

Supplementary materials for

Jiamiao MIAO, Xiaopu WANG, Yan ZHOU, Min YE, Hongyu ZHAO, Ruoyu XU, Huihuan QIAN, 2023. Magnetically driven microrobots moving in a flow: a review. *Front Inform Technol Electron Eng*, 24(11):1520-1540. https://doi.org/10.1631/FITEE.2300054

Table S1 Detailed parameters of the flow system channels and the corresponding microrobots used, and the actuation and tracking methods

System	Channel length	Channel size	Flow rate	Robot shape	Robot size	Actuation and tracking method
Lab flow system: Poiseuille	5.5 cm	100 μm cylin- drical channel	1.05 m/s	Sphere	10.82 µm particles	MRI (Mathieu and Martel, 2006)
	2 cm	2.5 mm in width, 0.3 mm	12.2, 6.1 mm/s (in main and outlet branch)	Sphere	11 μm in diameter	MRI (Mathieu and Martel, 2010)
	10 cm	1.6–4.8 mm in diameter	0–75 μL/min (at an interval of 25 μL/min)	Helical	D_{head} =880 µm, wavelength=1 mm, L_{tail} =4 or 6 mm, L_{head} , D_{tail} NM	Rotating magnetic field (Acemoglu and Yesilyurt, 2015)
	NM	150, 300 μm in diameter	0.2 mm/s	Sphere	2.9 μm (particle), 15, 40 μm (cluster)	Rotating magnetic field (Ahmed et al., 2021)
Lab flow system: pulsatile	NM	7 mm in diameter	39–87 cm/s	Cylinder	1 mm in diameter, 10 mm in length	Electro-magnetic system (Choi et al., 2010b)
	NM	9.82 mm in diameter	$6 \times 10^{-6}, 7.1 \times 10^{-6}$ m ³ /s	Sphere	1500 μm in diameter	MRI (Tamaz et al., 2008)
	NM	3 mm in diameter	25mm/s	Sphere	250 μm	Magnetic field gradient (Arcese et al., 2011)
Artificial blood system	12 mm	75 μm in height, 3 mm in width	5–20 µL/min for PBS, 1.12–12.26 mL/min for whole blood	Sphere	3, 7.8 µm in diameter	Rotating magnetic field (Alapan et al., 2020)
	1 mm	0.1 mm in thickness, 4 mm in width	0.167 mm/s	Sperm like (cap diameter + sperm length > 60 µm)	13 μm (diameter of the cap)	Permanent magnetic field (Xu et al., 2020)
Ex vivo system	NM	2.6 mm in diameter	30 mm/s	Sphere	NM	Cylinder permanent mag- net (Wang et al., 2021)
In vivo system	NM	NM	NM	Helical	8, 16 µm in length	Rotating magnetic field (Servant et al., 2015)
	NM	NM	NM	Porous sphere	70, 90 μm in diameter	Magnetic field gradient (Li et al., 2018)
	NM	Diameter of carotid artery of a living swine	Flow rate of ca- rotid artery of a living swine	Sphere	1.5 mm in diameter	Magnetic field gradient (Martel et al., 2007)
	NM	10–15 mm in diameter	50–60 heart beats/min	Cylinder	1 mm in diameter, 10 mm in length	Uniform magnetic field and magnetic field gra- dient (Choi et al., 2010a)
	5 mm	0.2 mm in width	100, 400, 700 μm/s	NM	NM	Rotating magnetic field (Zhang et al., 2021)

NM: not mentioned

1

References

- Acemoglu A, Yesilyurt S, 2015. Effects of Poiseuille flows on swimming of magnetic helical robots in circular channels. *Microfl Nanofl*, 19(5):1109-1122. https://doi.org/10.1007/s10404-015-1629-6
- Ahmed D, Sukhov A, Hauri D, et al., 2021. Bioinspired acousto-magnetic microswarm robots with upstream motility. Nat Mach Intell, 3(2):116-124. https://doi.org/10.1038/s42256-020-00275-x
- Alapan Y, Bozuyuk U, Erkoc P, et al., 2020. Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. Sci Robot, 5(42):eaba5726. https://doi.org/10.1126/scirobotics.aba5726
- Arcese L, Fruchard M, Ferreira A, 2011. Endovascular magnetically guided robots: navigation modeling and optimization. IEEE Trans Biomed Eng, 59(4):977-987. https://doi.org/10.1109/TBME.2011.2181508
- Choi J, Jeong S, Cha K, et al., 2010a. Position stabilization of microrobot using pressure signal in pulsating flow of blood vessel. SENSORS, p.723-726. https://doi.org/10.1109/ICSENS.2010.5690046
- Choi J, Jeong S, Cha K, et al., 2010b. Positioning of microrobot in a pulsating flow using EMA system. Proc 3rd IEEE RAS & EMBS Int Conf on Biomedical Robotics and Biomechatronics, p.588-593. https://doi.org/10.1109/BIOROB.2010.5628036
- Li J, Li X, Luo T, et al., 2018. Development of a magnetic microrobot for carrying and delivering targeted cells. *Sci Robot*, 3(19):eaat8829. https://doi.org/10.1126/scirobotics.aat8829
- Martel S, Mathieu JB, Felfoul O, et al., 2007. Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. *Appl Phys Lett*, 90(11):114105. https://doi.org/10.1063/1.2713229
- Mathieu JB, Martel S, 2006. Magnetic steering of iron oxide microparticles using propulsion gradient coils in MRI. Int Conf of the IEEE Engineering in Medicine and Biology Society, p.472-475. https://doi.org/10.1109/IEMBS.2006.259818
- Mathieu JB, Martel S, 2010. Steering of aggregating magnetic microparticles using propulsion gradients coils in an MRI scanner. Magn Reson Med, 63(5):1336-1345. https://doi.org/10.1002/mrm.22279
- Servant A, Qiu F, Mazza M, et al., 2015. Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv Mater, 27(19):2981-2988. https://doi.org/10.1002/adma.201404444
- Tamaz S, Gourdeau R, Chanu A, et al., 2008. Real-time MRI-based control of a ferromagnetic core for endovascular navigation. IEEE Trans Biomed Eng, 55(7):1854-1863. https://doi.org/10.1109/TBME.2008.919720
- Wang QQ, Chan KF, Schweizer K, et al., 2021. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci Adv, 7(9):eabe5914. https://doi.org/10.1126/sciadv.abe5914
- Xu H, Medina-Sánchez M, Maitz MF, et al., 2020. Sperm micromotors for cargo delivery through flowing blood. ACS Nano, 14(3):2982-2993. https://doi.org/10.1021/acsnano.9b07851
- Zhang H, Li Z, Gao C, et al., 2021. Dual-responsive biohybrid neutrobots for active target delivery. *Sci Robot*, 6(52):eaaz9519. https://doi.org/10.1126/scirobotics.aaz9519