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1  Materials and methods 

1.1 Intracranial stereo-EEG recordings 

Intracranial stereo-EEG recordings possess both high spatial and temporal resolutions for 
measuring neural oscillations. A public multicenter EEG dataset is brought in for our research which 
is accessible from the following web links: https://mni-open-ieegatlas.research.mcgill.ca/ 
(Frauscher et al., 2018a; Frauscher et al., 2018b; Fonov et al., 2011). The intracranial Stereo-EEG 
activities are recorded as a preoperative assessment before epilepsy surgery at several hospitals. A 
total of 91 patients are enrolled to uncover the critical role of sleep in the previous study. All the 
patients signed the informed consent forms. Strict inclusion criteria are taken to get recordings of 
normal activity from non-lesion tissues which are assessed by Magnetic Resonance Imaging (MRI) 
(Frauscher et al., 2018a), while normal activities are chosen but inter-ictal and ictal neural activities 
are removed for further research.  

The selected EEG signals is comprised of wakefulness and three individual sleep stages as 
follows: rapid eye movement (REM), non-rapid eye movement stage 2 (N2), and non-rapid eye 
movement stage 3 (N3). The sampling frequency for EEG signals is 200 Hz. A length of 60s sections 
is selected corresponding to individual wakefulness and sleep state. Then the stereo-EEG signals 
are gathered together that recorded from the same brain area according to the atlas location. Owing 
to its important role in the brain, SN, DMN and FPN is the target in this study. Particularly, SN is 
comprised of the anterior insula (AI) and anterior cingulate cortex (ACC), and DMN is constituted 
with the posterior cingulate cortex (PCC) and precuneus, while FPN contains the middle frontal 
gyrus (MFG) and supramarginal gyrus (SMG) in this work. Considering about recordings from SN, 
DMN, and FPN, a group of five patients are enrolled for a significance test.  

The implanted electrodes contain subdural grids and stereo-EEG electrodes (Frauscher et al., 
2018a; Frauscher et al., 2018b). All the 1468 implanted channels are distributed in 38 regions per 
hemisphere according to anatomical registration, where the ICBM152 template is applied for co-
registration and anatomical localization in stereotaxic space (Frauscher et al., 2018a; Fonov et al., 
2011). As there are multisite corresponds to one cortical region, it enables the network investigation 
on three spatial levels of brain areas. In the small spatial level, each cortex is taken as an individual 
network. As for the medial spatial level, SN, DMN and FPN are formed and for the large spatial 
level, SN, DMN and FPN are combined together for network analysis. 

1.2 Dynamic functional connectivity extraction 

Wakefulness and sleep involve large-scale information exchange (Dimitriadis et al., 2010). 
The integration and segregation of information exchanges can be investigated by way of neural 
synchrony. In detail, phase synchronization indicates functional connectivity effectively 
(Dimitriadis et al., 2010; Lachaux et al.,1999). Phase locking value (PLV) is efficient for solving 
volume conduction and zero-phase problem (Dimitriadis et al.,2010; Lachaux et al., 1999; Tang D 



et al., 2020; Cao et al., 2022). Therefore, PLV is taken as the functional connectivity measurement 
in this study. As delta sub-band neural oscillations contain frequency components ranging from 1 
to 4 Hz, a 2s non-overlapping sliding window is chosen to detect dynamic changes across the whole 
course. Later the value of PLV will be taken as the element of the functional brain network, where 
a weighted undirected network is produced and self-connections are set to be zero. Therefore, 
frequency-dependent connectivity networks are generated according to the implementation of 
sliding windows, as each slice represents functional connectivity of multisite stereo-EEG signals 
lasting 2s. 

Comprehensively, the Butterworth filter is adopted to bandpass multichannel stereo-EEG 
signals into delta ((1–4) Hz), theta ((4–8) Hz), alpha ((8–13) Hz), beta ((13–30) Hz), and gamma 
band ((30–45) Hz) neural oscillations. Hilbert-Huang transform is deployed to capture instant phase 
from these band passed neural oscillations (Huang et al., 1998). Later, PLV (Dimitriadis et al., 2010; 
Lachaux et al., 1999; Tang D et al., 2020; Cao et al., 2022) is carried out on the correspondingly 
particular frequency to measure phase synchronization. As the electrical behavior is transient and 
instantaneous, a non-overlapping sliding window is implemented to track the gradual and rapid 
alterations in electrical activities. To sum up, time-varying functional connectivity networks are 
extracted by way of PLV and sliding window. 

1.3 Network Control theory 

Network control theory refers to navigating a complex system to the desired state by way of 
perturbation on its elements. Controllability is related with connectivity topology and network 
dynamics in the brain (Gu et al., 2015, 2017). In detail, it provides a mechanistic explanation for human 
cognition. Network controllability quantifies the possibility that navigating one network to the 
desired state through perturbation. Regular sleep restores the brain for cognition implementation. 
Under the sleep condition, the brain reacts very few to external stimulation, while the brain adjust 
its neural behaviors as quickly as possible under wakefulness condition. Various ensembled neural 
behaviors are modified through local or global neural activity. The distinction is critical for the 
health of the brain, and it is presumed that different controlling strategy exists between wakefulness 
and sleep. However, there is a lack of experimental evidence regarding of network control in 
wakefulness and sleep.  

