

## Electronic Supplementary Materials

For <https://doi.org/10.1631/jzus.A2500331>

# Lateral risk prediction and influencing factors analysis of container trucks based on trajectory reconstruction data

Zhihao ZHU, Hexuan LIU, Rongjun CHENG

*Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China*

## Section S1

$$ACC = \frac{TP + TN}{TP + FP + FN + TN} \quad (S1)$$

$$FNR = \frac{FN}{TP + FN} \quad (S2)$$

$$FPR = \frac{FP}{TN + FP} \quad (S3)$$

$$TPR = \frac{TP}{TP + FN} \quad (S4)$$

where  $TP$  is the correct prediction of the positive class,  $TN$  is the correct prediction of the negative class,  $FN$  is the incorrect prediction of the negative class as the positive class, and  $FP$  is the incorrect prediction of the positive class as the negative class.

$$f(x) = \phi_0 + \sum_{i=1}^M \phi_i \quad (S5)$$

where  $f(x)$  is the model's predicted value for sample  $x$ ,  $\phi_0$  is the model's output without any feature input (usually the average predicted value of all samples in the training set),  $\phi_i$  is the marginal contribution of the feature  $i$  to the prediction result, that is the Shapley value of the feature, and  $M$  is the total number of features.

$$g(z) = \phi_0 + \sum_{i=1}^M \phi_i z_i \quad (S6)$$

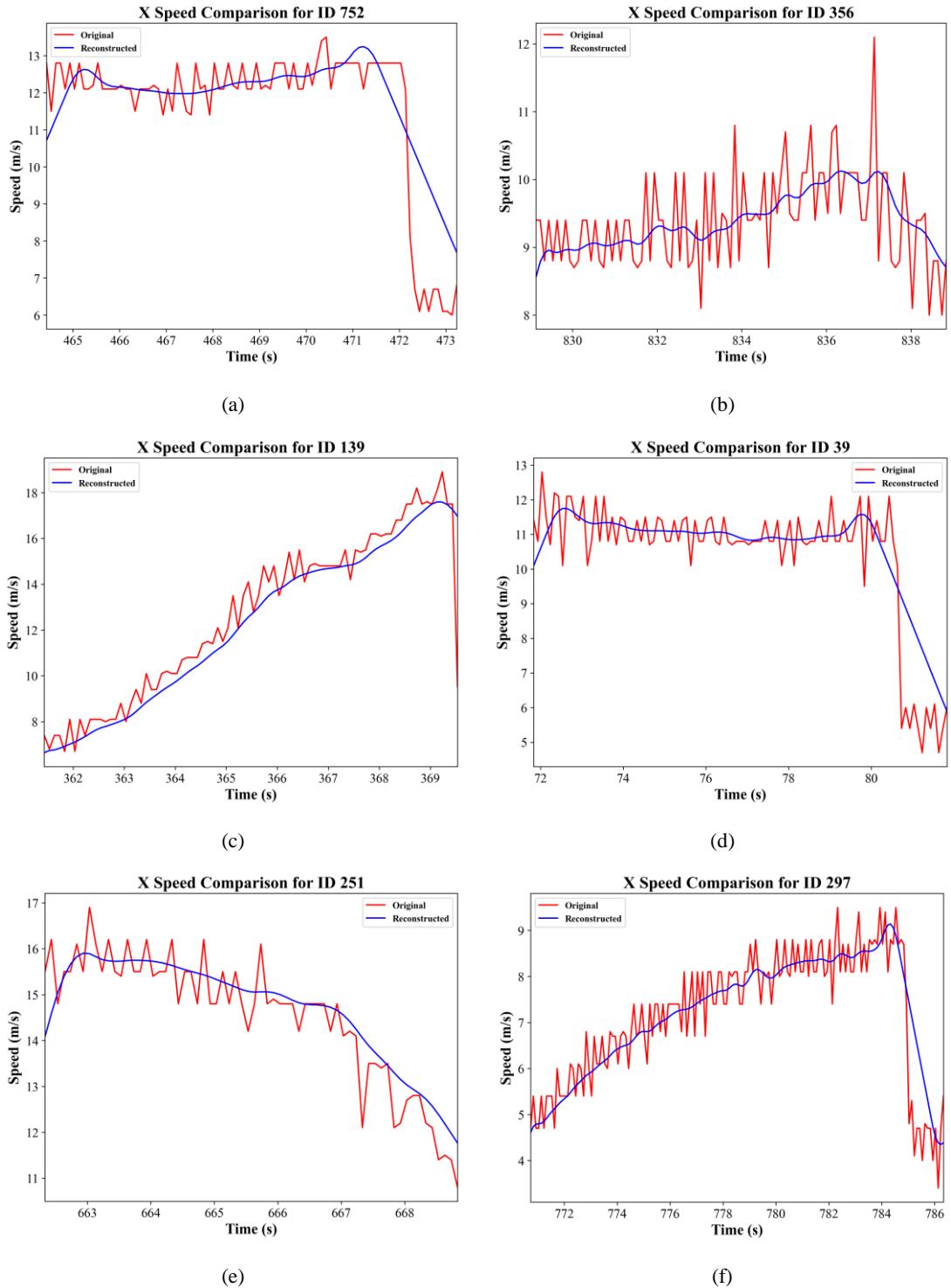
where  $Z_i \in \{0,1\}^M$  represents how many features are included in the decision path of the sample.

