Appendix A

We show the perturbation method to solve the general abstract equation in the form of
Aw+ Aw= Ade where A4:H — H is a linear continuous self-adjoint operator between some real

Hilbert space H with inner product denoted as<-,->,w,ec H and there is a known w, #0
such that 4w, =0, i.e., 4has an eigenvalue 0. We show how w behaves when 1 —>0. We
assume that w can be expanded in the power series of A asw=Cw, + Aw, + A’w, +... where
C is a constant independent of A, and w,,w,,... are unknown functions. Then we substitute this
expansion into the original equation:
A(Cwy + Aw, + AW, +...) + ACw, + 1w, + ’w, +...= Ae.For A’ -order terms: Aw, =0 is trivial. For
A' -order terms, Aw, + Cw, = e. Finally for A’ -order terms, Aw, +w, =0 . Taking inner product
with  w, , it yields: <dAw,w,>+C<wy,w,>=<ew,> , and by self-adjointness,
< Aw,,w, >=<w,, Aw, >=<w,,0>=0.
Thus C=<e,w, >/<w,w,>.Toobtain w,, we need to solve equation

Aw, =e—<e,w, >/ < Wy, w, >-W,. (S1)
Eq. (S1) has non-unique solutions. But by taking the inner product of the equation Aw, +w, =0, it
yields:

0=<A4w,,w, >+<w,w, >
=<w,, AW, >+ < W, W, >=< W, W, >.
Thus w, is determined uniquely by this condition <w,,w, >=0.
Note that if Ae is replaced by e (#0) without the small A, the resulting equation
Aw+Aw=e has quite distinct behavior as A4 —>0. In this case w~Cw, where C(1) is
dependingon A and C > as 4 —>0 by
<e,w, >=< Aw+Aw,w, >=< Aw,w, > +A < w,w, >

=< W, AW, > +A <w,w, >= A1 <w,w, >~ 4 <Cw,,w, >

and the explicit expression for C isthus C=1"<w,e>/<w,w, >.

Appendix B.

We derive the governing equation:
M, +1/8-p(4R> —t")— pRw, =C,
M,+1/8-p(4R’ -1,>) = pR,w, =C
where M,,w,,t,,R are cross-section resultant moments about the point of middle axis, radial
displacements, thicknesses and middle axis radius at point s where i=1 represents the
corroded region and i =2 represents the intact region with C being an unknown constant.

Step 1. Assuming small tangential displacements and radial displacements (Assumption (1)),
the curvature change at s is represented linearly as 1/ R?(w"+v]) and the membrane strains are
1/R -(dv,/ds—w,).

If both curvature change and membrane strain are zero, the related displacements are related
to rigid-body motion. In that case the curvature change and membrane strain should vanish:
v, =w,w'+v =0. Substituting the first equation into the second, it yields: w/+w, =0. Thus

w, =a,sins +b,coss .



Then substituting this w, back to the first equation, it leads to v, =—a,coss+b,sins +¢,
for some real a,,b,,c,.

The geometric meaning of ¢, is some small rigid-body rotation around origin point. a, is
the horizontal rigid-body translation and 5, is the vertical rigid-body translation.

Since the deformation is assumed to be symmetric, both rotational and horizontal

translational rigid-body motion are excluded. But arbitrary vertical translation is allowed.
Step 2. We make an essential assumption (2) here that the membrane compressive force N,

during deformation can be approximately represented by N, = p(R, +t /2+0(1)) where o(l)
is some term much smaller than unity.

