAPE, and R
2
 of these models are compared in Fig. S10. The values 

of MAE, RMSE, and MAPE for the ship height measurements are generally smaller than for 

the width measurements. This disparity arises from considering the height and width of the 

bounding box as the pixel dimensions of the ship in the image. Many ships appear in side 

views in images, leading to an overestimation of ship widths. However, with the increase in 

data volume and optimization of the model, this issue is expected to resolve. Additionally, 

whether measuring ship height or width, the CNN-LSTM model exhibits the lowest MAE, 

RMSE, and MAPE, and shows the highest R
2
 value. Fig. S10 demonstrates that the 

CNN-LSTM model exhibits the best performance, which is why it is selected as the predictive 

model for virtual-to-real-world transfer learning.  
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(a) MAE (b) RMSE 

  

(c) MAPE (d) R
2
 

Fig. S10. The MAE, RMSE, MAPE, and R
2
 of the seven models 

 

Section S8. Description of the real-world dataset 

Ten ships with AIS appeared in the three sets of videos. The ship image samples are 

shown in Fig. S11. If the MMSI label is not shown, AIS information for that ship is 

unavailable. 

  

(a) The 130th frame of Video1 (b) The 455th frame of Video1 
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(c) The 65th frame of Video2 (d) The 390th frame of Video2 

  

(e) The 780th frame of Video2 (f) The 65th frame of Video3 

Fig. S11. Image samples extracted from the videos. 

A total of 90 samples, each with MMSI, ship sizes, positions and bounding box 

information, are obtained due to the 1~2 minutes interval required for AIS data updates [S7]. 

These data cover a camera-to-ship distance range of 300m to 1000m [S8], with distances 

greater than 200m generally regarded as far-range perception [S9, S10]. Therefore, it is 

well-suited to validate the effectiveness of the proposed size measurement framework in 

overcoming the challenges of long-range monitoring. For each ship target, the bounding box 

information and latitude-longitude coordinates corresponding to the time when the AIS data 

first changed are presented in Table S2.  

Table S2. Representative sample data used for transfer learning. 

MMSI Video Time (s) Bounding boxes Ship positions Ship sizes 

u1 (pixel) v1 (pixel) latitude (° E) longitude (° N) W(m) 

250000000 Video1 62 1050 705 114.3262 30.6111 8 
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190000000 Video1 122 6 746 114.3211 30.6083 8 

330000000 Video1 122 2373 640 114.3355 30.6191 11 

600000000 Video1 482 782 732 114.3260 30.6105 8 

210000000 Video2 62 460 666 114.3229 30.6108 10 

290000000 Video2 62 1867 657 114.3306 30.6182 10 

380000000 Video2 542 1075 673 114.3253 30.6096 13 

340000000 Video2 722 1100 684 114.3241 30.6084 13 

180000000 Video2 842 2341 656 114.3338 30.6204 8 

310000000 Video3 62 791 696 114.3234 30.6083 9 

Note: (u1, v1) and W have the same meanings as defined earlier. Only (u1, v1) is listed here; 

additional information of bounding boxes can be found at [S8]. 

To reduce dataset bias between simulated and real worlds, the pixel coordinates of all 

real-world ships are transformed into the virtual pixel coordinate system using Eq. (5), and the 

latitude-longitude coordinates of ships in the videos are converted into local coordinates in the 

virtual space using Eq. (S6). The latitude and longitude of the real-world camera are 114.3311° 

E and 30.6183° N, respectively. Other parameters used for the calculations can be found at 

[S8]. Table S3 lists the results of the transformed data from Table S2. 

Table S3. The results of the transformed real-world data. 

MMSI Video Time (s) Bounding boxes Ship positions Ship sizes 

u1 (pixel) v1 (pixel) Xs (m) Ys (m) W (m) 

250000000 Video1 62 1725 1099 -95 1077 8 

190000000 Video1 122 1606 1112 -54 1047 8 

330000000 Video1 122 1474 1113 60 967 11 

600000000 Video1 482 1344 1118 111 933 8 
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210000000 Video2 62 1234 1115 208 843 10 

290000000 Video2 62 1153 1114 231 810 10 

380000000 Video2 542 1074 1110 252 778 13 

340000000 Video2 722 986 1104 311 689 13 

180000000 Video2 842 893 1096 346 627 8 

310000000 Video3 62 774 1093 383 567 9 

Note: (u1, v1) and W have the same meanings as defined earlier. (Xs, Ys) represents the position 

of the ships in the local coordinate system of the virtual space, as derived from the videos. 

Section S9. Measurement results of the transfer learning model 

The MAE, RMSE, MAPE, and R
2
 of the fine-tuned model and the original CNN-LSTM 

are compared in Fig. S12. The transfer learning model exhibits lower MAE, RMSE, and 

MAPE values than the original CNN-LSTM. Additionally, the transfer learning model 

achieves an R² value of 0.90, significantly surpassing that of its original counterpart. This 

demonstrates its superior accuracy in measuring ship widths on the real-world data. 

  
(a) MAE (b) RMSE 

  
(c) MAPE (d) R

2
 

Fig. S12 The MAE, RMSE, MAPE, and R
2
 of the two models 
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Table S4. Comparison between real ship widths and predicted ship widths. 

Sample no. Camera-to-ship distance (m) W
*
 (m) W (m) Error (m) Relative error (%) 

1 762.83 11.18 11 0.18 1.64 

2 562.91 8.24 8 0.24 3.00 

3 988.97 9.48 10 -0.52 -5.2 

4 741.93 13.50 13 0.50 3.85 

5 904.91 9.60 10 -0.40 -4.00 

6 426.56 13.43 13 0.43 3.31 

7 573.67 10.55 10 0.55 5.5 

8 879.72 11.36 11 0.36 3.27 

9 480.24 11.50 11 0.50 4.55 

10 696.31 8.66 9 -0.34 -3.78 

11 379.18 8.41 9 -0.59 -6.56 

12 935.12 8.49 8 0.49 6.13 

13 816.62 12.81 13 -0.19 -1.46 

14 696.54 11.46 11 0.46 4.18 

15 556.76 9.71 10 -0.29 -2.90 

16 563.98 7.82 8 -0.18 -2.25 

17 656.07 9.54 10 -0.46 -4.60 

18 765.53 8.89 9 -0.11 -1.22 

Note: W
*
 and W represent the predicted width and the actual width, respectively.  
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