For a sample, if the feature is not in its decision path, then  $Z'_i = 0$ . When all  $Z'_i = 1$ , the model degenerates to the actual predicted value  $f(x)$ . This model is a surrogate model constructed to calculate the Shapley value.

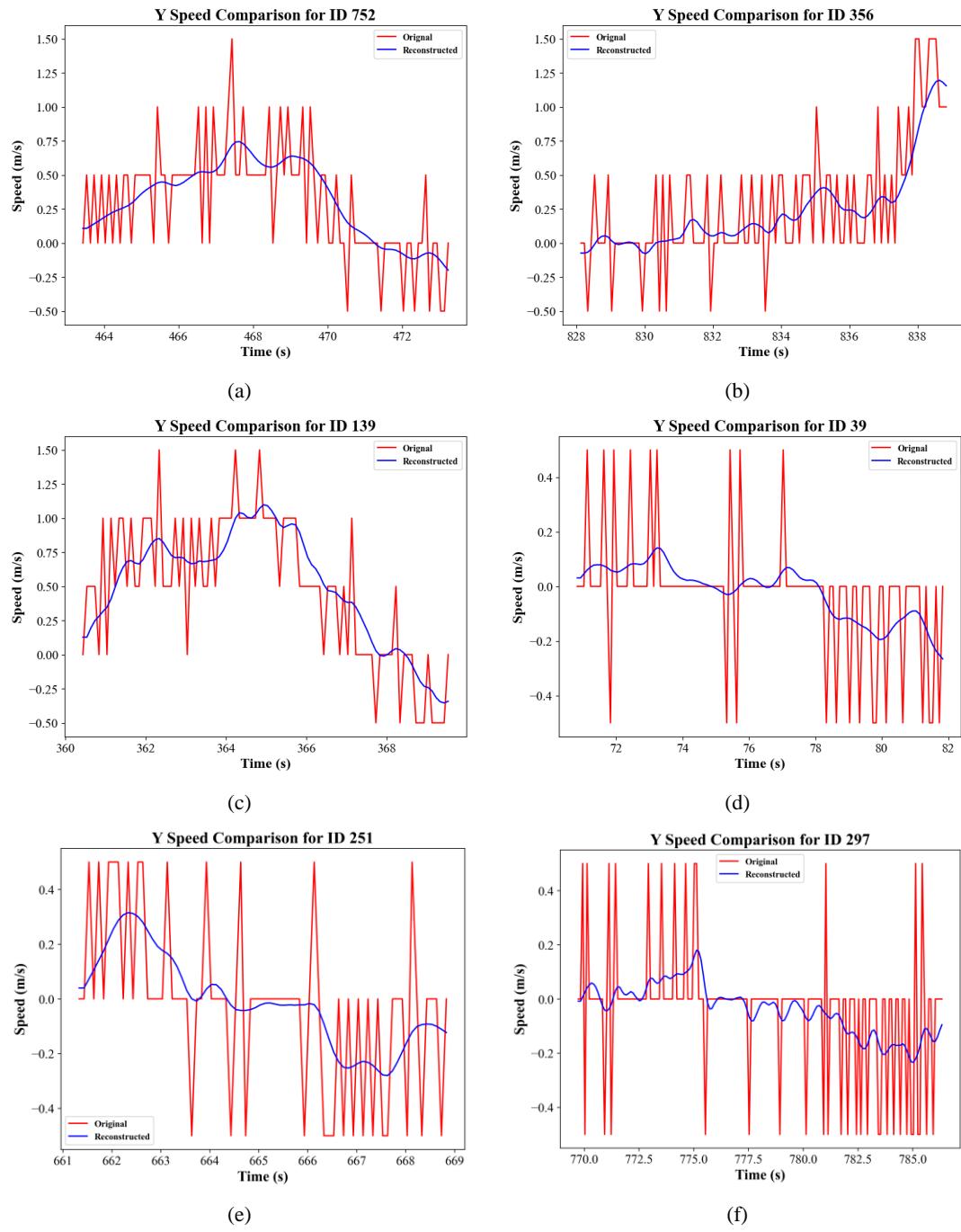
The Shapley value of each feature is defined as follows:

