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1  Full adders 
 

Naseri and Timarchi (2018) proposed a full-swing transmission gate (TG) based XOR-XNOR with 10 transis-
tors and an inverter in its input. Among the suggested six structures, HFA-17T has the minimum area. In Safaei 
Mehrabani and Eshghi (2016), six new full adders (FAs) were proposed based on the pass transistor logic (PTL) 
XOR-XNOR gate and TG-based multiplexers (MUXs). The most reliable design in Safaei Mehrabani and Eshghi 
(2016) (NEW-ND-FA) has 24 transistors with three inverters in inputs. Although the proposed XOR-XNOR in Safaei 
Mehrabani and Eshghi (2016) has high performance, high numbers of transistors and input inverters cause high 
power consumption and area occupation. Unlike Safaei Mehrabani and Eshghi (2016) and Naseri and Timarchi 
(2018), in Kandpal et al. (2020) a different hybrid design (Design-4) was proposed with three modules and 20 tran-
sistors. In this cell, XOR-XNOR signals are applied to TG gates which have Cin as their drain and source inputs to 
obtain Sum and Cout. The main problem is the threshold voltage drop of the output that can damage the whole system. 
The threshold voltage drop as a major defect causes the designers to use two other modules based on the comple-
mentary metal-oxide-semiconductor (CMOS) technique with four and two transistors in a series structure. These 
modules have power supply (VDD) and ground (GND) in their configuration, so the direct path will be created and 
short-circuit power consumption will increase. An FA cell is designed in the gate-diffusion input (GDI) technique. 
Here, NAND, NOR, XNOR, and XOR create the initial stage and generate the essential signals of 2:1 MUXs. Also, 
two output inverters improve the driving capability, and due to the GDI technique, the occupied area is small. A high 
number of internal nodes due to the use of series transistors causes a long critical path, the presence of direct paths 
between VDD and GND causes static and dynamic power consumption, and the use of multiple inverters increases the 
power consumption and significantly reduces the speed in this circuit. However, because of the drop in swing voltage 
due to the GDI technique, the GDI technique can be considered an unreliable choice. 

2  M:3 (4≤M≤7) counters 

Briefly, Mehrabi et al. (2013) has proposed a 4:3 counter using CMOS-based gates with 80 transistors that 
employ different logic gates such as AND, XOR, and MUX. All gates are based on the CMOS technique, with a high 
area occupation. Similarly, CMOS-based 5:3 and 6:3 counters with 80 and 112 transistors were proposed in Chow-
dhury et al. (2008) and Mehrabi et al. (2013), respectively. A 180-transistor CMOS-based 7:3 counter with high 
power consumption (Chang et al., 2005) was proposed in Mohd et al. (2013). These cells with the CMOS technique 
have appropriate output swings but suffer from high power consumption. Therefore, different designs using the GDI 
technique were presented in Mukherjee and Ghosal (2019) to achieve a small area. Different structures of 5:3 to 7:3 
counters, which have logic gates including AND, XOR, and OR gates, were presented as propagation gate (PG) 
blocks to be implemented in the body of the cells (Asif and Kong, 2015). Two different 7:3 counters with 260 and 160 
transistors were configured by grouping the input bits pattern and removing the redundant carry generator (Saha et al., 
2018). One of the most reliable designs regarding 7:3 counters was described in Veeramachaneni et al. (2007) 
comprehensively. 
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Generally, counters are used to count the number of 1’s in the inputs. Table 1 in the main text shows the per-
formance of a 4:3 digital counter whose concept can be extended to larger counters. There is a similarity between 
compressors and counters’ truth tables. The essential difference between a counter and a compressor is that the 
counter has no inter-stage carries and no inter-stage interconnects. In contrast, the compressor has several carries that 
come from or go to the neighboring cells in the same stage (Bagherizadeh et al., 2017; Srinivasulu et al., 2020). 

3  Physical comparison between the conventional and proposed multipliers 

Note that using half adder (HA) cells in circuits such as 4:3 and 5:3 counters in the partial product reduction tree 
(PPRT) stage of a multiplier will increase the area consumption undesirably, and consequently increase the com-
plexity of this significant stage. The higher the complexity of the circuit, the higher the number of internal nodes (due 
to the higher number of transistors used). Regarding the gate-level delay and transistor delay, instead of lowering FAs 
and using low-order circuits like 4:3 and 5:3 circuits, it is recommended to lower the complexity and use the 
high-order compression circuits like 6:3 and 7:3 counters along with FAs;in this case, lower area consumption, higher 
speed, and lower power can be obtained (Rahnamaei, 2020). Therefore, the higher-order counters like 6:3 (with one 
HA on the Sum output path) and 7:3 ones with only FA circuits are much better options in multipliers like the pro-
posed one. 

