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A reinforcement learning (RL) task that satisfies the Markov property is called a Markov decision process 
(MDP) (Sutton and Barto, 2018). An MDP is defined by several key equations: 

State space S: a set of all possible environments or situations the agent can encounter. 
Action space A: a set of all available choices the agent can make in each state. 
Transition dynamics T(  | , ): a probability distribution depicting how the environment evolves to 

the next state  based on the current state  and chosen action . 
Reward function R( , , ): a numerical signal indicating the desirability of taking action  in state 

 and leading to the next state . 
Discount factor [0, 1]: a parameter balancing the importance of immediate rewards ( =1) versus future 

rewards (  closer to 0) (Arulkumaran et al., 2017). 
In episodic tasks with a defined length T, reward accumulation over an entire episode can be described as 
 

R= .                                                                         (S1) 
 
The ultimate goal of RL is to find the optimal policy  that maximizes the expected return |  from all 

states: 
 

*= argmax |               .                                                                      (S2) 

 
For each interaction with the MDP, the agent begins with an initial state and then executes an action, which 

returns an outcome to guide the agent’s actions (Anupong et al., 2023). An agent initiates the learning process 
by randomly performing an action that results in a specific environmental condition (Fig. S1). Next, the MDP, 
following the underlying transition dynamics, is transited to the next state. The agent collects rewards at a dis-
counted rate because of its interaction with the MDP (Yin et al., 2022). The algorithm will learn a policy (i.e., 
an action–state relation) to choose the most optimal action in each situation and increase the cumulative reward 
(Bukhari et al., 2022). 

Numerous RL algorithms have been introduced in recent years as the foundation for domain adaptation 
(DA) approaches. A summary of these algorithms is presented below. 

1. Topological Q-learning. This algorithm guides the exploration to accomplish fast learning convergence 
based on the topological characteristics of the observable states of the environment in which the agent is oper-
ating (Hafez and Loo, 2015; Yin et al., 2023). It includes two main stages: task learning and exploration opti-
mization. The instantaneous topological map (ITM) model creates a topological representation of the environ-
ment during the task learning stage to accelerate value function updates. During the exploration optimization 
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stage, an internal reward function is used to direct the exploration using the state values produced by the ITM 
nodes (Hafez and Kiong, 2014; Li HQ et al., 2023). Therefore, this algorithm is intended to provide directed 
exploration through an intrinsic or internal reward method. Since the guided exploration has a clear purpose, it 
appears preferable to any random exploration approach. The state–action value function of the Q-learning agent, 
represented as Q(s, a), is updated in accordance with the Bellman equation. Let s represent the current state, a 
the action taken, r the received reward, and  the next state. The value of a state, , is determined by identi-
fying the action that yields the highest expected long-term return from that state. This is achieved by considering 
the state–action values. The value of the next state , , is computed by selecting the maximum over all 
possible actions of the state–action values. 

 
Q(s, a)=Q(s, a)+ , .                                               (S3) 

 
Fig. S1  Interaction between the environment and agents in reinforcement learning 

 
In the iterative interaction between the RL agent and its environment, each newly sensed state expands the 

topological map with a dedicated node. Upon taking action a at state  (Fig. S2), the value estimate V( ) 
is updated as per Eq. (S3). This update then propagates through the immediate neighborhood N( ) via exist-
ing edges, modifying the value estimates of connected nodes according to the same equation. 

2. Epoch-incremental. This type of learning combines epoch and incremental learning methods that enable 
policy modification in both modes. The epoch mode is similar to a breadth-first search (BFS) algorithm in 
numerous aspects. There are two implementations of epoch-incremental algorithms in the literature (Luo et al., 
2022). The first involves using the agent experience to determine the parameters of a learning system. In this 
manner, the distances from the examined nodes to the terminal state are estimated, and the policy with the least 
distance between any initial state and the terminal state is considered the optimum policy. Supervised learning 
in the epoch mode is used to restrict the number of costly experiments using real experiments during the initial-
ization of the value function. The second implementation, which combines the algorithm in the epoch and in-
cremental mode, relies on directing the RL in the incremental mode (Zajdel, 2018). 

3. Multi-scale. This uses mathematical functions to create an abstract of the state-space graph. Action se-
lection on the reduced abstraction map is carried out using multi-scale Softmax selection. This could be consid-
ered a simplified mathematical modeling of real-world scenarios (Ma et al., 2023). In this regard, as with any 
simplified model, there is a concern about oversimplification and omitting details, which may result in lower 
performance in the real world. However, the benefits of simplified models cannot be ignored. The key trick in 
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these models is balancing oversimplification and keeping abstraction (Fu et al., 2023). 
4. Hierarchical. This approach is an innovative strategy for expanding the capabilities of traditional RL 

algorithms to handle more complex tasks. It decomposes a larger goal into a hierarchy of sub-goals (Gao et al., 
2023). Each sub-goal can be further subdivided into a set of subtasks, with primitive operations occurring at the 
lowest level of tasks. The hierarchical approach is similar to the work breakdown structure (WBS) used in 
various software project management methods (Nachum et al., 2018). 

5. Deep RL. Deep RL combines RL and deep learning, providing high-level data abstraction via multi-
layer graph processing. It enables the determination of data relevant to predefined objectives. The algorithm is 
based on two fundamental concepts: (1) an experience replay mechanism that eliminates correlations among 
consecutive observations and (2) an iterative update mechanism that adjusts the Q-values to make them closer 
to the goal value (François-Lavet et al., 2018). 

