Electronic supplementary materials

For https://doi.org/10.1631/jzus.A2500277

Digital twin-assisted automatic ship size measurement for ship—
bridge collision early warning systems

Ruixuan LIAQ", Yiming ZHANG', Hao WANG®, Jianxiao MAO*, Aoyang LI, Zhengyi CHEN"®

'Key Laboratory of Concrete & Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 211189, China
2Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana IL 61801, USA
®Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China

Section S1. Virtual environment modelling
Given the imported geometric and semantic resources, the physical properties should be

created for the virtual camera, as illustrated in Fig. S1.

Fig. S1. Virtual camera modelling.

(1) Parameter setting: The spatial position and rotation angle of the virtual camera model
should be first set to enable it to capture images from a specific orientation. Other physical

properties of the camera, such as focal length, field of view, and sensor size, can also be
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configured.

(2) Image recording: scripting application programming interfaces (in C#) are created to
capture and save images, allowing users to adjust the image resolution.

(3) Image sample: An interface enabling for viewing of images captured by the virtual
camera in real time. When observing a 2D screen image of the 3D world, the virtual camera is
used to capture a view for display.

The navigational environment should be modelled after deploying the virtual camera,

mainly including ship and water area modelling (Fig. S2).
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Fig. S2. Ship navigation modelling.

(1) Ship model: The position of the ship model varies within the field of view of the
virtual camera. The dimensions of the ship model are determined by the scale parameter; a
larger scale factor results in greater height and width of the ship model.

(2) Water area: A range of variables, including the mesh, the angle of direct sunlight, and

the intensity of the light, are used to characterize the water area.

Section S2. You Only Look Once Version 8 (YOLOvV8) model



The structure of the YOLOvV8 network is displayed in Fig. S3. In YOLOVS, the
significant improvement is reflected by the Spatial Pyramid Pooling-Fast (SPPF) and Cross
Stage Partial Bottleneck with Two Convolutions (C2f) structures. The SPPF module enables
adaptive output sizes, enhancing sensitivity and capturing feature information at various
levels within the image, contributing to improved feature extraction at the end of the
backbone. The C2f module, inspired by the efficient layer aggregation network, is a
lightweight convolutional structure designed to enhance gradient propagation efficiency and
enable faster network convergence [S1].
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Fig. S3. The structure of the YOLOV8 network.

Section S3. Calculation formulas for K, R, and t

The alignment between a ship’s 3D spatial and 2D pixel information can be established
3



by mapping the relationship between the local and pixel coordinate systems (Yoon et al.,

2018), as illustrated in Fig. S4.

3D local coordinate 2D pixel coordinate
Z 0

X

Fig. S4. Mapping between the two coordinate systems.

The calculation formulas for K, R, and t are given by [S2]

f, 0 c
K={0 fy Cy (S1)
0O 0 1
—cos@ 0 sind
R = 0 1 0 (S2)
—sind 0 cosé
XC
t=|Y, (S3)

where f, and f, are the focal lengths of the camera in the horizontal and vertical directions,
respectively, (cx, Cy) is the principal point, which is the point where the optical axis intersects
the image plane, @ represents the yaw angle of the virtual camera (in this study, only yaw
rotation is required for the virtual camera), and (X, Y., Zc) denote the local coordinates of the
installation position for the virtual camera. The above formulas are used to convert the 3D

spatial coordinates of all ships into 2D-pixel coordinates.



Section S4. Mapping real-world ship coordinates to the virtual environment
The latitude-longitude coordinates of ships can be converted to Earth-Cantered,

Earth-Fixed (ECEF) coordinates by [S3]

X, :(N0 +h)cos(lat><”}cos(lonx”}

180 180
latxz ) . (lonxrx
Y. =(N,+h)cos sin
o =(No+h) (180)(180) (54)
. donxx
Z =[N_.(1—e?)+h]sin
. =[Ny(1—€°)+h] (180)

where (Xe, Ye, Ze) are points in the ECEF coordinate system, (lat, lon) refers to geographic
coordinates in latitude and longitude, No denotes the radius of curvature of the Earth

corresponding to  different latitudes, typically expressed by the formula

a

N. =
’ \jl—ez sin®(lat)

, a is the equatorial radius, e represents the first eccentricity of the

Earth’s ellipsoid, with a value approximately equal to 0.081819, and h denotes the apparent
height of the observation point relative to the Earth’s surface.

The latitude-longitude coordinates of the real-world camera are converted into the ECEF
coordinates (X, Yr, zr) through Eq. (S4), from which the translation vector (ty, ty, t;) between

the ECEF and local coordinate systems can be derived as

tx =X =X
ty =Y.~ Y (85)
tz =17 -1

where (X, Ve, Zc) IS the coordinates of the virtual camera in the local coordinate system of the

simulated space.



