Electronic Supplementary Materials

_

For https://doi.org/10.1631/jzus.A2100325

Towards autonomous and optimal excavation of shield machine: a deep reinforcement learning-based approach

Ya-kun ZHANG¹, Guo-fang GONG¹⊠, Hua-yong YANG¹, Yu-xi CHEN¹, Geng-lin CHEN²

¹State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China ²School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China E-mail: gfgong@zju.edu.cn

The pseudo-code for the implementation of the training environment

Input: Action $\{\tilde{T}_k, \tilde{F}_k\}$
Output : Observation $\{n_{c,k}, \dot{x}_k, P_{gw,k}, c_k, \varphi_k\}$, reward $\{r_k\}$, Done {True or False}
• Initialization:
1. Load the geological data look-up table;
2. Load the machine-ground interaction DNN model;
3. Step number $k \leftarrow 0$;
4. Output the initial observation to the DRL agent;
• function step $(\tilde{T}_k, \tilde{F}_k)$:
1. $T_k \leftarrow \tilde{T}_k, \ F_k \leftarrow \tilde{F}_k;$
2.if <i>k</i> <the number="" of="" steps:<="" td="" training=""></the>
step number $k \leftarrow k+1$;
else:
$k \leftarrow 0;$
end if
3.Read geological data $\{P_{gw,k}, c_k, \varphi_k\};$
4.Scale the actual action $\{T_k, F_k\}$ and geological data $\{P_{gw,k}, c_k, \varphi_k\}$ by dividing by their corresponding maximum values;
5.Calculate $\{n_{c,k}, \dot{x}_k\}$ using the machine-ground interaction DNN model;
6.Scale $\{n_{c,k}, \dot{x}_k\}$ by dividing by their corresponding maximum values;
7.Calculate the reward r_k value using Eq. (31);
8.Done \leftarrow Is_done $(T_k, F_k, n_{c,k}, \dot{x}_k);$
return observation, reward, Done
end function