In general, increasing the width of the transistor will increase the value of Vth until it reaches a fixed point. In this 
case, if the hybrid FA does not have a full-swing output, this increase in Vth will cause a considerable drop in output 
swing voltage, especially in the case of high fan-outs. As a result, the noise margin is compromised. On the other hand, 
increasing the width of the transistors will increase the current of the transistors, which is very important concerning 
static power. Despite these features, it is known that with the minimum width of the transistors, in some circuits the 
minimum energy dissipation can be obtained. 

4  Simulation results and comparison 

4.1  Transistor sizing determination 

Transistor sizing is important for the design and implementation of high-performance and reliable circuits. 
Approximately equal rise time and fall time help attain high-speed circuits. In CMOS circuits, the width of PMOS 
transistors is usually considered to be two to three times that of the NMOS type (Wp=2Wn–3Wn). However, this may 
not be the most effective way to implement circuits such as FAs which are based on different logic styles and tech-
niques like hybrid ones. 

Therefore, due to the hybrid structure of the presented FA and most of the compared circuits, the mentioned 
advantages by considering Wn=Wp can be achieved. Also, to minimize energy dissipation, the minimum allowable 
width based on the used technology is considered. Therefore, the simulations on PMOS and NMOS transistors of the 
proposed circuit and other references are adjusted with equal dimension, Wp=Wn=120 nm and Lp=Ln=100 nm. 

4.2  Full adder cell tolerability evaluation 

When manufacturing a die, parameters such as oxide thickness, dopant and mobility, transistor width/length 
(W/L), and existing resistance-capacitance (RC) variations will change, which affects the threshold voltage of tran-
sistors as follows: 

 

 th T0 s SB s2 ,V V V                                                    (S1) 

 
where VT0 is the threshold voltage when the source is at the body potential, s is the surface potential at the threshold, 
γ is the body effect coefficient, and VSB is the applied voltage between the source and body. Therefore, a change in Vth 
will change the drain current (ID) as follows: 
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where VGS is the voltage of gate-source, and the current flow through the channel directly depends upon mobility (µn), 
oxide capacitance Cox (and hence the thickness of the oxide, i.e., tox), and the ratio of W/L. Numerous reasons can 
change the chip voltages, like current-resistance (IR) drop, which is caused by the current flow over the parasitic 
resistances and can reduce the supply voltage from the intended value. As a result, change in the chip voltages will 
cause the circuit to work slower or faster than earlier. Transistor characteristics like carrier mobility are influenced by 
temperature. The junction temperature inside the chip can vary in a wide range; thus, it is needed to consider the 
temperature variation. Carrier mobility relation with temperature is shown in Eq. (S3) for the metal-oxide-  
semiconductor field-effect transistors (MOSFETs):  

 
     r r ,/ kT T T T                                                (S3) 

 
where T and Tr are the absolute and room temperature respectively, and kµ is a fitting parameter with a typical value. 
Therefore, Vth decreases nearly linearly with temperature and may be approximated by 

 
                         th th r vt r ,V T V T k T T                                                           (S4) 

 
where kvt is typically about 1–2 mV/K. Also, at high values of VDD, the ON state current (Ion) decreases with tem-
perature increment, while the subthreshold leakage current increases exponentially. 

4.3  Counter cells 

The circuit in Mukherjee and Ghosal (2019) suffers from threshold voltage drop; thus, its inability to be used in 
more sophisticated circuits like the multiplier is under question. Looking at the numbers of transistors of circuits 
provided in Table S1, the proposed structures have 51.11%, 51%, 52.14%, and 50% transistor reduction, in 4:3, 5:3, 
6:3, and 7:3 counters, respectively, compared to their closest references. It results in an about 50% average reduction 
of area in the proposed structures compared to the state-of-the-art design. Regarding the 4:3 circuits, since Mukherjee 
and Ghosal (2019) is not able to be implemented in multiplier, it is not compared with proposed cell in terms of 
transistors number. Here the proposed cell is compared to 90 transistors by Asif and Kong, 2015. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4  Layout considerations 

The post-layout simulation waveforms of the proposed FA are shown in Fig. 10 of the main paper. As can be 
seen, the proposed circuit has appropriate performance under 500 MHz of frequency after all the validation tests of its 

Table S1  Transistors and gates comparison among different digital counters 

Design 
Number of transistors Number of gates 

4:3 5:3 6:3 7:3 4:3 5:3 6:3 7:3 

Mehrabi et al., 2013 100 – 140 160 9 – 11 12 
Mukherjee and Ghosal, 2019 22 226 – – 9 22 – – 
Asif and Kong, 2015 90 – 224 – 10 – 21 – 