All latitude-longitude coordinates of real-world ships can be further transformed into the

local coordinate system using

X, =X, +t,
Y, =Y+t (S6)
Z, =7, +t,

where (Xs, Ys, Zs) are the transformed points in the local coordinate system of the virtual

world.

Section S5. Synthetic ship images and detection results

Fig. S5 provides image samples of synthetic ships at varying camera-to-ship distances.

(a) 100~200m

(d) 400~500m

(g) 700~800m (h) 800~900m (i) 900~1000m

Fig. S5. Image samples of synthetic ships.

The image dataset comprised 210 training images, with 45 images designated for



validation and another 45 for testing. The adaptive moment estimation optimiser is employed
with an initial learning rate of 0.001, a momentum of 0.937, and a weight decay of 0.0005.
YOLOVS is trained using a batch size of 32 for 300 epochs. Mean Average Precision (mAP) is
used to evaluate the performance of the detection model, with higher mAP values indicating
better detection accuracy. Specifically, mMAP@0.5 refers to the mAP calculated at Intersection
over Union (loU) = 0.5, and mAP@0.5:0.95 denotes the mAP within the loU range of (0.5,
0.95) with a step size of 0.05 [S4].

Under the aforementioned experimental conditions, YOLOvV8 achieved mAP@0.5 and
MAP@0.5:0.95 scores of 97.8% and 91.7%, respectively, on the synthetic image dataset. The
detection results in Fig. S6 showcase that YOLOV8 provides complete and accurate bounding

boxes for ships located within 1000 meters of the bridge in the virtual environment.

(a) 100~400m (b) 400~700m (c) 700~1000m

Fig. S6. Detection results from the YOLOV8.



Section S6. Euclidean distance distribution
Fig. S7 presents the scatter plot of the Euclidean distance distribution for the nine pixels

following target matching.
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Fig. S7. Euclidean distance distribution for the nine pixels after object matching.
According to Fig. S7, for the extracted point (us, Vv4), the Euclidean distance between

each ship’s corresponding P* and P° in the simulated environment is generally within 150
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pixels, representing the smallest distance among all extracted points.

Section S7. Model configuration parameters and comparison

Seven benchmark models, including Multi-Layer Perceptron (MLP), Convolutional
Neural Network (CNN), Long Short-Term Memory (LSTM), Bidirectional LSTM (BILSTM),
CNN-LSTM, CNN-BILSTM, and Transformer are selected for comparison [S5]. Their model

architectures are illustrated in Fig. S8, and the corresponding hyperparameters are provided in

Table S1.
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Fig. S8. Seven benchmark DL models.

Table S1. Hyperparameters of typical benchmark models.

Models Hidden CNN LSTM BiLSTM Encoders  Decoders Multi-head Neurons  Number of
layers layers layers layers attention Parameters
MLP 5 / / / / / / 640 87946
CNN 3 2 / / / / / 384 132160
LST™M 3 / 3 / / / / 496 190630
BiLSTM 3 / / 2 / / / 512 605218
CNN-LSTM 2 2 2 / / / / 224 535306
CNN-BILSTM 2 2 / 1 / / / 128 2316482



Transformer 2 / / / 6 6 8 164 9702274

The batch size for all models is set to 32, and each model is trained for 200 epochs. The

solver used is Stochastic Gradient Descent (SGD) optimiser with an initial learning rate of

0.01 [S6]. 1080 ship samples are allocated for model training, while the remaining 270 ship
samples are reserved for evaluating model performance.

Formulas for Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean

Absolute Percent Error (MAPE), and coefficient of determination (R?) are given by

1 .
MAE:WZM —Yi (S7)
i=1
n A \2
RMSE = M_,—y.) (S8)
N
0 N v —
MAPE = 100% I ; y" (S9)
i=1 i
Z(Yi -, )2
R®=1-2— (S10)

where y, and Yy, are the observed and predicted value of the ship size, respectively, Y, is

the mean of y, values, and N is the number of samples.

Fig. S9 describes the distribution of actual values, predicted values, and their relative

errors for ship sizes across the test dataset for the seven models. It is evident that MLP

exhibits the lowest measurement accuracy, mainly due to its simpler network structure. For

the other models, the majority of points cluster near the 1:1 reference line, indicating high

predictive accuracy.
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Fig. S9. The distribution of actual values, predicted values, and their relative errors for the

different models

The MAE, RMSE, MAPE, and R? of these models are compared in Fig. S10. The values
of MAE, RMSE, and MAPE for the ship height measurements are generally smaller than for
the width measurements. This disparity arises from considering the height and width of the
bounding box as the pixel dimensions of the ship in the image. Many ships appear in side
views in images, leading to an overestimation of ship widths. However, with the increase in
data volume and optimization of the model, this issue is expected to resolve. Additionally,
whether measuring ship height or width, the CNN-LSTM model exhibits the lowest MAE,
RMSE, and MAPE, and shows the highest R® value. Fig. S10 demonstrates that the
CNN-LSTM model exhibits the best performance, which is why it is selected as the predictive

model for virtual-to-real-world transfer learning.
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Fig. S10. The MAE, RMSE, MAPE, and R? of the seven models

Section S8. Description of the real-world dataset

Ten ships with AIS appeared in the three sets of videos. The ship image samples are
shown in Fig. S11. If the MMSI label is not shown, AIS information for that ship is

unavailable.