6. Temporal-difference learning. This method, which combines notions from Monte Carlo estimation and 
dynamic programming, plays an important role in RL. A basic aspect of this method is that it gradually acquires 
testable and predictive knowledge about the environment. The learned values solve queries regarding how a 
signal accumulates over time in response to a certain behavior. In control tasks, this signal indicates how many 
rewards an agent is likely to gain if it acts greedily relative to its current predictions (De Asis et al., 2020). 

 

 
Fig. S2  Backpropagation in topological Q-learning 

 
Transfer learning (TL) is a promising machine learning technique for dealing with inadequate training data 

that has recently gained much research interest (Sadr et al., 2021; Farhadi and Sharifi, 2024). The term “learning 
scenario” refers to training a model on a source task or domain and assessing it on a target task or domain, where 
the domains or tasks may vary (Li S et al., 2018). For example, a synthetic traffic sign dataset that is simple to 
create may be used in training a model that will be used to identify actual traffic signs. Furthermore, a hand-
written digit dataset may be used to train a model to recognize house numbers. In these instances, the training 
and evaluation datasets are related but distinct. TL can be used to improve the accuracy of target data if the 
source and target data differ (Li DM, 2022). 

Two keywords, domain and task, were developed by Pan and Yang (2010) to aid in classifying different 
TL techniques. Feature spaces and marginal probability distributions form domains. A task consists of labels 
and models derived from training. Therefore, TL problems may be classified as transferring information from 
one domain to another or transferring knowledge between tasks. Accordingly, feature space changes or marginal 
distribution changes may cause domain changes. When categorizing records through text mining, language 
changes may cause a change in the feature space, whereas any change in the document subjects may cause 
changes in marginal probability distributions (Ghahfarrokhi et al., 2023). Moreover, task changes may result 
from changes in the label space or objective predictive functions. Regarding document categorization, the label 
space may change by increasing or decreasing the number of classes (Liu X et al., 2023). 

Pan and Yang (2010) proposed three categories for classifying TL algorithms (inductive, transductive, and 
unsupervised) depending on whether the domain or task differs from the source and the target. In inductive TL, 
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some labeled target data are needed, sources and targets are distinct, and domains may or may not vary. Trans-
ductive TL requires labeled sources and unlabeled targets. The tasks stay the same in this case, but the domains 
are different. In unsupervised TL, the tasks vary from those in inductive TL, and neither the target nor the source 
domains need to be labeled (Jafari et al., 2023). Over the last decade, several strategies have been developed to 
overcome TL issues, such as multi-view, multi-domain, and multi-task learning, as described below. 

1. Multi-view learning. It concerns machine learning issues and includes several data views. A view rep-
resents a unique collection of available features (Liu QY et al., 2023). Multiple views are shown intuitively 
because a video object may be represented from two distinct perspectives: (1) the picture signal and (2) the 
audio signal. Multi-view learning defines an item from various perspectives, resulting in abundant information 
(Li DM et al., 2022). Learners’ performance can be enhanced by carefully considering information from all 
views. Multi-view learning involves various methods, including subspace, multi-kernel, and co-training (Zhao 
J et al., 2017). Recently, various TL approaches have been proposed based on multi-view techniques. For in-
stance, Feuz and Cook (2017) developed a multi-view TL method for activity learning that facilitates the transfer 
of activity knowledge across diverse sensor platforms. Yang P and Gao (2013) used multi-view information to 
facilitate knowledge transfer across multiple domains, and Zhang D et al. (2011) developed a multi-view TL 
model that ensures consistency among various views. 

2. Multi-domain learning. It aims to disseminate knowledge about the same topic across multiple contex-
tual domains. This method addresses the problem of learning several models generated by a common deep 
architecture customized to fulfill a task in a particular domain. Efforts have recently been made to adapt deep 
architectures to novel domains and tasks. Earlier studies had addressed simple solutions, including fine-tuning 
existing pretrained models, requiring multiple specialized models, and incurring catastrophic forgetting. Recent 
research has investigated the issue and shown how to extend the abilities of current deep architectures by incor-
porating parameters tailored to specific tasks (Sun et al., 2018). Rebuffi et al. (2017) proposed residual adapters, 
including a design for residual blocks that incorporate task-specific components. Rebuffi et al. (2018) presented 
an architecture in which the topology of the adapters is parallel rather than series. Mallya and Lazebnik (2018) 
examined weight-based pruning to combine multiple tasks into a single neural network. 

3. Multi-task learning. It uses domain-specific information from related tasks to train different classifiers 
that benefit from one another cooperatively. Specifically, multi-task learning reinforces each task, taking ad-
vantage of the interconnectedness between them (inter-task relevancy and cross-task relationship) and improv-
ing their generalizability (Huang et al., 2023). In multi-task learning, knowledge is transferred across related 
domains, whereas in TL, knowledge is transferred across multiple relevant tasks. Multi-task learning prioritizes 
the tasks equally, while TL prioritizes the target tasks over the sources (Zhao X et al., 2022). Nonetheless, 
overlaps and connections exist between multi-task learning and TL. Both aim to enhance learners’ performance 
by transferring knowledge, and they use common modeling methodologies like parameter sharing and feature 
transformation (Kouw and Loog, 2019). Several studies have adopted both multi-task learning and TL methods 
in their innovation. For instance, Zhang W et al. (2016) used multi-task and TL approaches to analyze biological 
images, and Liu AA et al. (2019) introduced a scheme for recognizing human actions based on multi-source TL 
and multi-task learning. 
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