Chowdhury et al., 2008 – 100 – – – 8 – – 
Fritz et al., 2017 – – 190 – – – 26 – 
Saha et al., 2018 (design-1) – – – 260 – – – 26 
Saha et al., 2018 (design-2) – – – 180 – – – 22 
Veeramachaneni et al., 2007 – – – 144 – – – 12 
Proposed 44 49 67 72 9 12 20 17 
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layout are checked. It can be seen that the proposed circuit attributed to its configuration can produce high logic (1) 
with sufficient swing (=VDD) at the considered frequency. In this case, the major point that must be taken into con-
sideration is the Cout generation for low logic (0) voltages. It is observed that in such a case the proposed circuit can 
produce suitable 0 logic except when ABCin=001, Sum=1, and Cout=0. Although in this case threshold voltage (Vth) 
loss occurs, its value is not high (it is equal to 0.26 V instead of being 0 approximately, which can be seen from Fig. 
10 in the main text). The main reason for this outcome is the use of a PMOS (M14), which is unable to produce the 0 
logic appropriately. It must be considered that the highest value of the existing threshold voltage (Vth) in Cout 
(Cout_Low_logicmax) is equal to one Vth=PMOS (M14). In a circuit usually 0 and 1 degradations occur due to inap-
propriate use of NMOS and PMOS transistors; in such cases a much more expensive latch based signal keeper circuit 
must be employed to solve the problem, or it becomes essential to increase the size of transistors, subsequently. On 
the other hand, in the proposed design only 0 degradation exists by a PMOS (M14), only in one state of input com-
bination (ABCin=001), in which the harmful influence on the DC power can occur. In this case, there is no need to 
tweak the size of the PMOS transistor (since it will be insignificant while consuming power) or to add an expensive 
latch based signal keeper circuit, but an NMOS with the complement input signal (here X ) compared to M14 can be 
added. Also, the range of output voltage swings can affect the minimum supply voltage. 

5  Image blending 

The multiplication can be performed based on 
 

         1 2, , , ,Q i j = P i j P i j                                                        (S5) 
 

where Q is the multiplied output image, while P1 and P2 are the input images that are supposed to be multiplied pixel 
by pixel. 

Here, the intended images for blending, which are grayscale, must first be converted into readable digital signals 
for transistors in the multiplier. For this purpose, a MATLAB code is developed. Grayscale images have pixels with 
values between 0 and 255. Initially, a proportional voltage is assigned to each pixel for each possible value. To do this, 
VDD/255 (if the input images have dimensions of 255×255) is considered as a step. For example, if the desired pixel 
has a value of 0, its voltage is 0, while if it is 255, its voltage value is equal to 1.2 V, which is the nominal value of the 
VDD in 90 nm technology. Next, to generate the digital signals from these pixels, the resulting voltage matrix must be 
readable for the HSPICE simulator.  

So, the resulting voltage matrix is converted to a piecewise linear (PWL) signal, a 1×n matrix, and applied to the 
circuit as input. Also, to generate pulses commensurate with the values of the pixels, the values of the rise time (tr) and 
fall time (tf) are considered to 0.1 ns for the circuit benchmark at high frequencies. The mentioned signals are illus-
trated in Fig. 11 in the main text. The buffers are used to convert the signals to binary for better testing of the multi-
pliers. By applying the resulting PWL signal to these buffers, the gray images are automatically converted to binary. 
Now the signals are available for the multiplier. The output is obtained as an m×1 matrix, which is transferred to 
MATLAB and converted to its initial dimensions, 255×255. The output is displayed and image evaluation parameters 
such as peak signal-to-noise ratio (PSNR) and structural similarity index metric (SSIM) are calculated. 

Like any advanced very-large-scale integration (VLSI) system, the proposed mechanism has a fault detection 
system. It is possible to apply the multiplier output image and the expected image, obtained from the typical 
MATLAB operation, to a subtractor with a sufficient number of input bits, and to subtract the values of these two 
images pixel by pixel (255×255=65 025). The difference image from the VLSI implementation by the proposed 
multiplier with its mechanism and conventional image processing by MATLAB is obtained. Therefore, it is easy to 
detect the performance of multipliers by this mechanism for image blending applications. 

Also, by comparing the plot profile results from the subtraction of the expected MATLAB output image and 
different multipliers, Fig. S1 is attained. The highest difference belongs to the output image by the multiplier of Ref1, 
while the lowest results are for the proposed multiplier. These results prove the stability and high efficiency of the 
proposed cells including FA, HA, counters, and also the 8-bit CBW multiplier. 
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Fig. S1  Subtraction results of the output images of multipliers and MATLAB 
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