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S1  Multi-component flow model and geomechanics equations discretization 

S1.1  Multi-component flow model 

Kn is the Knudsen number, and αK is the rarefaction coefficient, they are defined as (Song et al., 2016; Fan 

et al., 2019; Lijun et al., 2019): 
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where λ is the mean free paths of gas molecules, and rh is the pore radius (Song et al., 2016). 
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where z is the gas compressibility factor; T is the reservoir temperature; R is the universal gas constant; Mg is the 

gas molar weight; τ0 is the initial tortuosity, and ϕ0 is the initial porosity. 

 

S1.2  Geomechanics equations discretization 

In this study, we added the Heaviside fracture tip asymptotic and junction enrichment functions to the 

standard finite element space for simulating the displacement discontinuity at hydraulic fractures. Then, the 

expression of the enriched displacement field is given as 
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where I denotes the node set of a grid; subscript i denotes the i-node; N is the standard shape function; Idis, Itip, 

and Ijun are the node subsets to enrich for the fracture discontinuity, tip and junction, respectively; Ndis, Ntip, and 

Njun are the numbers of fractures, fracture tips and fracture junctions, respectively; u, a, b, and c are the standard 

and additional degrees of freedom (DOFs), respectively; H, F, and J represent the Heaviside function, fracture 

tip asymptotic function and junction function, respectively (Khoei, 2014). For convenience, Eq. S3 can be 

written as 

  ( ) = ( ) ( ) ( ) ( )u a b c
u u u u+ + +u x N x u N x a N x b N x c  (S4) 

where, ( )u
uN x , a

uN , b
uN , and c

uN are the matrix of the standard and enriched shape functions, respectively. 

Therefore, the corresponding strain vector is given by 

  ( ) = ( ) ( ) ( ) ( )u a b c
u u u u+ + +x B x u B x a B x b B x c   (S5) 

where ( ) = ( )u u
u uB x LN x , ( ) = ( )a a

u uB x LN x , ( ) = ( )b b
u uB x LN x , ( ) = ( )c c

u uB x LN x , and L indicates the matrix 

differential operator 
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Now, we substitute Eqs. S4 and S5 into Eq. 15, and consider that Eq. 15 must apply for any kinematically 

admissible test function, then Eq. 15 is written as 

 int ext , , , ,u a b c   f f  (S7) 
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where fint and fext represent the internal and external force vectors; m=[1, 1, 1, 0, 0, 0]T. 