This assumption (2) is based on the observation that when curvature change is small (since
displacements are small), the circular segment remains almost circular and thus the circular
segment's membrane behavior should resemble the of a uniform ring. Note that for a uniform ring

with middle axis radius R, and thickness ¢, under pressure p, the membrane force is just
p(R +¢ /2). And our assumption (2) is just equivalent to the assumption that the membrane

force of corroded ring in each uniform segment (corroded region and intact region) during
deformation should be approximate to that of some uniform ring with some unknown but small
error term o(1) . It is important to note that all displacements are assumed to be small in this

paper and this assumption (1) is made based on the fact that in practical engineering the steel
pipeline reaches critical collapse value when displacements are very small since the elastic
modulus of steel is very large. The last assumption (3) is the conventional Euler-Bernoulli beam
assumption asserting that the cross-section is not deformed and lines perpendicular to middle axis
remain perpendicular. There are no other theoretical assumptions other than assumptions (1), (2),
(3). All results are derived rigorously by these three assumptions. The calculation results under
these assumptions are verified by some comparisons with FEA results in Section. 3and also in
Appendix G for stress.

We can always superimpose some vertical rigid-body translation without affecting the force
balance and moment balance. Thus we may assume particularly without loss of generality after
some such superimposition at point s=0, the membrane compressive force is:
N, |,_,=p(R +1,/2-w(0)). To be more specific: if during deformation at point s=0, the

membrane force is N, | _,= p(R, +1t,/2+0(1)) then the radial displacement w, at s=0 is w.
Then we superimpose a vertical rigid-body translation by b, =—o(1)—w and define
W,=b, coss +w,,
v, = b sins +v,,
W, = b, coss +w,,
v, =bsins+v,
as the new displacement field. —w,(0) =—(b, + w) = —(—o(1) —w+w) =0(1) .
And then with this new radial displacement field w,, N, |_,= p(R, +¢, /2 —-w,(0)). Thus there is

indeed no loss of generality.

Step 3. Fig.S1 shows the schematic of force and moment of the deformed segment where C
point is the middle axis pointat s=0. B point is the outer pointat s=0. E pointis a middle
axis point in intact region with angular coordinate s and D is the outer point at s. p is the

external pressure acting on the outer boundary. Euler-Bernoulli beam assumption is adopted here,
i.e., cross-section is not deformed and cross-section remains perpendicular to the deformed middle

axis after deformation. Denote X » as the position vector of point £ and explicitly we have:
X, =(X,,X,)=(R,sins —w,sins +v, coss, R, coss —w,coss —v,sins).  (S2)
A tangent vector at E along the deformed middle axis is 7 =(dX,/ds,dX,/ds) and the

unit outer normal vector # at point s can be represented as:



ji— ﬁ-(-d)@ / ds,dX, | ds) (83)
t 2

where ||7], means the vector length of 7 . The point D has position vector as
X, = X, +iit, /2 (since cross-section is not deformed by the Euler-Bernoulli assumption). The
point B has position vectoras X, = (0,R, +1,/2—w,/(0)).

Considering the moment balance around point E, there are four components: moment by
membrane compression N, | _, ,moment by external pressure, cross-section moments M, |_,
and M,(s). The external pressure can be equivalently represented as a concentrated force acting
at middle point of straight line segment BD with magnitude p|BD| (so implicitly pressure
remains normal to the outer boundary during deformation and p is indeed a follower load
although the cross-section normal rotation is small). The moment from p around point £ is
thus: p(X, + X, /2-X,)- (X, - X,).

The compressive force's moment is then ph where:

h=R +t/2-w/(0))- (R —w(0)—(R,coss—w,coss —V,sins)).

Adding them all together, linearizing the resulting equation and dropping the higher order
terms, it yields:

M, |, +1/8- p(4R12 - t12) — pRw(0)=M,(s)+1/8- p(4R22 - t22) — PRw, ().

We note that the left-hand side is a constant independent of s, thus the right-hand side is a
constant. If £ lies in the corroded region, the identical derivation gives that:

Ml |s:0 +1/8- p(4R12 - 112) - plel(O) = M1(S) +1/8- p(4R12 - t12) - plel(s)- .

