Frontiers of Information Technology & Electronic Engineering www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com ISSN 2095-9184 (print); ISSN 2095-9230 (online) E-mail: jzus@zju.edu.cn

1

Supplementary materials for

Yuanyuan LI, Xiaoqing YOU, Jianquan LU, Jungang LOU, 2023. A joint image compression and encryption scheme based on a novel coupled map lattice system and DNA operations. *Front Inform Technol Electron Eng*, 24(6):813-827. <u>https://doi.org/10.1631/FITEE.2200645</u>

Fig. S1 Cipher images under different compression ratios (CRs)

(a) CR=0.75, Lena; (b) CR=0.75, Peppers; (c) CR=0.75, Baboon; (d) CR=0.50, Lena; (e) CR=0.50, Peppers; (f) CR=0.50, Baboon; (g) CR=0.25, Lena; (h) CR=0.25, Peppers; (i) CR=0.25, Baboon

Figure	Encryption keys	Difference ratio from Fig. 5b (%)
Fig. S5a	$x_1' = x(1) + 10^{-10}, x_2,, x(10)$	99.5956
Fig. S5b	$x'_{2} = x(1), x_{2} + 10^{-10},, x(10)$	99.6048
Fig. S5c	$x'_5 = x(1),, x(5) + 10^{-10},, x(10)$	99.6140
Fig. S5d	$x'_9 = x(1), x_2,, x(9) + 10^{-10}, x(10)$	99.6361
Fig. S5e	$x'_{10} = x(1), x_2,, x(9), x(10) + 10^{-10}$	99.5964

Table S1	Differences	between ci	ipher	images	produced	bv	slightly	different	kevs
			F						

Table S2	r. of adjacant	nivals in tha	nlain and ci	nhar imagas
1 abic 52	<i>Txy</i> of aujacent	pixels in the	piani anu ci	pher mages

Imaga			Correlation coefficient	
Image		Horizontal	Vertical	Diagonal
Lena	Plain image	0.9692	0.9842	0.9640
	Cipher image	-0.0010	-0.0014	-0.0029
Peppers	Plain image	0.9733	0.9763	0.9650
	Cipher image	0.0056	0.0011	0.0004
Baboon	Plain image	0.8622	0.7471	0.7155
	Cipher image	0.0026	0.0030	-0.0017

Fig. S2 Decrypted images under different CRs

(a) CR=0.75, PSNR=34.4300 dB; (b) CR=0.75, PSNR=34.1785 dB; (c) CR=0.75, PSNR=34.0133 dB; (d) CR=0.50, PSNR=33.4462 dB; (e) CR=0.50, PSNR=33.7960 dB; (f) CR=0.50, PSNR=32.1523 dB; (g) CR=0.25, PSNR=28.1009 dB; (h) CR=0.25, PSNR=30.9583 dB; (i) CR=0.25, PSNR=28.0046 dB

Table S3 Information entropies of plain and cipher images							
Imaga	Information entropy						
image	Plain image	Cipher image					
Lena	7.4474	7.9986					
Peppers	7.3967	7.9987					
Baboon	7.3814	7.9987					

Table S4	Information	entropy	comparison	among	different method	S
----------	-------------	---------	------------	-------	------------------	---

Algorithm	Ours	Gan et al. (2020)	Li XH et al. (2022)	Li LX et al. (2019)	Chai et al. (2020a)
Information entropy	7.9986	7.9986	7.9976	7.9857	4.1120

Fig. S3 Cipher and decrypted images under different intensities of Gaussian noise (GN) and salt pepper noise (SPN) attacks (a) GN with an intensity of 0.00001; (b) GN with an intensity of 0.00003; (c) GN with an intensity of 0.00005; (d) GN with an intensity of 0.00007; (e) decrypted image of (a); (f) decrypted image of (b); (g) decrypted image of (c); (h) decrypted image of (d); (i) SPN with an intensity of 0.00001; (j) SPN with an intensity of 0.00003; (k) SPN with an intensity of 0.00005; (l) SPN with an intensity of 0.00007; (m) decrypted image of (i); (n) decrypted image of (j); (o) decrypted image of (k); (p) decrypted image of (l)

