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self-adaptive learning ability, its local exploitation capability declines in the later searching stage, falls into a 
local optimum, and cannot reach the global optimum. Moreover, Figs. S2a–S13a show that the search accuracy 
obtained by HSDM is slightly better than that by MCS and CS, but the optimal solution obtained by those 
algorithms is significantly worse than HS-CS.   

 

 
 

Fig. S1  Flowchart of the HS-CS algorithm 
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Fig. S6 
(b) 30-di

Fig. S7 
(b) 30-di
 

Fig. S8 
(b) 30-di
 

Fig. S9 
(b) 30-di

(a)   
 Optimizing 

imensional; (c)

(a)   
 Optimizing

imensional; (c)

(a)  
 Optimizing

imensional; (c)

(a)   
 Optimizing t

imensional; (c)

                        
the converge

) 50-dimension

                        
g the converg
) 50-dimension

                        
g the conver
) 50-dimension

                       
the convergen
) 50-dimension

                        
ence curve of
nal 

                        
gence curve o
nal 

                        
rgence curve 
nal 

                        
nce curve of F
nal 

 

 

              (b)     
f F5 (Griewan

             (b)       
of F6 (Ackle

               (b)     
of F7 (Step

             (b)       
F8 (Schwefel 2

 

                        
nk) in differe

                        
y) in differen

                        
p) in differen

                        
2.22) in differ

                         
ent dimension

                         
nt dimensions

                        
nt dimensions

                         
rent dimension

           (c)  
ns: (a) 10-dim

         (c)  
s: (a) 10-dim

           (c)  
s: (a) 10-dim

           (c)  
ns: (a) 10-dim

 

mensional;  

 

mensional;  

 

mensional;  

 

mensional;  



Fig. S10
(b) 30-di
 

Fig. S11
(b) 30-di

Fig. S12
(b) 30-di

Fig. S13
(b) 30-di

 

(a)  
0  Optimizing 
imensional; (c)

(a)  
1  Optimizing
imensional; (c)

(a)  
2  Optimizing 
imensional; (c)

(a)  
3  Optimizing
imensional; (c)

                        
the converge

) 50-dimension

                        
g the converg
) 50-dimension

                        
the converge

) 50-dimension

                       
g the converg
) 50-dimension

                        
nce curve of 

nal 

                        
gence curve o
nal 

                        
ence curve of 
nal 

                        
gence curve of
nal 

 

 
 

              (b)     
F9 (Bohachev

              (b)     
of F10 (Quart

 

              (b)     
F11 (Rosenbr

 

              (b)     
f F12 (Schwe

                        
vsky) in differ

                        
tic) in differe

                        
rock) in differ

                        
efel) in differe

                        
rent dimension

                        
ent dimension

                        
rent dimension

                        
ent dimension

          (c)  
ns: (a) 10-dim

          (c)  
ns: (a) 10-dim

          (c)  
ns: (a) 10-dim

           (c)  
ns: (a) 10-dim

5

 

mensional;  

 

mensional;  

 

mensional;  

 

mensional;  



 
 

 

6

Also, with the increase of the dimension, the HS-CS algorithm can handle the high-dimensional problems 
quickly. 

HS-CS can jump out of the local extremum with a higher convergence speed and higher convergence 
accuracy in the case of a 30-dimensional problem compared to the six other algorithms (Figs. S2b–S13b). From 
Figs. S10b and S12b, ECS indicates a strong competitiveness on two unimodal functions (F9, F11), while the 
convergence performance of HS-CS on those functions are slightly weaker than that of ECS, but far superior to 
the five other optimization algorithms. Since the search mechanism of Levy flight of CS was adopted by ECS 
and HS-CS, the convergence efficiency of these algorithms was similar. In addition, AGOHS has the best search 
accuracy on 10 out of all 12 test instances on functions F1, F2, F4–F7, and F9–F12, but it does not guide the 
direction of “pitch adjusting and selecting the best” in the final optimization process, which causes the 
algorithm to have low convergence efficiency and speed. However, with the function dimension increasing from 
10 to 30, it is shown in Figs. S2b–S13b that IDHS cannot overcome the impact of the increase of dimension 
well, which reduces the local optimization capability of the algorithm in the latter period, resulting in the 
reduction of the search precision of obtaining 12 test functions. As shown in Figs. S3b and S11b–S13b, MCS 
and HSDM have similar convergence efficiency and accuracy in optimizing F2 and F10–F12 functions and the 
convergence accuracy is much better than that of CS. Moreover, the HS-CS algorithm integrated with Levy 
flight broadens the search scope of the population, enhances the position update strategy, and improves the 
global exploration ability, and the population diversity is improved compared with that of AGOHS, IDHS, and 
HSDM. 