Thus we conclude that for some constant C':

M,(5)+1/8- p(4R* 1) = pRw () = C;M,(5) +1/8- p(4R,> = 1,7) = pRw,(5) = C (S4)

p|BD]| L(s)

|

Fig. S1 Force and moment of deformed segment

Appendix C.

This appendix C shows the derivation of continuity condition Eq.(5) by rigorous adoption of
the Euler-Bernoulli assumption. Considering an original circular ring of radius R parametrized
by angular coordinate s with radial displacement field w, tangential displacement field v of
middle axis and another radial coordinate z (z=0 means the middle axis, see Fig.S2).



Fig. S2 Kinematics of circular ring
We consider a thickness point at cross-section s with z#0 with circumferential
displacement v(s,z) and radial displacements w(s,z) and of course v(s,0)=v(s) and

w(s,0) =w(s) are the middle axis point's circumferential and radial displacements. An original

middle axis point 4° at s and z=0 moves to apoint 4 with position vector
)?A = (Rsins —w(s)sins + v(s)coss, Rcoss —w(s)coss —v(s)sins).
The tangent vector is then
d)?A /ds = (Rcoss —v(s)sins —w(s)coss +v'(s)coss —w'(s)sins, (S5)
—Rsins —v(s)coss + w(s)sins —v'(s)sins — w'(s)coss)
and unit tangent vector is 7 =dX,/ds/| dX,/ds|,. Unit outer normal can be explicitly

represented:
Rsin[s]+ cos[s]v[s]— sin[s]w[s] + sin[s]'[s] + cos[s]w[s]
R+ s+ wls]? + 2RV[s]+ v[s ’
\/—2w[s](R +V[s]) + 2V[s]w[s]+ w[sT
Rcos[s]—sin[s][s]— cos[s]w[s]+ cos[s]V[s]— sin[s]w]s]
R* +v[s] + w[s] + 2RV [s]+V[s]
\/—ZW[S](R +V[s]) + 2v[sIW[s] + W[sT

i={

(S6)

.

By linearization, # ~N+6T where N = (sins,coss),T = (coss,—sins) are defined and
6 =(v+w)/R. For thickness point with coordinates (s,z), its original position vector is
X(s,z)=((R+ z)sins,(R+z)coss) .

By Euler-Bernoulli assumption, its position vector is X (s,z) = X ,(s)+7i - z. The tangential

displacement at point (s,z) is just:

v(s,2) = (X (s,2) — X(s,2)) - T(s). (S7)
And radial displacement of point (s,z) 1is just:
w(s,z) = (X(s,z) — ¥(s,2)) - (=N (s)). (S8)

Linearization of Eq.(5) and Eq.(S8) leads to v(s,z) = v(s) + (v(s) + w'(s))/ R - z and w(s, z) = w(s).
Then returning to the context of section 2.2 at s,, w,(s,)=w,(s,R, — R) = w,(s,) and

1y (5,) = i (5., R, — R ) = vi (s,) + 2D 1)

(R, = R);
! (S9)
v, (s,) + Wi (s
vi(s)=vy(s,R — R,) =v,(s)) + 2( I)R 2( 1) ‘(R —R,)).
2
This equation directly implies that:
() + Wl,(sl)) IR =(vy(s)) + W;(Sl))/ R,. (S10)
Note that this equation just means that the rotation of cross-section is identical. By the first

equation of Eq.(S9), after some calculation, v,(s,)/ R —v,(s,)/ R, =w((s))(1/R,—1/R) and



comparison of this equation with Eq.(S10) yields that w(s,) =w,(s,). Then the inextensible
condition yields:

vi(s) =1 (0) = -[[o,sl]w';vz(”) (s = I[sl,n]wz'

By symmetry of deformation, v,(0)=v,(x)=0 and leads to Eq.(5) directly.

Appendix D.