The achievement of successful cognition depends on the interactions among distinct brain areas. 
Control and network theories offer the opportunity to capture underlying brain dynamics based on 
structural and functional network connectivity (Medaglia et al., 2017; Gu et al., 2015, 2017). 
Network controllability refers to the adaptive control from one state to another targeted state in a 
complex system (Gu et al., 2015; Karrer et al., 2020). At first, it focuses on the structural brain 
network derived from diffusion-weighted imaging, which demonstrates microstructures of white 
matter (Gu et al., 2015). Network dynamics are determined by interconnected units. In neuroscience, 
a trajectory is delineated as a temporal path across various states, while a state is interpreted as the 
temporal magnitude of neural activity. By way of the regulation on a single node, the brain network 
transits from one condition to another. In general, controllability portends the possibility of network 
manipulation over the desired orbit for favored states (Gu et al., 2015, Karrer et al., 2020).  



1.4 Network controllability metrics 

In the aspect of network controllability, three kinds of metrics are provided including average 
controllability, modal controllability, and boundary controllability (Gu et al., 2015). The network 
controllability quantifies the required energy for state control that achieves successful state 
transition after perturbation. Average controllability favors densely connected brain areas including 
DMN (Gu et al., 2015). Stimulating the default mode network induces great changes in large-scale 
brain dynamics because of dense structural connections (Muldoon et al., 2016). In other words, one 
node or subgraph spreads control energy to other components and changes the global state 
(Jeganathan et al., 2018). On the contrary, modal controllability measures the theoretical capability 
of a single node for driving the brain into hard-to-reach states. Boundary controllability quantifies 
the ability to integrate and segregate communities of the brain. Since the brain is composed of more 
than ten billion neurons, the complex network technique considers the total brain as a graph G=(V, 
E), which contains edge sets E and node sets V. The nodes denote distinct recording sites, while the 
edges represent their interaction measurements. In this work, control can be considered as the 
alteration of neural firings in the brain, which emerges as interactions among separate regions. As 
PLV is taken to calculate band-limited phase synchrony, the weighted brain matrix of G is defined 
as Α=[aij], where self-loops are removed and each network is denoted as a separate ‘state’ value. 
This time-evolving state represents network evolution. Average and modal controllability are the 
main metrics in this work. 

In graph theory, a network is denoted by the graph G=(V, E), where V and E stand for edge and 
node sets. For the associated matrix, its element aij denotes the weight between node(i,j)∈E, where 
the weighted matrix of G is a matrix A=[aij]RN×N, and aij=0 if node i equals j. As linear discrete 
system is proved to have statistically similar controllability to a continuous-time system via Gramian, 
it is adopted for state transition investigation in the brain system (Gu et al., 2015). After the 
extraction of the functional brain network, the dynamics of neural processes are defined as follows 
(Honey et al., 2009; Gu et al., 2015) as a discrete-time system:  

 
x(t+1)=Ax(t)+BκUκ(t) 

 
where x:R>0→RN delegates network states over time, A represents the weighted associated matrix, 
and Bκ stands for control point κ , while Uκ:R≥0→RN determines control strategy, where κ={κ1 … km}  
and Bκ = (𝑒఑భ ⋯𝑒఑೘), where ei represents the i-th canonical vector. The dynamics of neural processes 
are represented as functional connectivity networks in this paper. As for node sets κ, network 
controllability is equivalent to invertible Gramian controllability wκ as follows in control theory: 
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The input matrix Bκ assigns the control points and κ stands for the controls point sets. 
Uκ:R≥0→RN delegates control tactics. As an example, one node is chosen at one time in order to 
simplify the calculation process. Later, average controllability is taken as the main metric as it counts 
the average input energy over all possible states in a limited set of control nodes (Kalman et al., 
1963; Lee et al., 2016; Shaker et al., 2013; Gu et al., 2015), here Trace (wκ) is taken as the route to 
quantify average controllability. Meanwhile, modal controllability is produced from the eigenvector, 
and all modes are taken into consideration in this scaled measure (Chari et al., 2022). If one sliding 
window is taken as a slice, the multi-slice connectivity matrix stands for network evolution under 
wakefulness and sleep condition. Then the node’s states are combined into a vector to reflect state 
transition (Gu et al., 2015).  

1.5 Dynamical neural process evaluation via network controllability 

The dynamical neural process is delegated as the connectivity matrix derived from multisite 
recordings in the brain areas, including AI, ACC, MFG, PCC, Precuneus, and SMG, which 
constitute DMN, SN and FPN later. For each brain network, their nodes correspond with individual 
recording sites, and their edges represent phase synchronizations between them. For all these 
different network scales, a nonoverlapping 2 s windowed PLV is taken on band passed EEG 
oscillations to produce dynamic functional connectivity. Then network controllability metrics are 
implemented on these brain networks. The proposed framework is illustrated in Fig. 2. analysis of 
variance (ANOVA) and false discovery rate (FDR) are combined for the significance test (p<0.001). 

