
 
 
Appendix A  

 
We show the perturbation method to solve the general abstract equation in the form of 

Aw w e    where :A H H  is a linear continuous self-adjoint operator between some real 

Hilbert space H  with inner product denoted as ,    , ,w e H  and there is a known 0 0w   

such that 0 0Aw  , i.e., A has an eigenvalue 0. We show how w  behaves when 0  . We 

assume that w  can be expanded in the power series of   as 2
0 1 2 ...w Cw w w      where 

C  is a constant independent of  , and 1 2, ,...w w  are unknown functions. Then we substitute this 

expansion into the original equation: 
2 2 3

0 1 2 0 1 2( ...) ... .A Cw w w Cw w w e             For 0 -order terms: 0 0Aw   is trivial. For 
1 -order terms, 1 0Aw Cw e  . Finally for 2 -order terms, 2 1 0Aw w  . Taking inner product 

with 0w , it yields: 1 0 0 0 0, , ,Aw w C w w e w      , and by self-adjointness,

1 0 1 0 1, , ,0 0Aw w w Aw w    .  

Thus 0 0 0, / ,C e w w w    . To obtain 1w , we need to solve equation  

1 0 0 0 0, / , .Aw e e w w w w                          (S1) 

Eq. (S1) has non-unique solutions. But by taking the inner product of the equation 2 1 0Aw w  , it 

yields: 
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Thus 1w  is determined uniquely by this condition 1 0, 0w w  .  

Note that if e  is replaced by e ( 0 ) without the small  , the resulting equation 

Aw w e   has quite distinct behavior as 0  . In this case 0~w Cw  where ( )C  is 

depending on   and C   as 0   by 
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and the explicit expression for C  is thus 1
0 0 0, / , .C w e w w      

 
 
Appendix B. 
 

We derive the governing equation: 
2 2

1 1 1 1 1

2 2
2 2 2 2 2

1 / 8 (4 ) ,

1 / 8 (4 )

M p R t pR w C

M p R t pR w C

    

    
 

where , , ,i i i iM w t R are cross-section resultant moments about the point of middle axis, radial 

displacements, thicknesses and middle axis radius at point s  where 1i   represents the 
corroded region and 2i   represents the intact region with C  being an unknown constant.  

Step 1. Assuming small tangential displacements and radial displacements (Assumption (1)), 

the curvature change at s  is represented linearly as 21 / ( )i i iR w v  and the membrane strains are 

1 / ( / )i i iR dv ds w .  

If both curvature change and membrane strain are zero, the related displacements are related 
to rigid-body motion. In that case the curvature change and membrane strain should vanish: 

, 0i i i iv w w v     . Substituting the first equation into the second, it yields: 0i iw w  . Thus 

sin cosi i iw a s b s  .  



Then substituting this iw  back to the first equation, it leads to cos sini i i iv a s b s c     

for some real , ,i i ia b c .  

The geometric meaning of ic  is some small rigid-body rotation around origin point. ia  is 

the horizontal rigid-body translation and ib  is the vertical rigid-body translation.  

Since the deformation is assumed to be symmetric, both rotational and horizontal 
translational rigid-body motion are excluded. But arbitrary vertical translation is allowed.  

Step 2. We make an essential assumption (2) here that the membrane compressive force iN

during deformation can be approximately represented by ( / 2 (1))i i iN p R t o    where (1)o  

is some term much smaller than unity.  
This assumption (2) is based on the observation that when curvature change is small (since 

displacements are small), the circular segment remains almost circular and thus the circular 
segment's membrane behavior should resemble the of a uniform ring. Note that for a uniform ring 
with middle axis radius iR  and thickness it  under pressure p , the membrane force is just 

( / 2)i ip R t . And our assumption (2) is just equivalent to the assumption that the membrane 

force of corroded ring in each uniform segment (corroded region and intact region) during 
deformation should be approximate to that of some uniform ring with some unknown but small 
error term (1)o . It is important to note that all displacements are assumed to be small in this 

paper and this assumption (1) is made based on the fact that in practical engineering the steel 
pipeline reaches critical collapse value when displacements are very small since the elastic 
modulus of steel is very large. The last assumption (3) is the conventional Euler-Bernoulli beam 
assumption asserting that the cross-section is not deformed and lines perpendicular to middle axis 
remain perpendicular. There are no other theoretical assumptions other than assumptions (1), (2), 
(3). All results are derived rigorously by these three assumptions. The calculation results under 
these assumptions are verified by some comparisons with FEA results in Section. 3and also in 
Appendix G for stress. 