() The 130th frame of Videol (b) The 455th frame of Videol
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(c) The 65th frame of Video2 (d) The 390th frame of Video2

(e) The 780th frame of Video2 (f) The 65th frame of Video3
Fig. S11. Image samples extracted from the videos.

A total of 90 samples, each with MMSI, ship sizes, positions and bounding box
information, are obtained due to the 1~2 minutes interval required for AIS data updates [S7].
These data cover a camera-to-ship distance range of 300m to 1000m [S8], with distances
greater than 200m generally regarded as far-range perception [S9, S10]. Therefore, it is
well-suited to validate the effectiveness of the proposed size measurement framework in
overcoming the challenges of long-range monitoring. For each ship target, the bounding box
information and latitude-longitude coordinates corresponding to the time when the AIS data
first changed are presented in Table S2.

Table S2. Representative sample data used for transfer learning.

MMSI Video  Time (5) Bounding boxes Ship positions Ship sizes

u; (pixel) vy (pixel) latitude (°E) longitude (°N) W(m)

250000000  Videol 62 1050 705 114.3262 30.6111 8
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Note: (us, vi) and W have the same meanings as defined earlier. Only (us, v1) is listed here;

additional information of bounding boxes can be found at [S8].

To reduce dataset bias between simulated and real worlds, the pixel coordinates of all

real-world ships are transformed into the virtual pixel coordinate system using Eq. (5), and the

latitude-longitude coordinates of ships in the videos are converted into local coordinates in the

virtual space using Eq. (S6). The latitude and longitude of the real-world camera are 114.3311°

E and 30.6183<N, respectively. Other parameters used for the calculations can be found at

[S8]. Table S3 lists the results of the transformed data from Table S2.

Table S3. The results of the transformed real-world data.

MMSI Video Time () Bounding boxes Ship positions Ship sizes
uy (pixel) vy (pixel) Xs (m) Ys (M) W (m)
250000000 Videol 62 1725 1099 -95 1077 8
190000000 Videol 122 1606 1112 -54 1047 8
330000000 Videol 122 1474 1113 60 967 11
600000000 Videol 482 1344 1118 111 933 8
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210000000 Video?2 62 1234 1115 208 843 10

290000000 Video?2 62 1153 1114 231 810 10
380000000 Video?2 542 1074 1110 252 778 13
340000000 Video?2 722 986 1104 311 689 13
180000000 Video2 842 893 1096 346 627 8
310000000 Video3 62 774 1093 383 567 9

Note: (u;, v1) and W have the same meanings as defined earlier. (Xs, Ys) represents the position

of the ships in the local coordinate system of the virtual space, as derived from the videos.
Section S9. Measurement results of the transfer learning model

The MAE, RMSE, MAPE, and R? of the fine-tuned model and the original CNN-LSTM
are compared in Fig. S12. The transfer learning model exhibits lower MAE, RMSE, and
MAPE values than the original CNN-LSTM. Additionally, the transfer learning model
achieves an R=2value of 0.90, significantly surpassing that of its original counterpart. This

demonstrates its superior accuracy in measuring ship widths on the real-world data.
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Fig. S12 The MAE, RMSE, MAPE, and R? of the two models
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Table S4. Comparison between real ship widths and predicted ship widths.

Sample no. Camera-to-ship distance (m) W (m) W(m) Error(m) Relative error (%)

1 762.83 11.18 11 0.18 1.64
2 562.91 8.24 8 0.24 3.00
3 988.97 9.48 10 -0.52 -5.2
4 741.93 13.50 13 0.50 3.85
5 904.91 9.60 10 -0.40 -4.00
6 426.56 13.43 13 0.43 3.31
7 573.67 10.55 10 0.55 5.5
8 879.72 11.36 11 0.36 3.27
9 480.24 11.50 11 0.50 4.55
10 696.31 8.66 9 -0.34 -3.78
11 379.18 8.41 9 -0.59 -6.56
12 935.12 8.49 8 0.49 6.13
13 816.62 12.81 13 -0.19 -1.46
14 696.54 11.46 11 0.46 4.18
15 556.76 9.71 10 -0.29 -2.90
16 563.98 7.82 8 -0.18 -2.25
17 656.07 9.54 10 -0.46 -4.60
18 765.53 8.89 9 -0.11 -1.22

Note: W" and W represent the predicted width and the actual width, respectively.
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