$$\phi_i = \sum_{S \subseteq M \setminus \{i\}} \frac{|S|!(|M| - |S| - 1)!}{|M|!} \left[ f_{S \cup \{i\}}(x_{S \cup \{i\}}) - f_s(x_s) \right] \quad (S7)$$

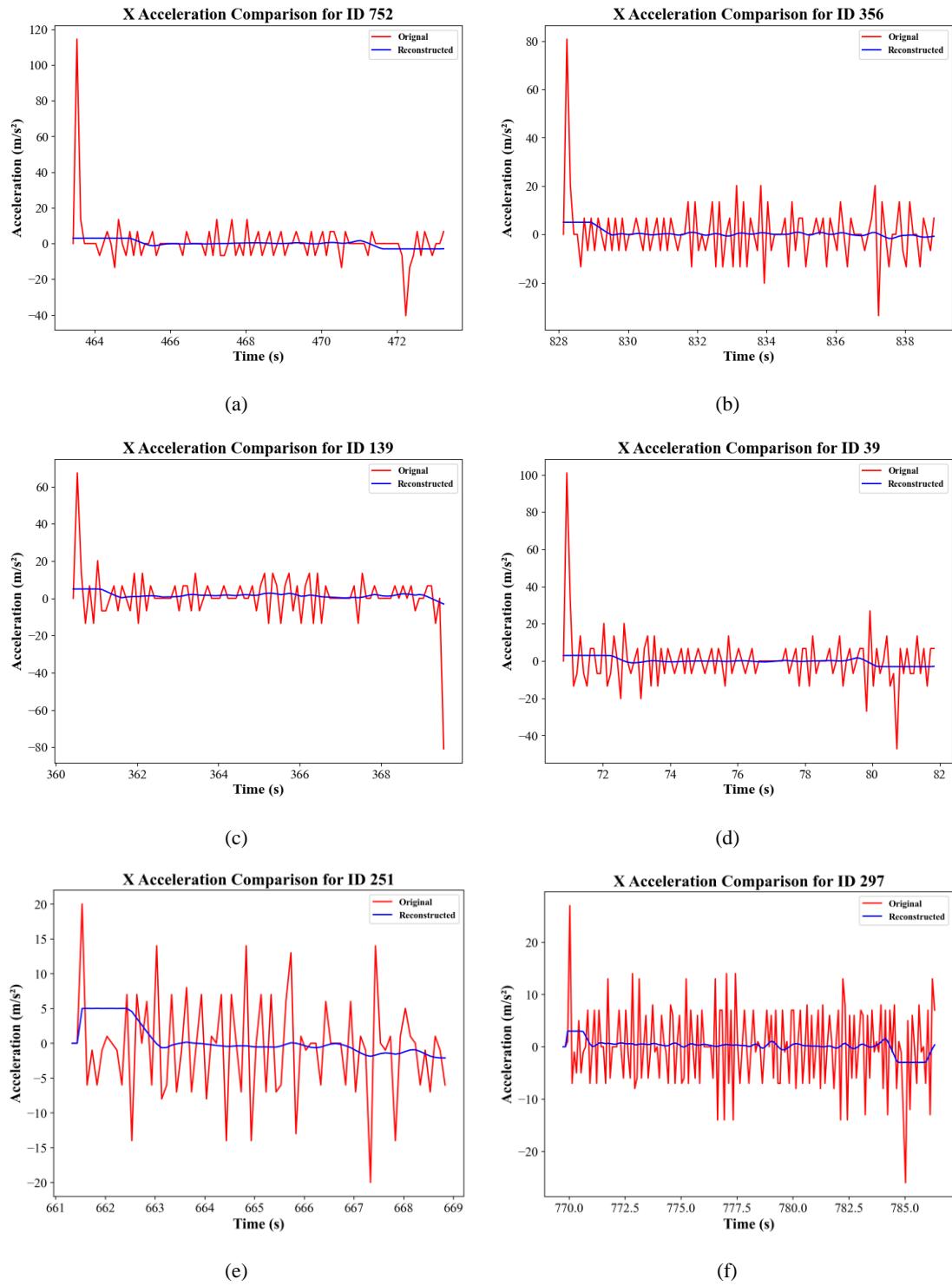
where  $S$  is the subset without feature  $i$  and  $f_s(x_s)$  is the prediction for  $x_s$  by the model trained using only features from subset  $S$ .