HS-CS can carry out the global optimization process continuously and find the best solution while dealing 
with functions such as F1–F12 of 50 dimensions, and it also exhibits great advantages on stability. However, by 
analyzing Figs. S2c–S13c, HSDM, IDHS, MCS, and CS cannot adaptively determine the current algorithm 
execution state or adjust the algorithm search flexibly when optimizing and solving 12 functions, which makes 
these algorithms unable to jump out of the local extremum, leading to poor searching results. 

Figs. S2c–S13c show that AGOHS has obtained 7 best results in optimizing 12 different high-dimensional 
test cases. Among them, AGOHS has a good effect on most unimodal functions in the process of searching the 
optimal solution, except the F8 and F10 functions. However, due to its low convergence efficiency compared 
with the proposed algorithm, AGOHS needs to consume a lot of resources to find the optimal solution in the 
process of solving high-dimensional problems. At the same time, Figs. S4c, S5c, and S13c show that AGOHS is 
prone to falling into local optima when addressing the high-dimensional complex multimodal functions (F3, F4, 
F12), which leads to low search efficiency and inability to find the global optimal solution. 

With respect to unimodal function F7, ECS could nearly arrive at the theoretical optimal value within 500 
iterations with a cliff-jumping converge rate from Fig. S12c, where the convergence speed of ECS is three times 
that of HS-CS and nine times that of AGOHS. In addition, MCS appears “inflection point” in 500 iterations, but 
it reaches the stagnation state prematurely, which causes the algorithm to yield poor searching results. 
Moreover, IDHS, HSDM, and CS cannot obtain a high-precision solution within 5000 iterations. However, ECS 
could also achieve the best value when optimizing multimodal function F5, for which the convergence rate is 
much lower than that of HS-CS, but faster than that of AGOHS. 

From Figs. S2c–S13c, we can see that the HS-CS algorithm can stably and quickly converge to the global 
optimal solution by optimizing both high-dimensional unimodal functions and multimodal functions. 
Particularly, for multimodal functions F3 and F12, the six other algorithms fall into the state of local extremum, 
but HS-CS still maintains the highest convergence speed and better optimization accuracy. In the later search 
process, HS-CS indicates the direction of “pitch adjusting and selecting the best.” The Levy flight in the CS 
operator is adopted to find candidate individuals when updating the HM, which enriches the number of 
alternative solutions and strengthens the disturbance to avoid falling into stagnation prematurely in the 
searching process. Therefore, HS-CS exhibits good performance in dealing with high-dimensional optimization 
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problems, proving that it has obvious better convergence performance and self-adaptive ability. It possesses the 
excellent capability of jumping out of local optima as an improvement of the problem dimension. 

From the convergence results of these seven algorithms to optimize the high-dimensional function 
problem, HS-CS and AGOHS have the same convergence accuracy in some cases. However, in terms of 
population density and convergence speed, the global search ability of AGOHS is not strong, and it cannot jump 
out of the local extremum quickly, which leads to low population density and low convergence speed. 
Compared to AGOHS, IDHS, HSDM, ECS, MCS, and CS, the proposed HS-CS has stronger ability to deal with 
high-dimensional problems, and higher convergence speed and accuracy. 

2.2  Further numerical analysis 

The numerical analysis of the used six swarm intelligence algorithms is implemented from the following 
aspects.  

First, the Wilcoxon rank-sum test is used to compare the superiority of the algorithm performance. In this 
analysis, the symbol “+” implies that the performance of the reference algorithm is better in the current 
dimension, the symbol “−” implies that the performance of the reference algorithm is poor in the current 
dimension, and the symbol “=” implies that there is no significant difference in the performance of the 
comparison algorithm in the current dimension. 

Second, the mean value (MEAN) and the standard deviation (SD), calculated as shown by Eqs. (S1) and 
(S2), are used to judge the superiority of the performance of the improved HS algorithm: 

 
Num

best

1

1
MEAN ,

Num i
i

f


 
                                                             

 (S1) 

 Num best

1
MEAN

SD ,
Num
ii

f






                                                        
 (S2) 

 
where fi

best is the optimal fitness value for each independent run of the algorithm. 
The performance of seven optimization algorithms is further analyzed by using statistics such as mean and 

standard deviation in Table S1. The experimental statistics of mean and standard deviation show the function 
optimization results by the six variants under different dimensions after running 30 times independently. Based 
on the characteristics of both mean and standard deviation, the robustness of these algorithms is determined. If 
the current calculation is surrounded by more values in the global optimal solution, it means that the higher the 
accuracy of global convergence, the stronger the stability of the algorithm. 