Fig. S4 Cipher and decrypted images under different degrees of data loss attacks

(a) 16×16 data loss; (b) 32×32 data loss; (c) 64×64 data loss; (d) 128×128 data loss; (e) decrypted image of (a); (f) decrypted image of (b); (g) decrypted image of (c); (h) decrypted image of (d)

(a) cipher image with x'_1 ; (b) cipher image with x'_2 ; (c) cipher image with x'_5 ; (d) cipher image with x'_9 ; (e) cipher image with x'_{10} ; (f) subtraction of (a); (g) subtraction of (b); (h) subtraction of (c); (i) subtraction of (d); (j) subtraction of (e)

Fig. S6 Key sensitivity test in the second case

(a) decrypted image with x'_{1} ; (b) decrypted image with x'_{2} ; (c) decrypted image with x'_{5} ; (d) decrypted image with x'_{9} ; (e) decrypted image with x'_{10}

		• •	
Image	Pixel modification	NPCR	UACI
Lena	$P_{(1, 1)} = 162 \rightarrow 163$	0.9962	0.3352
	$P_{(251, 266)} = 153 \rightarrow 154$	0.9960	0.3357
	$P_{(512, 512)} = 108 \rightarrow 107$	0.9960	0.3348
Peppers	$P_{(1, 1)}=30\rightarrow 29$	0.9960	0.3350
	$P_{(199, 437)} = 188 \rightarrow 187$	0.9961	0.3349
	$P_{(512, 512)} = 196 \rightarrow 197$	0.9962	0.3353
Baboon	$P_{(1, 1)} = 128 \rightarrow 129$	0.9961	0.3348
	$P_{(343, 93)}=4\longrightarrow 5$	0.9961	0.3347
	$P_{(512, 512)} = 55 \rightarrow 54$	0.9959	0.3342

Table S5 Differential attack resistance of the proposed scheme

NPCR: number of pixel change rate; UACI: unified averaged changed intensity

Table S6	Encryption	time com	narison	among	different	methods
I abic 50	Encryption	time com	pai 15011	among	unititut	methous

Algorithm	Ours	Chai et al. (2020a)	Li LX et al. (2019)	Chai et al. (2020b)	Gan et al. (2020)	Li XH et al. (2022)
Time (s)	1.9352	0.52	1.8381	2.53	>5	>14.92

Fig. S7 Histogram information for plain and cipher images

(a) histogram of plain image Lena; (b) histogram of cipher image Lena; (c) histogram of plain image Peppers; (d) histogram of cipher image Baboon; (f) histogram of cipher image Baboon

Fig. S8 Correlation distributions of image Lena and its cipher image (a) horizontal direction; (b) vertical direction; (c) diagonal direction

Table S7 Reconstruction time comparison among different semi-tensor product measurements

Size	256×512 (traditional CS)	128×256	64×128	32×64
Time (s)	18.4771	12.7513	5.9774	4.8479

CS: compressive sensing

Fig. S9 Time proportion of different encryption phases

Fig. S10 Time proportion of different decryption phases

References

- Chai XL, Fu XL, Gan ZH, et al., 2020a. An efficient chaosbased image compression and encryption scheme using block compressive sensing and elementary cellular automata. *Neur Comput Appl*, 32(9):4961-4988. https://doi.org/10.1007/s00521-018-3913-3
- Chai XL, Wu HY, Gan ZH, et al., 2020b. An efficient visually meaningful image compression and encryption scheme based on compressive sensing and dynamic LSB embedding. *Opt Lasers Eng*, 124:105837. https://doi.org/10.1016/j.optlaseng.2019.105837
- Gan ZH, Chai XL, Zhang JT, et al., 2020. An effective image compression-encryption scheme based on compressive sensing (CS) and game of life (GOL). *Neur Comput Appl*, 32(17):14113-14141. https://doi.org/10.1007/s00521-020-04808-8
- Li LX, Liu LF, Peng HP, et al., 2019. Flexible and secure data transmission system based on semitensor compressive sensing in wireless body area networks. *IEEE Internet Things J*, 6:3212-3227. https://doi.org/10.1109/JIOT.2018.2881129
- Li XH, Zhou LL, Tan F, 2022. An image encryption scheme based on finite-time cluster synchronization of two-layer complex dynamic networks. *Soft Comput*, 26(2):511-525. https://doi.org/10.1007/s00500-021-06500-y