## Section S2

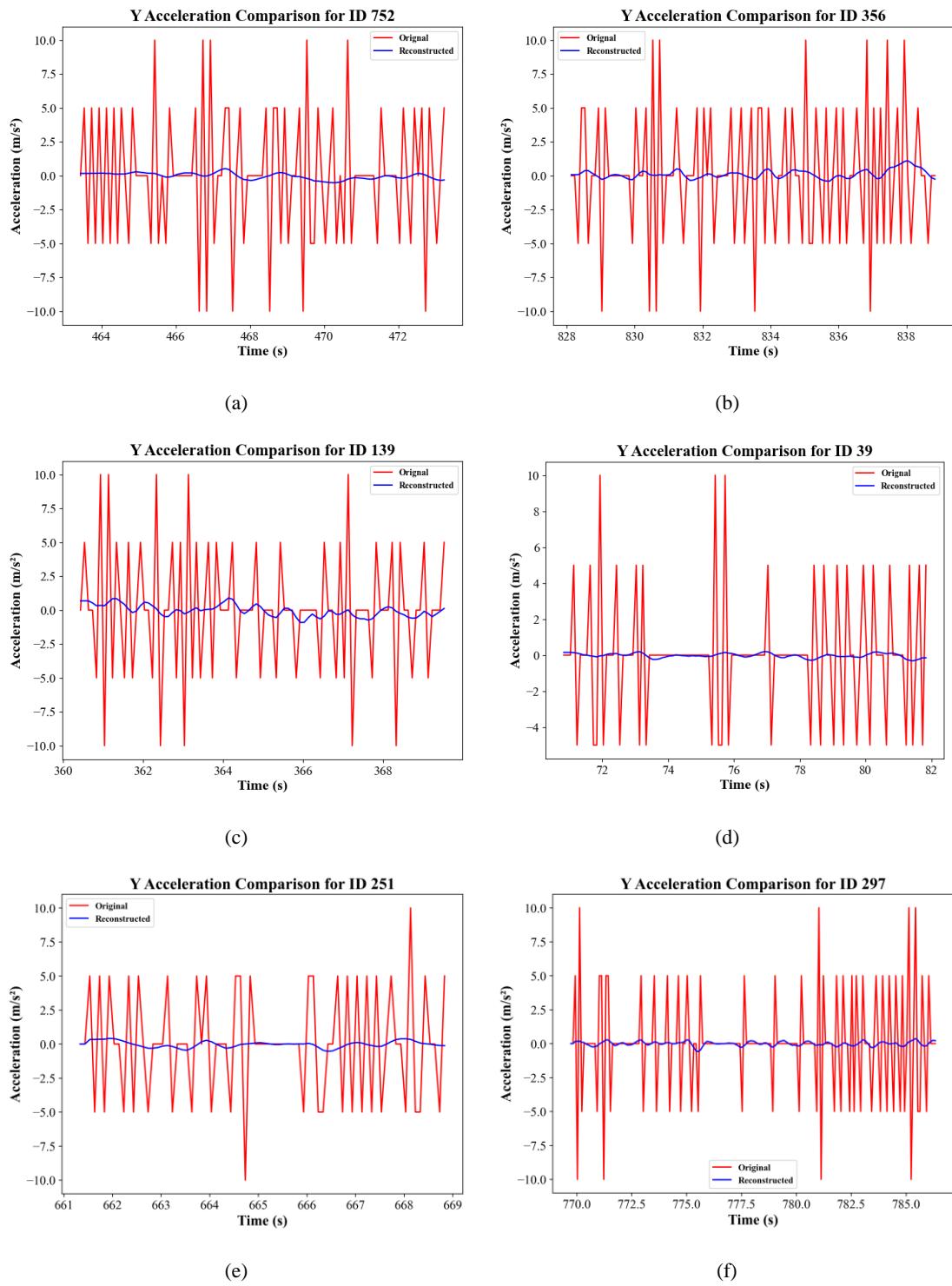
**Table S1 Introduction to raw data**


| Raw data                       | description                                                                 | Unit             |
|--------------------------------|-----------------------------------------------------------------------------|------------------|
| Frame                          | Frame Time                                                                  | —                |
| ID                             | Vehicle ID                                                                  | —                |
| cls_Name                       | Vehicle Type: defines five different types of trucks, as well as a car type | —                |
| (X_top_left, Y_top_left)       | The coordinates of the top left corner of the vehicle detection box         | —                |
| (X_lower_right, Y_lower_right) | The coordinates of the lower right corner of the vehicle detection box      | —                |