Here we present the solution of initial slope problem in section 2.4 and we only solve for the
extensible model since the inextensible model (although simpler) does not yield the correct initial
slope when comparison with FEA results in Section 3 is made. For simplicity, we adopt the
simpler continuity conditions in Eq.(6). With the solution strategy outlined in Appendix A, we
assume perturbative expansion as:

W, =Wy, + pwy, + Py, ..

W, = CWy, + PW, + P oWy, + ... (S11)

C=cC,+ pC, +p°C, +...
where ,,, W,, C, denote the eigenfunctions for the homogeneous equation when p =0,¢ is
a constant independent of p and w,,...,W,,... are functions on [0,7]. And of course
W, =coss,w,, =coss with C,=0 is the eigenfunction of related homogeneous equation
system:

w'+w, —CR’>/ El, =w}+w, —CR,’ /| EI, =0

under conditions

W(0) = wh(m) = w(s) —wa(s) = wi(s) —wh(s)= [ wm+ ] w =0

5.7]
Substitution of this expansion yields the equation systems for the p' order terms:
(W, +w,)+R>/ EIL -cw, =CR>/El,+R(R +1t,/2)/ Et, ~1/8-R> | EI, -t> —4R?); (S12)
(W, +w,)+ R, | EL, -¢w,, =CR,> | EI, + R,(R, +1,/2)/ Et,—1/8-R,> | EL, - (t,” —4R,); (S13)
jm,xl]w“ +j[31’”]w12 =R(R +1,/2)/ Et,-s,+ R,(R, +1,/2)/ Et,-(x—s,). (S14)
Integrate Eq.(S12) from 0 to s, and Eq.(S13) from s, tor, sum the results and apply the
continuity conditions and boundary conditions. We get that:
C =Hc+H, (S15)
where
R}/EI- I[o,ylﬂ_”m +R, | EI, -j[w]woz .
i R’ R ;

g+ 2 (m-s
EI E12( 2

H

S16)
s, Rl2 2 2y TS, R22 2 2 (
L. Lt —-4R" )+ -—=—.(t,” —4R
_ 8 EII (1 1) 8 E[2 (2 2)
2 2
Rfl'sl-i_Riz'(ﬂ_Sl)
El, El,

Then multiply Eq.(S12) by w,, =coss, integrate it from O to s, and similarly multiply

H,

Eq.(S13) by w,, =coss, integrate it from s, to z. Then summing up these two integrals and

applying the boundary conditions and continuity conditions, it yields an expression for ¢ :



{H,R’/ EI, + R(R +1,/2)/ Et, =1/8-R’>/ EI,-(t] —4R’)} 00y o

+{H,R | EL, +R,(R, +t,/2)/ Et,~1/8-R | EL,-(t," - 4R22)}j[ o
c= - - - — —. (S17)
[R}/EI j{omwof +R}/EL- j[w] W) — H,R? | EI -I[O’SI]WOI ~H\R}/EL- j[w] W, ]

Then we calculate for p® order terms:
Wl + W, + R’/ EI -w, =C,R*/ EI;
W, + W, + R,/ EL -w,, = C,R,} | EIL,.
W, (0) = why () = 0,wy, (5,) = Wy, (s,)

=W, (5,) = Why(s,) = O;J-[o,sl]wﬂ + J.[SI - Wy, =0.

(S18)

(S19)

By similar integration,

R*VEL-[ W, +R’/EL-[ i,
E _ [0,5,] [s,7] S20
2= 2 2 . ( )
R>/EI-s,+R>/EL (s,

Then multiplying the equations in Eq. (S18) with w,, and Ww,, taking integration and

summing them up similarly, we find the orthogonality condition:
R’/ EI 'f[o,x,ﬂ_vnwm +R,/EL- j[w]wnwoz =C,R} /Ellj[omwm +C,R? /Elz.[h] e (S21)