It is easy to find in the related results from Table S1 that the performance of the six other algorithms is 
weaker than that of HS-CS while optimizing the six unimodal functions (F1, F7–F11) and six multimodal 
functions. However, in the 10-dimensional problems, AGOHS achieves the same mean and standard deviation 
results as HS-CS, and most of its solutions are distributed near the theoretical optimal solution. At the same 
time, IDHS and ECS have reached the optimal state in obtaining the mean and standard deviation of some 
functions, while CS, MCS, and HSDM can obtain good solutions but the precision of these solutions is not high 
in general. 

In the optimization of multimodal functions F2–F6 and F12, HS-CS has an excellent capability to deal with 
high-dimensional problems (30 and 50 dimensions). The mean and standard deviation obtained by HS-CS are 
smaller than that of the six other algorithms, which reveals that the proposed algorithm is better than the other 
meta-heuristics for stability. This gives full role to the global optimization ability; it jumps out of the local 
optimum state quickly and obtains high convergence accuracy. However, with the increase of dimension from 
30 to 50, AGOHS and ECS have weakened their search ability to optimize multimodal functions with a 
widespread number of complex local extreme points, which are prone to stagnation state, and they obtain the 
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optimal fitness with a large fluctuations resulting in high values of mean and standard deviation, indicating that 
AGOHS and ECS have weak stability in the case of high-dimensional problems, except that AGOHS and ECS 
achieve the optimal solution for optimizing function F3. In addition, the average value and standard deviation of 
MCS are smaller than that of HSDM, IDHS, and CS, and that MCS is the second when compared with ECS for 
stability. 

As for the unimodal functions (F1, F7–F11) in the 30- and 50-dimensional cases, AGOHS can obtain 
slightly higher search precision on function F1, yet AGOHS has a great effect on dimensions; so, it is impossible 
to obtain the optimal solutions in the optimization of functions F7–F11. At the same time, ECS only obtains the 
optimal solution for optimizing function F11 on the 30- and 50-dimensional cases, and it could achieve the best 
accuracy for optimizing functions F7 and F9 on the 30-dimensional case, but it obtains poor results on the other 
functions. Furthermore, the mean and standard deviation obtained by IDHS are better than that of MCS, HSDM, 
and CS, and these four algorithms can be expressed as IDHS>MCS>HSDM>CS in terms of stability. In 
addition, HS-CS outperforms the six other optimization methods on the high dimension of unimodal functions, 
and its mean value has a great advantage when compared with AGOHS, ECS, MCS, IDHS, HSDM, and CS. 

In the process of data analysis such as the mean and standard deviation of high-dimensional multimodal 
functions and unimodal functions, HS-CS is not affected by dimensions, and it could accurately identify the 
position of the optimal solution and achieve the highest convergence to the global optimum. It can be shown that 
HS-CS has strong robustness in dealing with high-dimensional problems through the numerical analysis and 
convergence curves.  

According to the mean data, the Wilcoxon rank-sum test is used to distinguish the differences in 
performance of the seven variants. The results of the six different swarm intelligence optimization algorithms’ 
Wilcoxon rank-sum are compared for reference to HS-CS in Tables S2–S4. In these tables, the final ranking of 
the optimized function performance of each algorithm is obtained according to the average ranking. 

From the statistical analysis of the data in Table S2, it can be found that HS-CS and AGOHS are more 
suitable to optimize the 12 functions in the 10-dimensional case, and that there is no significant difference 
between those in performance optimization. The ranking sum test W+/W− was represented by NA. In addition, 
HSDM, MCS, and CS are much worse than HS-CS under the 10-dimensional condition. Relatively, IDHS and 
ECS were very similar to the proposed method on some functions in performance, yet poor on the other 
functions, and the final ranking is the third and fourth, respectively. 