We can always superimpose some vertical rigid-body translation without affecting the force 
balance and moment balance. Thus we may assume particularly without loss of generality after 
some such superimposition at point s=0, the membrane compressive force is:

1 0 1 1 1| ( / 2 (0))sN p R t w    . To be more specific: if during deformation at point s=0, the 

membrane force is 1 0 1 1| ( / 2 (1))sN p R t o     then the radial displacement 1w  at 0s   is w . 

Then we superimpose a vertical rigid-body translation by 1 (1)b o w    and define 
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as the new displacement field. 1 1ˆ (0) ( ) ( (1) ) (1)w b w o w w o          .  

And then with this new radial displacement field 1ŵ , 1 0 1 1 1ˆ| ( / 2 (0))sN p R t w    . Thus there is 

indeed no loss of generality. 
Step 3. Fig.S1 shows the schematic of force and moment of the deformed segment where C  
point is the middle axis point at 0s  . B  point is the outer point at 0s  . E  point is a middle 
axis point in intact region with angular coordinate s  and D  is the outer point at s . p  is the 

external pressure acting on the outer boundary. Euler-Bernoulli beam assumption is adopted here, 
i.e., cross-section is not deformed and cross-section remains perpendicular to the deformed middle 

axis after deformation. Denote EX


 as the position vector of point E  and explicitly we have: 

1 2 2 2 2 2 2 2( , ) ( sin sin cos , cos cos sin ).EX X X R s w s v s R s w s v s     


   (S2) 

A tangent vector at E  along the deformed middle axis is 1 2( / , / )t dX ds dX ds


 and the 

unit outer normal vector n


 at point s can be represented as: 
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comparison of this equation with Eq.(S10) yields that 1 21 1( ) ( )w s w s  . Then the inextensible 

condition yields: 
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By symmetry of deformation, 1 2(0) ( ) 0v v    and leads to Eq.(5) directly. 

 
 
Appendix D.  
 

Here we present the solution of initial slope problem in section 2.4 and we only solve for the 
extensible model since the inextensible model (although simpler) does not yield the correct initial 
slope when comparison with FEA results in Section 3 is made. For simplicity, we adopt the 
simpler continuity conditions in Eq.(6). With the solution strategy outlined in Appendix A, we 
assume perturbative expansion as: 

2
1 01 11 31

2
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...
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w cw pw p w

C cC pC p C
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                   (S11) 

where 01w , 02w , 0C  denote the eigenfunctions for the homogeneous equation when 0p  , c  is 

a constant independent of p  and 11 12,..., ,...w w  are functions on [0, ].  And of course 

01 02cos , cosw s w s   with 0 0C   is the eigenfunction of related homogeneous equation 

system: 
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Substitution of this expansion yields the equation systems for the 1p  order terms: 
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Integrate Eq.(S12) from 0 to 1s  and Eq.(S13) from 1s  to , sum the results and apply the 

continuity conditions and boundary conditions. We get that: 
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Then multiply Eq.(S12) by 01 cosw s , integrate it from 0 to 1s  and similarly multiply 

Eq.(S13) by 02 cosw s , integrate it from 1s  to  . Then summing up these two integrals and 

applying the boundary conditions and continuity conditions, it yields an expression for c : 
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Then we calculate for 2p  order terms:  

 
3 2

21 21 1 1 11 2 1 1

3 2
22 22 2 2 12 2 2 2

/

.

/ ;

/ /

w w R EI w C R EI

w w R EI w C R EI

   

   


                 (S18)  

1 1

21 22 21 1 22 1

21 1 22 1 21 22[0, ] [ , ]

(0) ( ) 0, ( ) ( )

( ) ( ) 0; 0.
s s

w w w s w s

w s w s w w


   

      
            (S19) 

By similar integration,  
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

 

 




 
 

               (S20) 

Then multiplying the equations in Eq. (S18) with 01w  and 02w , taking integration and 

summing them up similarly, we find the orthogonality condition: 

1 1 1 1

3 3 2 2
1 1 11 01 2 2 12 02 2 1 1 01 2 2 2 02[0, ] [ , ] [0, ] [ , ]

/ / / / .
s s s s

R EI w w R EI w w C R EI w C R EI w
 

       (S21) 

Eq.(S21) and Eq.(S20) represent a necessary condition to be imposed on 11w  and 12w . Then 

we solve for 11w  and 12w  now. To simplify the notation, define 
2 2 2 2 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1/ ( / 2) / 1/ 8 / ( 4 ); / .G C R EI R R t Et R EI t R P R EI c         
2 2 2 2 3

2 1 2 2 2 2 2 2 2 2 2 2 2 2 2/ ( / 2) / 1/ 8 / ( 4 ); / .G C R EI R R t Et R EI t R P R EI c         

The general solution is then: 