| (X_center, Y_center)           | The center coordinates of the vehicle                                       | —                |
| Length                         | Vehicle length                                                              | m                |
| Width                          | Vehicle width                                                               | m                |
| X_speed                        | Longitudinal speed of the vehicle                                           | m/s              |
| Y_speed                        | The lateral speed of the vehicle                                            | m/s              |
| X_acceleration                 | Longitudinal acceleration of the vehicle                                    | m/s <sup>2</sup> |
| Y_acceleration                 | The lateral acceleration of the vehicle                                     | m/s <sup>2</sup> |

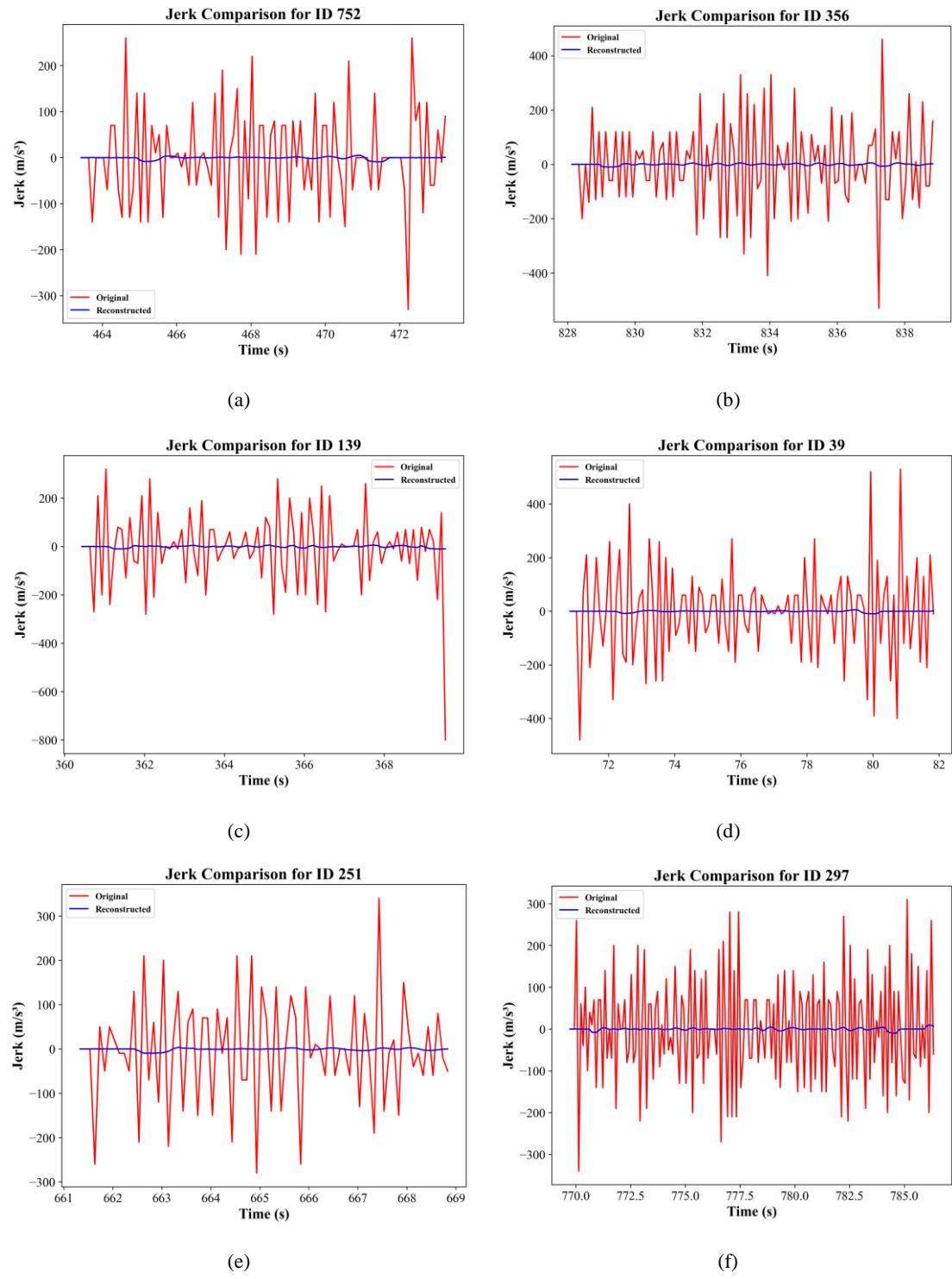
## Section S3


Note: The original data in Figs. S1–S5 refers to the trajectory data obtained through preliminary data preprocessing based on the raw data.