Eq.(S21) and Eq.(S20) represent a necessary condition to be imposed on w,, and w,. Then
we solve for w;, and w, now. To simplify the notation, define
G, =CR?/EI,+R (R +1,/2)/ Et,~1/8-R*/ EI,-(t> —4R?); P = —R | EI -c.
G,=CR)}/EL,+Ry(R,+t,/2)/ Et,~1/8-R,> | EL, -(t,> —4R,*); P, =—R,* | EI, -c.
The general solution is then:

_ P .
w,, =G +(=Z+a,)coss+(——+b,)sins;
2

5
2 (S22)

_ P, P, .
w, =G, +(72+a2)coss+(%s+b2)sms

where a,,b,,a,,b,are constants from integration. Then we require these solutions to satisfy the
following conditions:

Wi, (0) =W, (5,) = Wi, (5,) = W, (5,) = Wi, (5,) = 0 (523)
and the orthogonal condition by Eq.(S20) and Eq.(S21). There are four conditions and four
unknowns a,,a,,b,,b,, thus a linear equation can be solved to obtain q,,a,,b,b,. The reader may
wonder why we drop the boundary condition w,(7)=0: this is because this boundary condition
is not necessary and can be verified to be automatically satisfied when w,, and Ww, are

obtained.

Appendix E.

In this appendix E, we discuss the effect of convergence parameters ¢, and generally the
homotopy analysis method (Liao, 2012; Chen et al., 2021) leads to an equation:

(- —ce(W'+0Ow)=0 (S24)
where Q is an arbitrary fixed function on [0,7], ¢, is the so-called convergence parameter to
control the convergence of power series: w=w,+&w, +&°w, +... and boundary conditions are
specified to make this problem well-defined:

W, Lio= Wo licos W] Lig= Wp |, Vi 2 1.
We can substitute this expansion into the equation and use the boundary conditions to
eliminate the integration constants. We find that:



() = (+e)n () =W g =5 Lo )+ [ [, 0@w(2)deds. (S25)

()= (e )+ [ e 0@m, (D)deds;i>2. (S26)
If 0=0, then w,(s)=(1+¢,)w,,(s) leads to a geometric power series so that the power
series converges if and only if |1+¢,|<1. Thus we may only expect the convergence when

[1+¢,|<1(c,=-1 1is of course lying in this domain). We can show |l+¢,|<1 is indeed enough

. o . —Cy&
for convergence when &=1. Since by division we obtain w'+——2—0Ow=0, and by
—£—c,&

collecting c,e/(1—e—&c,) as h, it leads to w'=h0Ow . It has been shown that w(s)

(depending on real number £ ) is analytic for —co </ <o by Inequality 20. Thus we may regard
w(s) as an analytic function of 4 and / can also be regarded as a function of ¢. From basic

functional analysis, it is well-known that composition of two analytic functions are analytic on
certain domain and of course /h(g)=c,e/(1-&(l+¢,))is analytic for |g|<1/|l+¢,|. Since only

convergence at ¢ =1 is required, thus 1/|1+¢, [>1(i.e., ¢, €(0,-2)) suffices to guarantee the
convergence. From this discussion, we show that setting ¢, #—1 leads to smaller convergence
radius and thus there is no necessity to set ¢, to anumber ¢, #—1. For ¢, =0 the integral term
in Eq.(S26) vanishes and w, =w,_, for any i>2. Thus unless w, =0 identically, the resulting
series w=w, +w, +... must be diverging.

Let us present an example to verify this discussion. As an example, set w, =1+s and
Q0 =1+s, then we can calculate w, by Eq.(S26) and Eq.(S25). We would check the convergence
of truncated series w,+..+w, when m is going to infinity. To check the

divergence/convergence critical values ¢, =0,—2, we calculate truncated w for ¢, =-0.1 and

0.1, -1.7,-1.9 and -2.05 in Fig.S14, Fig.S15, Fig.S16, Fig.S17 and Fig.S18 respectively. In
Fig.S14, at ¢, =-0.1, when m =40,50,60, the curves converge. However when ¢, is slightly

higher than 0.0, at ¢, =0.1, the divergence is rapid. Slow convergence and extremely slow
convergence are observed forc, =—1.7and -1.9, but rapid divergence is observed when c, is

slightly lower than ¢, =-2.0. These verify the conclusion that ¢, €(-2,0) guarantees the

convergence. This appendix serves to enhance the understanding of the controlling parameter in
the so-called homotopy analysis method (Chen et al., 2021).