1 1
11 1 1 1

2 2
12 2 2 2

( )cos ( )sin ;
2 2

( )cos ( )sin
2 2

P Ps
w G a s b s

P P s
w G a s b s

    

    
                (S22) 

where 1 1 2 2, , ,a b a b are constants from integration. Then we require these solutions to satisfy the 

following conditions: 

11 11 1 12 1 11 1 12 1(0) ( ) ( ) ( ) ( ) 0w w s w s w s w s                     (S23) 

and the orthogonal condition by Eq.(S20) and Eq.(S21). There are four conditions and four 
unknowns 1 2 1 2, , ,a a b b , thus a linear equation can be solved to obtain 1 2 1 2, , ,a a b b . The reader may 

wonder why we drop the boundary condition 
12

( ) 0w   : this is because this boundary condition 

is not necessary and can be verified to be automatically satisfied when 11w  and 12w  are 

obtained. 
 
 
Appendix E. 
 

In this appendix E, we discuss the effect of convergence parameters 0c  and generally the 

homotopy analysis method (Liao, 2012; Chen et al., 2021) leads to an equation: 

0(1 ) ( ) 0w c w Qw                            (S24) 

where Q  is an arbitrary fixed function on [0, ] , 0c  is the so-called convergence parameter to 

control the convergence of power series: 2
0 1 2 ...w w w w      and boundary conditions are 

specified to make this problem well-defined:  

0 0 0 0 0 0| | , | | , 1i s s i s sw w w w i        . 

We can substitute this expansion into the equation and use the boundary conditions to 
eliminate the integration constants. We find that: 



1 0 0 0 0 0 0 0 0[0, ] [0, ]
( ) (1 )( ( ) | | ) ( ) ( ) .s s s s

w s c w s w w s c Q w d ds              (S25) 

0 1 0 1[0, ] [0, ]
( ) (1 ) ( ) ( ) ( ) ; 2.i i is s

w s c w s c Q w d ds i                  (S26) 

If 0Q  , then 0 1( ) (1 ) ( )i iw s c w s   leads to a geometric power series so that the power 

series converges if and only if 0|1 | 1c  . Thus we may only expect the convergence when 

0|1 | 1c  ( 0 1c    is of course lying in this domain). We can show 0|1 | 1c   is indeed enough 

for convergence when 1  . Since by division we obtain 0

0

0
1

c
w Qw

c


 
  
 

, and by 

collecting 0 0/ (1 )c c     as h , it leads to w hQw  . It has been shown that ( )w s  

(depending on real number h ) is analytic for h     by Inequality 20. Thus we may regard 
( )w s  as an analytic function of h  and h  can also be regarded as a function of  . From basic 

functional analysis, it is well-known that composition of two analytic functions are analytic on 
certain domain and of course 0 0( ) / (1 (1 ))h c c     is analytic for 0| | 1/ |1 |c   . Since only 

convergence at 1   is required, thus 01/ |1 | 1c  (i.e., 0 (0, 2)c   ) suffices to guarantee the 

convergence. From this discussion, we show that setting 0 1c    leads to smaller convergence 

radius and thus there is no necessity to set 0c  to a number 0 1c   . For 0 0c  ,the integral term 

in Eq.(S26) vanishes and 1i iw w   for any 2i  . Thus unless 2 0w   identically, the resulting 

series 0 1 ...w w w    must be diverging.  

Let us present an example to verify this discussion. As an example, set 0 1w s   and 

1Q s  , then we can calculate iw  by Eq.(S26) and Eq.(S25). We would check the convergence 

of truncated series 1 ... mw w   when m  is going to infinity. To check the 

divergence/convergence critical values 0 0, 2c   , we calculate truncated w  for 0 0.1c    and 

0.1, -1.7,-1.9 and -2.05 in Fig.S14, Fig.S15, Fig.S16, Fig.S17 and Fig.S18 respectively. In 
Fig.S14, at 0 0.1c   , when 40,50,60m  , the curves converge. However when 0c  is slightly 

higher than 0.0, at 0 0.1c  , the divergence is rapid. Slow convergence and extremely slow 

convergence are observed for 0 1.7c   and -1.9, but rapid divergence is observed when 0c  is 

slightly lower than 0 2.0c   . These verify the conclusion that 0 ( 2,0)c    guarantees the 

convergence. This appendix serves to enhance the understanding of the controlling parameter in 
the so-called homotopy analysis method (Chen et al., 2021). 
 
 
Appendix F.  
 