Intracranial stereo-EEG recordings detect temporal continuity in the brain that ranges from 
multi-spatial scales. In detail, three spatial levels of network connectivity are considered 
contemporaneously. For the first level, small networks come from stereo-EEG recordings on AI, 
ACC, MFG, SMG, PCC, and precuneus separately. For the second level, medium correlation 
matrices are generated from SN (comprised of AI and ACC), DMN (contains precuneus and PCC), 
and FPN (incorporates MFG and SMG). For the third level, SN, FPN, and DMN are gathered 
together as a big network. Here small, medium, and big refer to the spatial coverage of brain areas.  

Network connectivity reflects interactions among various neuron populations, while EEG 
gathers the postsynaptic potential together and reflects cognitive conditions objectively. At first, 
intracranial stereo-EEG signals are recorded by multisite stereo-electrodes for prior surgical 
evaluation in epilepsy patients, and normal neural activities are selected corresponding to 
wakefulness and sleep condition. Later, stereo-EEG signals are assembled from multiple subjects. 
In this study, the stereo-EEG signals come from 5 patients covering AI, ACC, MFG, SMG, PCC, 
and precuneus. Then bandpass filtering and Hilbert transform are implemented on windowed stereo-
EEG signals to extract the transient connectivity network. Finally, average network controllability 
is carried out to depict the character of brain networks corresponding to individual frequency 
components.  

 

 

 



Table S1  ANOVA test of Modal controllability in EEG networks  

 ACC AI MFG PCC Precuneus SMG 

N2 1 8.40 ൈ 10ିସ ∗ 1 5.40 ൈ 10ିସ ∗ 3.3 ൈ 10ିସ ∗ 0.0188 

N3 0.2502 4.70 ൈ 10ିହ ∗ 1 5.40 ൈ 10ିସ ∗ 0.0282 0.0632 

REM 0.4633 0.0012* 1 4.3 ൈ 10ିହ ∗ 2.1 ൈ 10ିହ ∗ 0.9902 

Wake 0.2179 0.5357 1 0.002* 0.0016* 0.9521 

ANOVA: analysis of variance; N2: non-rapid eye movement stage 2; N3: non-rapid eye movement stage 3; REM: 

rapid eye movement; ACC: anterior cingulate cortex; AI: anterior insula; MFG: middle frontal gyrus; PCC: posterior 

cingulate cortex; SMG: supramarginal gyrus.  

 
Table S2  ANOVA test of correlation between modal controllability and average controllability 

 ACC AI MFG PCC Precuneus SMG 

N2 0.5715 0.9775 1 0.8534 0.99 0.9997 

N3 1.49 ൈ 10ିସ ∗ 0.9955 0.0262 0.8356 0.9844 0.999 

REM 0.5595 0.8602 0.0212 0.9737 0.9891 0.9675 

Wake 7.24 ൈ 10ିହ ∗ 0.0027* 3.33 ൈ 10ିସ ∗ 0.0021* 0.0274 0.0195 

ANOVA: analysis of variance; N2: non-rapid eye movement stage 2; N3: non-rapid eye movement stage 3; REM: 

rapid eye movement; ACC: anterior cingulate cortex; AI: anterior insula; MFG: middle frontal gyrus; PCC: posterior 

cingulate cortex; SMG: supramarginal gyrus.  

 
Table S3  ANOVA test of average controllability metrics in five sub-band EEG networks  

 ACC AI MFG PCC Precuneus SMG 

N2 1.68 ൈ 10ି଺ ∗ 5.43 ൈ 10ି଼* 0.0821 4.80 ൈ 10ିଽ ∗ 8.49 ൈ 10ିସ ∗ 4.26 ൈ 10ିହ ∗ 

N3 5.21 ൈ 10ିହ ∗ 1.0 ൈ 10ି଻ ∗ 1.14 ൈ 10ି଺ ∗ 7.21 ൈ 10ି଻ ∗ 3.13 ൈ 10ି଺* 4.37 ൈ 10ିହ ∗ 

REM 7.88 ൈ 10ି଻ ∗ 1.50 ൈ 10ି଻ ∗ 0.3076 2.10 ൈ 10ିଵ଴ ∗ 0.0022* 0.0211 

Wake 0.0014* 0.2739 2.58 ൈ 10ିସ ∗ 3.58 ൈ 10ିଵଷ ∗ 2.15 ൈ 10ିସ ∗ 1.28 ൈ 10ିସ ∗ 

ANOVA: analysis of variance; N2: non-rapid eye movement stage 2; N3: non-rapid eye movement stage 3; REM: 

rapid eye movement; ACC: anterior cingulate cortex; AI: anterior insula; MFG: middle frontal gyrus; PCC: posterior 

cingulate cortex; SMG: supramarginal gyrus.  
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