Appendix F.

We present the shooting method combined with Newton-Raphson iteration to numerically
solve Eq.(10) and Eq.(11). This method firstly converts the problem into an equivalent initial
value problem. To solve Eq.(10) we define

()= W)y, = W@,y = [ wlx)dx

and Eq.(10) is equivalent to:

() = yy(x);

V5(x) = CR(x)* / E1(x) = y,(x) = pR(x)" / EI(x)- y,(x)

~1/8- pR(x)* / EI(x)-(t(x)* —4R(x)*);

¥5(x) = 3, (x).
where C is an unknown constant. Then boundary conditions lead to y,(0)=0, y,(0)=0,
»,(r)=0 and y,(7)=0. The initial condition y,(0)=c (denoted as c¢ ) is unknown and thus



there are two unknowns ¢ and C with two constraints y,(7)=0 and y,(7)=0 atend point
x=m . For each p fixed, an initial guess for C,c would be prescribed; then by this initially
guessed C,c, this initial value problem can be solved by the Runge-Kutta method by ODE45
solver in Matlab software(denoted as original calculation), i.e., for each ¢,C , we can obtain the
values y,(7) and y,(7);if y,(z)=0 and y,(7)=0 with small error, we are done and these
C,c are the required solution; otherwise we can replace (C,c) by perturbed (C+J,c) and
(C,c) by perturbed (C,c+0) whered is a very small perturbing value, e.g., le-4 to carry out
second and third calculations respectively by the Runge-Kutta method; denote the value y,(7)
and y,(7) by original calculation as y,(7)|,,y,(7)|, and similarly y,(7)|,»;(7)], in second
calculation, y,(7)|,,»,(7)|, in third calculation; then an approximately Jacobian matrix is

formed:

b

J :l|:y2(7r) |1 _yz(”) |0 yz(”) |2 _yz(ﬂ') |0j|
Sy =y v |, =y3(1)

[C,c] isupdated as[C,c]+J " [-y,(7)|,,—y;(7)|,] ; repeat the above Newton-Raphson iteration

until convergence is attained for such value of p and then increment p to repeat the above

process again. The method to solve Eq.(11) is similar and thus omitted.

Appendix G.

In this appendix G, we use the elastic solution in this paper and initial yielding criterion or
the full plastic criterion (Fatt, 1999) to assess the critical collapse pressure of corroded pipes. And
a comparison to FEA results is included when plasticity is considered. To simplify the discussion,

we assume elastic-perfectly plastic material model with yielding stress o, = 240MPa . We fix
parameters R, =Ilmm, £ =200GPa, t,=0.1R, (thick enough such that plasticity effect cannot

be neglected, see also the work (Yan et al.,2016)) as in Section 3.2 and Riks step by Abaqus
software is carried out while external pressure is imposed on outer boundary (Nlgeom option is
On to account for the large deformation effect, so that pressure is modelled as a follower load ).
We find excellent prediction capability of maximum stress by our formulation if no yielding
happens (here we use the extensible model). Firstly theoretically at each cross-section at s, the
circumferential stress is the sum of bending stress and membrane stress and the absolute value of
maximum stress at cross-section of s can be represented explicitly by

o,(s)=Et, ] QR*) | W'+ V] |+p(R +1,/2)/t,,i=12 (S27)
where v, =—pR.(R, +t,/2)/(Et)+w, for i=1,2 asinEq.(3).