As the dimensionality increases, the data in Tables S3 and S4 reflect that HS-CS has gradually shown a 
significant improvement in the ability to address the high-dimensional test cases. By contrast, ECS and AGOHS 
have a significant decline in their ability to deal with high-dimensional problems. Moreover, there is no 
significant difference between ECS and AGOHS in performance from the existence of F4 and F9 functions to 
the existence of F1 and F2 functions compared with HS-CS. Particularly, the optimization performance of 
AGOHS decreases significantly under the condition of high-dimensional problems, and W+/W− increases from 
6/0 to 55/0. The results indicate that the stability of AGOHS decays rapidly, which is significantly different from 
that of the proposed algorithm. Furthermore, the overall performance of MCS has been improved from 30 to 50 
dimensions, which moves its rank from the fifth to fourth. In addition, the performance of HSDM has been in an 
inferior position without significant change at the sixth place. 

Furthermore, the Wilcoxon rank-sum test is used to verify the performance comparison ranking results of 
the seven algorithms under different dimensions. Under 10-dimensional condition, AGOHS and HS-CS are the 
first in parallel. However, in the process of upgrading from 30 to 50 dimensions, AGOHS shows that the ability 
to optimize for high-dimensional test cases is insufficient, and its final ranking is the second. The overall 
performance of HS-CS ranks the first compared with the six other algorithms. Additionally, except for IDHS 
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falling from fourth to fifth and MCS rising from fifth to fourth in the final ranking, ECS and HSDM remained 
unchanged in the third and sixth places, respectively. In other words, the improvement of dimension has a 
certain impact on the optimization performance of the six other algorithms, resulting in a decrease in the 
accuracy of the six other algorithms for the majority of the 12 classical benchmark problems, but the proposed 
HS-CS method has better optimization accuracy that not affected by dimensions, which indicates that HS-CS 
integrated with the CS operator, “pitch adjusting and selecting the best” and CS operator perturbation update, 
has strong robustness and adaptive ability. 

According to the statistical analysis of the data in Table S2, it can be found that HS-CS and AGOHS are 
more suitable for optimizing the 12 functions in the 10-dimensional problem. From the statistical analysis of the 
variable W+/W−, there is no obvious difference in the optimized performance of these two algorithms. 
Relatively, the performance of IDHS and HSDM is far worse than that of HS-CS under this condition. With the 
continuous increase of dimension, it can be found from Tables S3 and S4 that HS-CS gradually shows a 
significant improvement in its ability to deal with high-dimensional function problems. By contrast, AGOHS 
and IDHS have a significant decline in their ability to deal with high-dimensional problems, while the 
performance of HSDM continues in an inferior position without significant change.  

The Wilcoxon rank-sum test is also used to verify the performance comparison ranking results of the 
improved HS algorithm under different dimensions; the overall performance of HS-CS ranked the first 
compared with the three other variants. Hence, the performance of HS-CS is significantly better than that of the 
three other improved algorithms. Thus, the proposed HS-CS algorithm has strong adaptive ability and 
robustness. 

Through the above comparative analysis, HS-CS shows good robustness in solving the function 
optimization problems under high dimensions due to the effective mechanisms. The strategy of “pitch adjusting 
and selecting the best” is used in the improvisation stage. The optimal solution generated in HM is used to point 
out the direction for the algorithm to find the optimal solution in the later iteration stage. This reduces the 
blindness of the local optimization and enhances the adaptive ability of the algorithm, improving the probability 
of finding the global optimal solution. On the other hand, the search ability of HS-CS is enhanced due to the 
characteristics of the CS operator. The density of the population is also improved. The CS operator expands the 
number of alternative solutions by finding candidate solutions. The risk of premature convergence of the HS-CS 
algorithm and falling into a local optimal is avoided. 

 
 

3  Entire weighted fuzzy production rules extracted using HS-CS 
 
The weighted fuzzy production rules could be automaticly extracted from the importance index matrix. 

The whole generated local weighted fuzzy production rules are listed below.  
The first row of the matrix produces 18 classification rules as Iris-setosa (Table 4). The second row of the 

matrix produces 18 classification rules as Iris-versicolor (Table S5). The third row of the matrix produces 18 
classification rules as Iris-virginica (Table S6). 
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Table S5  Classification rules as Iris-versicolor 

