Frontiers of Information Technology & Electronic Engineering www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com ISSN 2095-9184 (print); ISSN 2095-9230 (online) E-mail: jzus@zju.edu.cn

Supplementary materials for

Hadi JAHANIRAD, 2023. Dynamic power-gating for leakage power reduction in FPGAs. *Front Inform Technol Electron Eng*, 24(4):582-598. https://doi.org/10.1631/FITEE.2200084

1 Effects of power-domain granularity on energy saving

In this section, we investigate the effects of granularity size on power-gating efficincy. For more clarification, supposing that a power domain consumes $P_{\text{leakage}}(\text{on})$ and $P_{\text{leakage}}(\text{off})$ leakage power in active and sleep modes, respectively. It is obvious that $P_{\text{leakage}}(\text{off}) \leq P_{\text{leakage}}(\text{on})$. Moreover, supposing that a transition from active to sleep mode and vice versa requires E_{tr} joules energy. The consumed energy is related to the inrush current along with charging and discharging the internal nodes of the power domain modules (the worst-case scenario).

Furthermore, the power consumption related to the power controller $P_{ov}(PC)$ and other additional resources should be considered in the calculations. In Eq. (S2), $P_{ov}(\text{tile})$ and $P_{PCS}(\text{tile})$ are related to the power consumption of the retention latch and the routing resources of the power control signal (PCS), respectively. On the other hand, assuming that in a T_{total} time of system operation, T_{idle} is the idle time for the power domains. Due to the additional resources that are responsible for power-gating (PC, PCS, footer/header, retention latches, etc.), $P_{\text{leakage-PG}}(\text{on})$ and $P_{\text{dynamic-PG}}$ are greater than $P_{\text{leakage-ungated}}$ and $P_{\text{dynamic-ungated}}$ of the conventional field programmable gate array (FPGA) architecture.

Roughly, supposing that the power-domain granularity can be as small as a tile (Fig. S1), including a configurable logic block (CLB), its neighbor switch boxes (SB), and the related connection boxes (CBs) (H_CB and V_CB). The amount of energy consumed in T_{total} seconds can be calculated for a conventional (ungated) and a power-gated tile (1-tile granularity) according to Eqs. (S1) and (S2), respectively.

$$E_{\text{ungated}} = (P_{\text{leakage-ungated}} + P_{\text{dynamic-ungated}}) \times T_{\text{total}}, \tag{S1}$$

$$E_{1-\text{tile}} = P_{\text{leakage}}(\text{off}) \times T_{\text{idle}} + (P_{\text{ov}}(\text{PC}) + (P_{\text{ov}}(\text{tile}) + P_{\text{PCS}}(\text{tile})) \times T_{\text{total}} + N_{\text{tr}} \times E_{\text{tr}} + (P_{\text{leakage}}, P_{\text{G}}(\text{on}) + P_{\text{dynamic}}, P_{\text{G}}) \times (T_{\text{total}} - T_{\text{idle}}),$$
(S2)

$$E_{N_{\text{PD-tile}}} = \beta_1 P_{\text{leakage-PG}}(\text{off}) \times T_{\text{idle}} + (\alpha_1 P_{\text{ov}}(\text{PC}) + \alpha_2 P_{\text{ov}}(\text{tile}) + \alpha_3 P_{\text{PCS}}(\text{tile})) \times T_{\text{total}} + N'_{\text{tr}} \times E'_{\text{tr}} + (\beta_2 P_{\text{leakage-PG}}(\text{on}) + \beta_3 P_{\text{dynamic-PG}}) \times (T_{\text{total}} - T'_{\text{idle}}).$$
(S3)

The first term in Eqs. (S2) and (S3) concerns leakage power in the idle time, and the second term is related to the power overhead caused by the power gating modules that are always on. The third term is related to the N_{tr} transitions energy, and the fourth term corresponds to the leakage and dynamic power consumption in active time.

The definitions of parameters and variables in Eqs. (S1)–(S3) are as follows. $E_{ungated}$, $P_{leakage-ungated}$, and $P_{dynamic-ungated}$ are the enregy, leakage power, and dynamic power consumed by an ungated tile, respectively. T_{total} and T_{idle} are the total operation time and the idle time of the tile, respectively. $P_{leakage}$ (off) and $P_{leakage-PG}$ (on) are the amount of leakage power which consumed by the tile in sleep mode and active mode, respectively. $P_{dynamic-PG}$ is the amount of power consumption of a tile in its active mode. $P_{ov}(PC)$, $P_{ov}(tile)$, and P_{PCS} (tile) are

the power consumption of power controller, power of overhead modules of a tile, and power consumption of PCS module, respectively. N_{tr} and E_{tr} are number of transitions and the energy per transition of a tile, respectively. When the power-domain granularity increases to N_{PD} tiles, the effective parameters in Eq. (S3) change as follows. We consider α_1 , α_2 , and α_3 as the reduction coefficients for $P_{ov}(PC)$, $P_{ov}(tile)$, and $P_{PCS}(tile)$, respectively. Moreover, β_1 , β_2 , and β_3 are the related coefficients for $P_{leakage}(off)$, $P_{leakage-PG}(on)$, and $P_{dynamic-PG}$, respectively.