Case (1). We first present results when e =0 (symmetric case). Fig.S3 shows how the
maximum stress o(s) changes when pressure is increasing by theoretical formulation where
o(s)=o,(s) if s€[0,s,] and o(s)=o0,(s) if se(s,7]. Due to smaller thickness, when
s<s, =n/6~0.5, stress is significantly larger than the stress in intact region where s> s,.
There is an abrupt stress drop at s=s,. As p increases as 2,4,6,8,10,11.53MPa, the stress
increases. We just record that when p =11.53, the maximum stress o(s) has maximum value

240.14MPa (approximately the same as the specified yielding stress 240MPa). For the
corresponding FEA results, Fig.S4 shows the Mises stress distribution when p =11.7077 MPa

(the maximum pressure in load-displacement path). Please note that the maximum Mises stress is
indeed 240MPa by using Abaqus "probe stress value" functionality (the same as the yielding
stress) and the number 256.6MPa in the left box should not be taken as the maximum stress (this
somewhat misleading number may be due to some visualization algorithm through data



interpolation or extrapolation in Abaqus and this point applies to Fig.S8 also). If initial yielding
criterion is used, the theoretical critical collapse pressure is 11.53MPa and this is very close to the
FEA collapse pressure 11.70MPa. FEA stress is also abruptly dropping at s =s,. Moreover FEA
offers a good chance to see how plasticity affects the stress when collapse pressure is approached:
since by theoretical calculation in Fig.S3 the maximum stress 240.14MPa is attained at s =0, we
extract the circumferential stress by using "stress linearization" functionality in Abaqus into Fig.
S5. In Fig.S5, circumferential stress is extracted through the stress extraction path (see subplot in
Fig.S5) for all points in cross-section of s=0 and xe(0,#) denotes the location of points.
When p=11.0995MPa, the yielding stress is slightly smaller than yielding stress 240MPa and
the stress distributes as a straight line with maximum absolute value about 237MPa at x =0and
minimum absolute value about 215MPa at x=¢. However when Pa, for small x, the stress
becomes a constant around 240MPa (please note that circumferential stress extremely slightly
differs from von-Mises stress by the existence of very small radial and shear stress). And when
p=11.5513 MPa, when x/t, <04, the stress is almost constant and slightly larger than

240MPa. Finally when p =11.7077 MPa (collapse pressure), for x/t < 0.8, the stress is almost

constant. This clearly shows how the plastic region "propagates” in the thickness direction after
yielding and the collapse pressure is reached when this region "occupies" 80% of thickness. But it
is still interesting to note that, even so, the initial yielding criterion leads to a very close critical
pressure prediction when FEA result is compared (see Table.S1). But situations are quite different

for e=1 in the following.
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Fig. S4 Stress when maximum pressure occurs for e=0

Case (2). Fig.S6 shows the circumferential stress variation (from FEA) for various pressures
and also the theoretical stress at s=0 (theoretical stress is a linear combination of bending stress
and membrane stress and thus forms a straight line, see solid lines in Fig.S6) is calculated by our
formulation and compared with FEA results (see discrete symbol lines). All theoretical stresses
agree well with the FEA results, however, when p is larger than 8.03MPa, yielding occurs and

the similar pattern of "propagating" plastic region is observed when p is further increasing.
The FEA collapse pressure about 10.43MPa is reached when the plastic region occupies
also about 80% thickness (this resembles Case (1)). The initial yielding pressure in FEA is just
8.04MPa while the collapse pressure is much larger as 10.43MPa. This large discrepancy for the



e=1 here has not been observed for the case (1) where e=0. So this delicate analysis shows the
meaning of this investigation on the effect of e. The deformed configuration is shown in Fig.S7
(displacements are amplified by a factor 10 to make visualization easier). And the stress
distribution is quite non-uniform and quite different from that in Fig.S4. The corresponding
theoretical results are shown in Fig.S§. When maximum stress reaches 239.8MPa, the
corresponding pressure is 8.0MPa which result is consistent to the counterpart FEA result
8.04MPa. The theoretical distribution of o(s) is much more non-uniform when Fig.S4 is