**Fig. S1 Comparison of longitudinal velocity before and after reconstruction**




**Fig. S2 Comparison of lateral velocity before and after reconstruction**



**Fig. S3 Comparison of longitudinal acceleration before and after reconstruction**



**Fig. S4 Comparison of lateral acceleration before and after reconstruction**



**Fig. S5 Comparison of Jerk before and after reconstruction**

## Section S4

**Table S2 Descriptive statistics of variable and conflict data (side-swipe)**

|   | Variable              | Unit             | Description                                               | Mean   | Min     | Max     | Std    |
|---|-----------------------|------------------|-----------------------------------------------------------|--------|---------|---------|--------|
| A | X_speed_actual        | m/s              | Longitudinal speed                                        | 7.1367 | 0.82    | 18.57   | 3.2818 |
|   | Y_speed_actual        | m/s              | Lateral speed                                             | 0.1711 | 0.11    | 0.67    | 0.0968 |
|   | Heading_Angle         | degree           | Heading Angle                                             | 1.6966 | 0.3716  | 10.8347 | 1.2581 |
|   | X_acceleration_actual | m/s <sup>2</sup> | Longitudinal acceleration                                 | 0.6367 | -4.99   | 5.00    | 2.2064 |
| B | Y_acceleration_actual | m/s <sup>2</sup> | Lateral acceleration                                      | 0.0548 | -0.91   | 1.87    | 0.2998 |
|   | avg_speed_x           | m/s              | Average longitudinal speed within 5s                      | 6.9745 | 0.0847  | 15.15   | 3.1043 |
|   | avg_speed_y           | m/s              | Average lateral speed within 5s                           | 0.1272 | 0.0022  | 0.9539  | 0.1203 |
|   | avg_accel_x           | m/s <sup>2</sup> | Average longitudinal acceleration within 5s               | 1.6125 | -1.9624 | 5.00    | 1.8415 |
| C | avg_accel_y           | m/s <sup>2</sup> | Average lateral acceleration within 5 seconds             | 0.0976 | -0.41   | 1.87    | 0.1761 |
|   | std_speed_x           | /                | Standard deviation of longitudinal velocity within 5s     | 1.0515 | 0       | 3.1827  | 0.5547 |
|   | std_speed_y           | /                | Standard deviation of lateral velocity within 5s          | 0.0691 | 0       | 0.5227  | 0.0461 |
|   | std_accel_x           | /                | Standard deviation of longitudinal acceleration within 5s | 1.0961 | 0       | 3.5826  | 0.9843 |
|   | std_accel_y           | /                | Standard deviation of lateral acceleration within 5s      | 0.1972 | 0       | 1.3402  | 0.1295 |
|   | std_heading_angle     | /                | Standard deviation of heading angle within 5s             | 0.6162 | 0       | 4.8924  | 0.4439 |
|   | TTC                   | s                | Time to collision                                         | 7.7654 | 0.88    | 34.09   | 4.7590 |

## Section S5

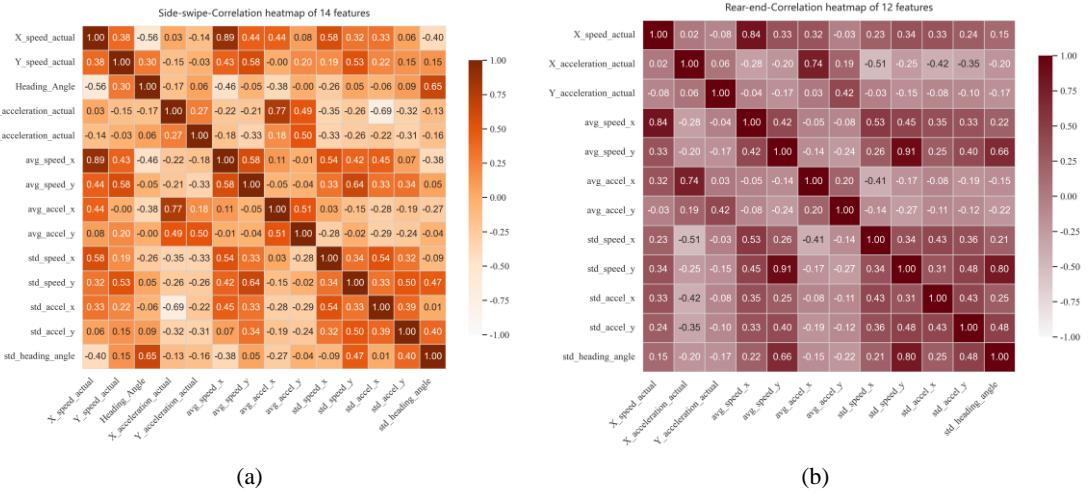
**Table S3 Descriptive statistics of variable and conflict data (rear-end)**