We present the shooting method combined with Newton-Raphson iteration to numerically 
solve Eq.(10) and Eq.(11). This method firstly converts the problem into an equivalent initial 
value problem. To solve Eq.(10) we define 

1 2 3 [0, ]
( ) ( ), ( ), ( ) ( )

x
y x w x y w x y x w x dx     

and Eq.(10) is equivalent to: 

1 2

2 3
2 1 1

2 2 2

3 1

( ) ( );

( ) ( ) / ( ) ( ) ( ) / ( ) ( )

1 / 8 ( ) / ( ) ( ( ) 4 ( ) );

( ) ( ).

y x y x

y x CR x EI x y x pR x EI x y x

pR x EI x t x R x

y x y x

 

    

   
 

 

where C  is an unknown constant. Then boundary conditions lead to 2 (0) 0y  , 3(0) 0y  , 

2 ( ) 0y    and 3( ) 0y   . The initial condition 1(0)y c (denoted as c ) is unknown and thus 



there are two unknowns c  and C  with two constraints 2 ( ) 0y    and 3( ) 0y    at end point 

x  . For each p  fixed, an initial guess for ,C c  would be prescribed; then by this initially 

guessed ,C c , this initial value problem can be solved by the Runge-Kutta method by ODE45 

solver in Matlab software(denoted as original calculation), i.e., for each ,c C , we can obtain the 

values 2 ( )y   and 3( )y  ; if 2 ( ) 0y    and 3( ) 0y    with small error, we are done and these 

,C c are the required solution; otherwise we can replace ( , )C c  by perturbed ( , )C c  and 

( , )C c  by perturbed ( , )C c   where  is a very small perturbing value, e.g., 1e-4 to carry out 

second and third calculations respectively by the Runge-Kutta method; denote the value 2 ( )y   

and 3( )y   by original calculation as 2 0 3 0( ) | , ( ) |y y   and similarly 2 1 3 1( ) | , ( ) |y y   in second 

calculation, 2 2 3 2( ) | , ( ) |y y   in third calculation; then an approximately Jacobian matrix is 

formed: 

2 1 2 0 2 2 2 0

3 1 3 0 3 2 3 0

( ) | ( ) | ( ) | ( ) |1
;

( ) | ( ) | ( ) | ( ) |

y y y y
J

y y y y

   
   

  
    

 

[ , ]C c  is updated as 1
2 0 3 0[ , ] [ ( ) | , ( ) | ]C c J y y    ; repeat the above Newton-Raphson iteration 

until convergence is attained for such value of p  and then increment p to repeat the above 

process again. The method to solve Eq.(11) is similar and thus omitted.  
 
 
Appendix G. 
 

In this appendix G, we use the elastic solution in this paper and initial yielding criterion or 
the full plastic criterion (Fatt, 1999) to assess the critical collapse pressure of corroded pipes. And 
a comparison to FEA results is included when plasticity is considered. To simplify the discussion, 
we assume elastic-perfectly plastic material model with yielding stress 240Y MPa  . We fix 

parameters 2 1mR  m, 200E GPa , 2 20.1t R (thick enough such that plasticity effect cannot 

be neglected, see also the work (Yan et al.,2016)) as in Section 3.2 and Riks step by Abaqus 
software is carried out while external pressure is imposed on outer boundary (Nlgeom option is 
On to account for the large deformation effect, so that pressure is modelled as a follower load ). 
We find excellent prediction capability of maximum stress by our formulation if no yielding 
happens (here we use the extensible model). Firstly theoretically at each cross-section at s , the 
circumferential stress is the sum of bending stress and membrane stress and the absolute value of 
maximum stress at cross-section of s  can be represented explicitly by  

2( ) / (2 ) | | ( / 2) / , 1,2i i i i i i i is Et R w v p R t t i                   (S27) 

where ( / 2) / ( )i i i i i iv pR R t Et w      for 1,2i   as in Eq.(3). 

Case (1). We first present results when 0e  (symmetric case). Fig.S3 shows how the 
maximum stress ( )s  changes when pressure is increasing by theoretical formulation where 

1( ) ( )s s   if 1[0, ]s s  and 2( ) ( )s s   if 1( , ]s s  . Due to smaller thickness, when 

1 / 6 0.5s s    , stress is significantly larger than the stress in intact region where 1s s . 

There is an abrupt stress drop at 1s s . As p increases as 2,4,6,8,10,11.53MPa, the stress 

increases. We just record that when 11.53p  , the maximum stress ( )s  has maximum value 

240.14MPa (approximately the same as the specified yielding stress 240MPa). For the 
corresponding FEA results, Fig.S4 shows the Mises stress distribution when 11.7077p  MPa 

(the maximum pressure in load-displacement path). Please note that the maximum Mises stress is 
indeed 240MPa by using Abaqus "probe stress value" functionality (the same as the yielding 
stress) and the number 256.6MPa in the left box should not be taken as the maximum stress (this 
somewhat misleading number may be due to some visualization algorithm through data 
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