No. IF 

1 SL is NOT MED [6.53], SW is LGR [4.0], PL is NOT SM [12.89], and PW is NOT SM [0.66] 

2 SL is NOT MED [6.53], SW is LGR [4.0], PL is NOT SM [12.89], and PW is MED [29.8] 

3 SL is NOT MED [6.53], SW is LGR [4.0], PL is NOT SM [12.89], and PW is NOT LGR [12.79] 

4 SL is NOT MED [6.53], SW is LGR [4.0], PL is MED [22.29], and PW is NOT SM [0.66] 

5 SL is NOT MED [6.53], SW is LGR [4.0], PL is MED [22.29], and PW is MED [29.8] 

6 SL is NOT MED [6.53], SW is LGR [4.0], PL is MED [22.29], and PW is NOT LGR [12.79] 

7 SL is NOT MED [6.53], SW is LGR [4.0], PL is NOT LGR [22.77], and PW is NOT SM [0.66] 

8 SL is NOT MED [6.53], SW is LGR [4.0], PL is NOT LGR [22.77], and PW is MED [29.8] 

9 SL is NOT MED [6.53], SW is LGR [4.0], PL is NOT LGR [22.77], and PW is NOT LGR [12.79] 

10 SL is LGR [5.95], SW is LGR [4.0], PL is NOT SM [12.89], and PW is NOT SM [0.66] 

11 SL is LGR [5.95], SW is LGR [4.0], PL is NOT SM [12.89], and PW is MED [29.8] 

12 SL is LGR [5.95], SW is LGR [4.0], PL is NOT SM [12.89], and PW is NOT LGR [12.79] 

13 SL is LGR [5.95], SW is LGR [4.0], PL is MED [22.29], and PW is NOT SM [0.66] 

14 SL is LGR [5.95], SW is LGR [4.0], PL is MED [22.29], and PW is MED [29.8] 

15 SL is LGR [5.95], SW is LGR [4.0], PL is MED [22.29], and PW is NOT LGR [12.79] 

16 SL is LGR [5.95], SW is LGR [4.0], PL is NOT LGR [22.77], and PW is NOT SM [0.66] 

17 SL is LGR [5.95], SW is LGR [4.0], PL is NOT LGR [22.77], and PW is MED [29.8] 

18 SL is LGR [5.95], SW is LGR [4.0], PL is NOT LGR [22.77], and PW is NOT LGR [12.79] 

SL: sepal length; SW: sepal width; PL: petal length; PW: petal width; LGR: large; MED: medium; SM: small 
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Table S6  Classification rules as Iris-virginica 

No. IF 

1 SL is MED [5.75], SW is NOT LGR [3.52], PL is NOT SM [16.26], and PW is NOT SM [4.11] 

2 SL is MED [5.75], SW is NOT LGR [3.52], PL is NOT SM [16.26], and PW is NOT MED [16.48] 

3 SL is MED [5.75], SW is NOT LGR [3.52], PL is NOT SM [16.26], and PW is LGR [11.26] 

4 SL is MED [5.75], SW is NOT LGR [3.52], PL is NOT MED [14.82], and PW is NOT SM [4.11] 

5 SL is MED [5.75], SW is NOT LGR [3.52], PL is NOT MED [14.82], and PW is NOT MED [16.48] 

6 SL is MED [5.75], SW is NOT LGR [3.52], PL is NOT MED [14.82], and PW is LGR [11.26] 

7 SL is MED [5.75], SW is NOT LGR [3.52], PL is LGR [34.18], and PW is NOT SM [4.11] 

8 SL is MED [5.75], SW is NOT LGR [3.52], PL is LGR [34.18], and PW is NOT MED [16.48] 

9 SL is MED [5.75], SW is NOT LGR [3.52], PL is LGR [34.18], and PW is LGR [11.26] 

10 SL is LGR [9.82], SW is NOT LGR [3.52], PL is NOT SM [16.26], and PW is NOT SM [4.11] 

11 SL is LGR [9.82], SW is NOT LGR [3.52], PL is NOT SM [16.26], and PW is NOT MED [16.48] 

12 SL is LGR [9.82], SW is NOT LGR [3.52], PL is NOT SM [16.26], and PW is LGR [11.26] 

13 SL is LGR [9.82], SW is NOT LGR [3.52], PL is NOT MED [14.82], and PW is NOT SM [4.11] 

14 SL is LGR [9.82], SW is NOT LGR [3.52], PL is NOT MED [14.82], and PW is NOT MED [16.48] 

15 SL is LGR [9.82], SW is NOT LGR [3.52], PL is NOT MED [14.82], and PW is LGR [11.26] 

16 SL is LGR [9.82], SW is NOT LGR [3.52], PL is LGR [34.18], and PW is NOT SM [4.11] 

17 SL is LGR [9.82], SW is NOT LGR [3.52], PL is LGR [34.18], and PW is NOT MED [16.48] 

18 SL is LGR [9.82], SW is NOT LGR [3.52], PL is LGR [34.18], and PW is LGR [11.26] 

SL: sepal length; SW: sepal width; PL: petal length; PW: petal width; LGR: large; MED: medium; SM: small 

 
 