|   | Variable              | Unit             | Description                                               | Mean    | Min     | Max    | Std    |
|---|-----------------------|------------------|-----------------------------------------------------------|---------|---------|--------|--------|
| A | X_speed_actual        | m/s              | Longitudinal speed                                        | 2.7497  | 0.5     | 15.55  | 2.3736 |
|   | Y_speed_actual        | m/s              | Lateral speed                                             | 0       | 0       | 0      | 0      |
|   | Heading_Angle         | degree           | Heading Angle                                             | 0       | 0       | 0      | 0      |
| B | X_acceleration_actual | m/s <sup>2</sup> | Longitudinal acceleration                                 | 0.0343  | -5.00   | 5.00   | 1.4096 |
|   | Y_acceleration_actual | m/s <sup>2</sup> | Lateral acceleration                                      | -0.0019 | -1.03   | 2.26   | 0.162  |
|   | avg_speed_x           | m/s              | Average longitudinal speed within 5s                      | 3.3233  | 0.0188  | 14.45  | 2.5175 |
| C | avg_speed_y           | m/s              | Average lateral speed within 5s                           | 0.0196  | 0       | 0.7557 | 0.0571 |
|   | avg_accel_x           | m/s <sup>2</sup> | Average longitudinal acceleration within 5s               | 0.2422  | -2.9955 | 5.00   | 1.2290 |
|   | avg_accel_y           | m/s <sup>2</sup> | Average lateral acceleration within 5 seconds             | -0.0014 | -0.98   | 2.26   | 0.0774 |
|   | std_speed_x           | /                | Standard deviation of longitudinal velocity within 5s     | 0.7743  | 0       | 4.0626 | 0.7743 |
|   | std_speed_y           | /                | Standard deviation of lateral velocity within 5s          | 0.0218  | 0       | 0.4169 | 0.0469 |
|   | std_accel_x           | /                | Standard deviation of longitudinal acceleration within 5s | 0.6590  | 0       | 4.1685 | 0.6158 |
|   | std_accel_y           | /                | Standard deviation of lateral acceleration within 5s      | 0.1310  | 0       | 0.8916 | 0.1108 |
|   | std_heading_angle     | /                | Standard deviation of heading angle within 5s             | 0.2553  | 0       | 6.8540 | 0.5148 |
|   | TTC                   | s                | Time to collision                                         | 21.40   | -1394   | 3771   | 155.9  |

## Section S6

**Table S4 Feature importance ranking**

| Feature               | Ranking by importance |          |
|-----------------------|-----------------------|----------|
|                       | Side-swipe            | Rear-end |
| X_speed_actual        | 12                    | 3        |
| Y_speed_actual        | 1                     | 9        |
| Heading_Angle         | 4                     | 8        |
| X_acceleration_actual | 8                     | 1        |
| Y_acceleration_actual | 14                    | 7        |
| avg_speed_x           | <b>2</b>              | <b>4</b> |
| avg_speed_y           | 13                    | 6        |
| avg_accel_x           | <b>3</b>              | <b>2</b> |
| avg_accel_y           | 10                    | 5        |
| std_speed_x           | 9                     | /        |
| std_speed_y           | 11                    | /        |
| std_accel_x           | 6                     | /        |
| std_accel_y           | 5                     | /        |
| std_heading_angle     | 7                     | /        |


## Section S7

**Table S5 Experimental parameter settings**

| Conflict   | Model   | Model parameters |           |              |           |                  |                   |
|------------|---------|------------------|-----------|--------------|-----------|------------------|-------------------|
| Type       |         | learning_rate    | max_depth | n_estimators | subsample | min_samples_leaf | min_samples_split |
| Side-swipe | GBDT    | 0.2              | 6         | 100          | 1.0       | 1                | 10                |
|            |         |                  |           |              |           |                  |                   |
| Rear-end   | XGBoost | 0.01             | 3         | 500          | 0.8       | 0.8              | colsample_bytree  |
|            |         |                  |           |              |           |                  |                   |