The idle time of this power domain is the overlap of idle-time durations of all N_{PD} tiles. So, the idle time of the power domain is less than T_{idle} of its tiles ($T_{\text{idle}} < T_{\text{idle}}$). The granularity of N_{PD} tiles can reduce the power controller overhead due to the reduction of the number of power controller outputs. Consequently, the share of the power-controller overhead is reduced ($\alpha_1 < 1$). The energy of a transition between sleep to active mode and vice versa may be less than $N_{\text{PD}} \times E_{\text{tr}}$. For instance, using one footer transistor in the granularity of N_{PD} tiles instead of the N_{PD} ones in the first case would result in a reduction of E_{tr} due to a lower capacitance value. The power overhead due to data retention (P_{ov} (tile)) would remain constant ($\alpha_2 \approx 1$). This is because of the similar data that should be retained in the 1-tile and N_{PD} -tile granularities. On the other hand, an increase in the granularity of the power domain results in a reduction of the PCS routing resources. Thus, the related power overhead (P_{PCS}) decreases accordingly ($\alpha_3 < 1$). The leakage power of the off state of one tile in N_{PD} granularity architecture is less than its 1-tile granularity counterpart ($\beta_1 < 1$), as well as the on state leakage power is less than its counterpart ($\beta_2 < 1$). Dynamic power consumption for N_{PD} tiles in 1-tile granularity is slightly larger than the related dynamic power consumption in the N_{PD} -tile granularity ($\beta_3 < 1$). This is due to the utilization of more resources in the former (more footer/header transistors, etc.).

Increasing the granularity of the power domain is accompanied by lowering all the desirable parameters except the idle time. Due to the idle time decrement, almost all the tiles receive less benefit from power-gating. If all the tiles in a power domain belong to a single power-gating region (PGR), then the most efficient granularity size equals the size of all the tiles. If more than one PGR module occupies the power domain tiles, the related idle time is the overlap value of related PGR idle times. This reduces the benefit of power gating in the power domain. Consequently, an efficient granularity is one in which the PGR and power domain matching is maximum.

For instance, Fig. S2 illustrates the final placement of an arbitrary circuit containing six modules. Two levels of granularity are shown in this figure. One is a 1-tile granularity in red, and the other is a 16-tile granularity in black. A portion of the M4, M5, and M6 modules are placed in the PD1 power domain. So, the related idle time would be reduced to the overlap of idle times of these modules. Furthermore, despite the low utilization of PD2 (\approx 20% by M3), the M3 idle time determines the idle times of all the tiles belonging to this power domain.

2 Leakage mechanisms in FPGA

The sub-threshold current occurs when V_{GS} (voltage difference between gate and source terminals) is less than V_{th} (threshold voltage of the transistor), and is calculated according to

$$I_{\rm sub} = \mu_0 C_{\rm ox} \frac{W}{L} (m-1) \times v_{\rm T}^2 \times e^{(V_{\rm GS} - V_{\rm th})/(mv_{\rm T})} \times (1 - e^{-V_{\rm DS}/v_{\rm T}}),$$

$$m = 1 + \frac{3t_{\rm ox}}{W_{\rm dm}},$$
(S4)

where μ_0 , C_{ox} , t_{ox} , W, and L are the device mobility, oxide capacitance, oxide thickness, transistor width, and channel length, respectively. Further, v_{T} and W_{dm} are the thermal voltage and maximum depletion layer width, respectively.

Three main factors affect the sub-threshold current:

1. The temperature increase leads to an increase in the sub-threshold current;

2. The sub-threshold current increases with the reduction of V_{th} . Consequently, the body effect (due to non-zero V_{BS}) increases V_{th} and leads to a decrement of the sub-threshold current;

3. Drain-induced barrier lowering (DIBL) occurs due to different voltages in the drain and source terminals ($V_{DS}>0$). DIBL decreases the V_{th} and increases the sub-threshold current.

The second leakage mechanism is related to the gate leakage current, which exists in both the on and off states. The amount of this current in the off state is negligible. Generally, a large V_{GS} along with a small V_{DS} results in a larger gate leakage current.

Fig. S1 Internal circuitry of a tile

Fig. S2 A circuit placement and two different granularities

Fig. S3 A typical basic logic element architecture

Table S1	Synthetic	circuit	properties
----------	-----------	---------	------------

Circuit	Modules	Number of input–outputs	Number of basic logic elements
C2 1	elliptic+S38417	155	5268
C2 ²	clma+s298	473	4287
C3_1	elliptic+S38417+s298	164	5319
C3 2	diffeq frisc+S38584	499	9761
C4_1	ex5p+s298+apex2+seq	199	2577
C4_2	spla+diffeq+misex3+s38417	267	8483
C5_1	apex4+tseng+seq+pdc+clma	785	9574
C5_2	s38417+ex5p+diffeq+ex1010+s298	265	7325
C6_1	seq+tseng+apex4+pdc+spla+misex3	423	8204
C6_2	spla+ex5p+s298+seq+apex2+ex1010	292	5809
C7_1	misex3+spla+s38417+pdc+seq+tseng+apex4	557	12 838
C8_1	clma+ex1010+s298+spla+misex3+spla+apex2+seq	781	11 908
C9_1	s298+apex2+seq+alu4+elliptic+tseng+s38417+apex4+ex5p	563	12 427