compared. If initial yielding criterion is used for e=1 case, the predicted critical pressure is
8.0MPa which significantly underestimates the collapse pressure 10.43MPa in FEA. So initial
yielding criterion is not suitable for e=1. We may use Fatt's full plastic criterion (Fatt, 1999)
instead to reflect the plasticity effect more accurately: pressure is critical once the equation

|M |/M,+(N/N,)’ =1 is satisfied where M is cross-section resultant moment, M, is fully
plastic cross-section moment, N is membrane force, N, is the fully plastic resultant
cross-section force. By adapting this criterion to our case, at critical cross-section s=0,
M =EL(W+V)/R> for s=0and M,=1/4-0,/ , N=p(R+t/2), N,=o0,t, . By
inserting the theoretical solutions for different p, this equation is satisfied at p =9.7399 MPa.

Compared with collapse pressure 10.43MPa, only relative error of 6.6% exists and may be
informative for engineering applications (see Table.S1). Indeed there are many such criteria in
literature for accounting for various level of plasiticity (Fraldi and Guarracino, 2011; 2013) and
initial yielding criterion or fully plastic criterion is not the only choice. But from this example, we
have just showed how engineering application is possible by using elastic data from theoretical
formulation and plastic criterion to predict critical pressure. And Fatt (1999) has used this similar
method to predict the critical external pressure of corroded ring based on pure elastic solution too.
The main difference is that Fatt studied the special case e=0, but we presented more general
results for all e e€[—-1,1]. The above comparison between the ¢=0 and e=1 cases has clearly

shown the significant effect of e and this is also the main motivation of this paper.
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Fig. S5 Stress when collapse pressure is approached at cross-section s=0(crown point) from FEA
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Fig. S6 Stress for e=1 case at cross-section of s=0
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Fig. S7 Mises stress distribution at collapse pressure 10.43MPa in FEA
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Table. S1 Collapse pressures for FEA and analytical results

Cases FEM Analytical ~ Relative
Error

Case l:ie=0  11.70MPa  11.53MPa 1.45%

Case 2:e=1 10.43MPa  9.74MPa 6.61%

Affliated Figures
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Table S2. Comparison of bifurcation pressures

e simplified1 fulll errorl/% simplified2 full2 error2/% simplified3 full3 error3/%
1 0.2225 0.2221  -0.1954  0.0809 0.0809  -0.0218  0.8095 0.8094  -0.0127
0.8  0.2250 0.2246  -0.1551 0.0836 0.0835  -0.0159  0.8113 0.8112  -0.0104
0.6 0.2274 02272 -0.1160 0.0864 0.0863  -0.0107  0.8131 0.8130  -0.0078
04  0.2299 0.2298  -0.0765 0.0893 0.0893  -0.0064  0.8149 0.8148  -0.0053
0.2 0.2325 0.2324  -0.0383 0.0923 0.0923  -0.0028  0.8167 0.8167  -0.0027
0 0.2351 02351 0 0.0956 0.0956 0 0.8185 08185 0
-0.2  0.2377 0.2378  0.03743  0.0989 0.0989  0.0021 0.8203 0.8203  0.0028
-0.4  0.2404 0.2406  0.07444  0.1024 0.1024  0.0039 0.8221 0.8221  0.0056
-0.6  0.2432 0.2434  0.1114 0.1061 0.1061  0.0047 0.8239 0.8239  0.0085
-0.8  0.2459 0.2463  0.1471 0.1099 0.1099  0.00455  0.8256 0.8257  0.0115
-1 0.2488 0.2492  0.1832 0.1140 0.1140  0.00526  0.8274 0.8276  0.0146