## Section S8: Feature correlation analysis

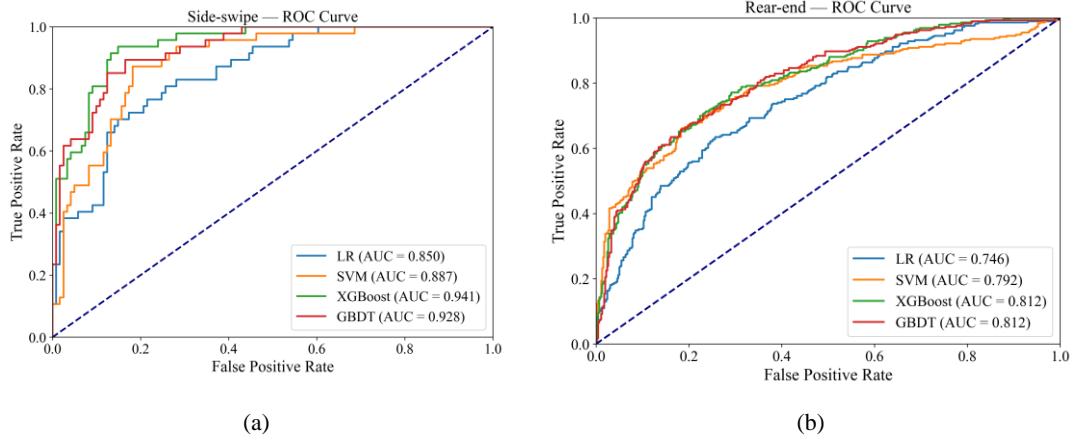
In the previous section on feature selection, we omitted feature correlation analysis. The original intention was to use SHAP analysis to rank feature importance and eliminate unnecessary features to optimize model prediction performance. However, highly correlated features can significantly impact models like LR and SVM. Therefore, this section discusses whether LR and SVM models outperform other tree-based models after removing highly correlated features.



**Fig. S6 Heatmap of feature correlation between two conflict types: (a)side-swipe; (b)rear-end**

Fig.S6 shows a heat map of feature correlations between side-swipe conflicts and rear-end conflicts. We removed highly correlated features and fed the remaining features into the model for training and testing using the same experimental environment as previously described. The remaining features are shown in Table S6.

**Table S6 Retained features**


| Feature               | Retained features |          |
|-----------------------|-------------------|----------|
|                       | Side-swipe        | Rear-end |
| X_speed_actual        | ✓                 | ✓        |
| Y_speed_actual        | ✓                 |          |
| Heading_Angle         | ✓                 |          |
| X_acceleration_actual | ✓                 | ✓        |
| Y_acceleration_actual | ✓                 | ✓        |
| avg_speed_x           |                   |          |
| avg_speed_y           |                   | ✓        |
| avg_accel_x           |                   |          |
| avg_accel_y           |                   |          |
| std_speed_x           | ✓                 | ✓        |
| std_speed_y           | ✓                 |          |
| std_accel_x           | ✓                 |          |
| std_accel_y           | ✓                 | ✓        |
| std_heading_angle     | ✓                 | ✓        |

The retained features were input into the machine learning model again, and the parameter grid tuning settings were consistent. The final prediction results of the two conflict types are shown in Table S7. The ROC curves of each model are shown in Fig. S7.

**Table S7 Comparison of conflict prediction results (features retained)**

|            | Model   | ACC          | FPR          | FNR          |
|------------|---------|--------------|--------------|--------------|
| Side-swipe | LR      | 0.774        | 0.091        | 0.574        |
|            | SVM     | 0.804        | 0.083        | 0.489        |
|            | XGBoost | <b>0.881</b> | <b>0.074</b> | <b>0.234</b> |
|            | GBDT    | 0.851        | 0.099        | 0.277        |
| Rear-end   | LR      | 0.705        | 0.176        | 0.481        |
|            | SVM     | 0.754        | <b>0.100</b> | 0.474        |
|            | XGBoost | 0.758        | 0.122        | <b>0.430</b> |
|            | GBDT    | <b>0.761</b> | 0.111        | 0.440        |

By comparing Table S7 with Table 2 and Table 3; Fig. S7 and Fig. 8, we can see that the performance of the model trained by inputting the retained features into the machine learning model is not as good as that of the model trained by inputting multiple features. The purpose of this paper is to develop a real-time conflict prediction model with good predictive performance, so it is reasonable to use all these variables for modeling. Finally, this paper conducts a feature ablation experiment based on the feature importance ranking to improve the model performance, which is also a way to weaken this effect.



**Fig. S7 ROC curves of different models (features retained): (a)side-swipe; (b)rear-end**