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2  Related work 
 

Table S2 summarizes previous work on related 
problems, but our scope is quite different. 
Specifically, we can detect data violations based on 
the complex integrity constraints found without the 
ground truth. This situation is critical in many 
practical applications of smart transportation when 
we detect extreme data violations. In this case, the 
current data to be verified do not immediately yield 
true results. For example, consider an urban subway 
autopilot scenario where the subway utilizes a 
superior trained controller to generate actions based 
on train speed, the relative distance between stations, 
and current load. In this case, we only need to alert the 
driver to take over control of the vehicle based on 
determining whether the sensor readings meet 
complex integrity constraints. The system guides the 
trustworthiness of the train operation model by 
detecting the level of insecurity of the data used in 
real-time through complex integrity constraints. 

Complex integrity constraints belong to the 
category of data parsing, which refers to the task of 
extracting specific metadata in the dataset. Functional 
Dependencies (FD) (Y.Huhtala et al., 1999; Wu, P et 
al, 2020; Fan, W et al., 2020;Livshits, E., 2020; 
Kossmann et al, 2022) and their variants obtain the 
existence of a relationship between two sets of 
attributes without providing an expression in the form 
of parameters (W. Fan et al., 2010; Sebastian Kruse et 
al., 2018; L. Caruccio et al., 2016). Another more 
complex study,  the Denial Constraint (DC) can 
contain many different constraints, such as FD and its 
variants (Tobias Bleifuß et al., 2017; Berti-Equille et 
al., 2018; Pena, E.H.,2021）However, this can make 
the constraints extremely complex and large, and it 
will be a challenge to sift through them to find 
potentially useful information. The goal of Pattern 
Functional Dependencies (PFD) is to address the 
deficiencies that exist in DC, but it targets attributes 
whose values are text. This is not applicable for in-
telligent rail systems where the majority of attributes 
are numeric. By using regular expressions and coding 
numbers as characters, constraints with different se-
mantics are quickly detected (Pena, E.H et al., 2019 ; 
Qahtan et al., 2020; Tang, N.,2020). 

  The presence of noisy data in a dataset is 
commonly present. To reduce the impact of noise on 
the discovery of constraints, FDs and DCs relax the 
concept of constraints or add additional parameters to 
allow a portion of the data to violate the constraints 
(Xu Chu et al., 2013; Breve, B et a; .,2022). 
Embedded Uniqueness Constraints(eUCs) constraints 
represents unique column combinations embedded in 
complete fragments of incomplete data (Wei, Z et al., 
2019; Link, S. et al 2019; Wei, Z. et al 2020).  RFD 
considers similar characteristics of attribute values 
rather than equal characteristics(Caruccio et al., 
2020a,2020b,2020c).In contrast, complex integrity 
constraints do not require any parameters from the 
user and discover complex integrity constraints in 
noisy datasets. Table S3 shows the information on the 
variables that appear in this paper. 

 
3  Contribution 

 
- We present the motivation for our work based 

on a Trusted Machine Learning (TML) case study. 
- By studying the working definition of complex 

integrity constraints (Hu et al., 2020), we describe a 
consistent language for expressing complex integrity 
constraints in an intelligent railroad system. 

- In modern intelligent railroad systems, some 
complex integrity constraints do not quantify the 
performance of models deployed in the system. To 
assess model performance by complex integrity 
constraints to advertise practical complex integrity 
constraints, we propose a concept of constraint 
importance and measure the constraints accordingly. 

- To discover complex integrity constraints, we 
design a novel constraint discovery algorithm. The 
algorithm utilizes the BitVector indexing technique to 
vectorize the categorical attribute values in the 
database into one-hot encoded matrices so that the 
metric value of each attribute value can be quickly 
computed by transforming the query into a matrix bit 
operation without scanning the full table. We also 
analyze its running time and memory complexity. 

- We empirically analyze the effectiveness of 
complex integrity constraints in a trust machine 
learning case study. We show that complex integrity 
constraints can reliably predict the trustworthiness of 
linear models, outperforming the state of the art. 
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Table S2: Complex Integrity Constraint complement existing constraint discovery and provide an efficient mechanism to 
quantify trust in prediction. 

Legend 

Coverage measure Algebraic operation Domain distributionFD: Functional Dependency 
√ : Applicable 

 : Not applicable 
Complex Integrity Constraint (CIC) √ √ √ 

Functional Dependency (FD)  
Conditional FD  

Denial Constraint (DC)  
Pattern Functional Dependencies 

(PFD) 
   

Embedded Uniqueness Con-
straints(eUCs) 

√   

Relaxed Functional Dependencies 
(RFDs) 

√   

Approximate FD √   
  

Table S3 Description of the Notation. 
Notation Domain Description 

m  Number of attributes 
n  Number of tuples 

  	 	 	  Relation schema 
 	 	 	   attribute of  

Dom(X)  Domain of attribute X 
  Attribute values of the  
 	 	 	  Numerical attribute 

⨁ , , ,  Algebraic constraint 
,   the upper and lower bounds 

 	 	 	  Instance defined over schema  
Φ - Complex integrity constraint 
 	 	 	  Tuple defined over instance 
 [0, 1]  vector value of  
 - Query represented by the bit vector 
, , ,  	 	 	  Attribute values , , ,  

 0 1 Support threshold 
 - Class of functions 
,  - Function 

 
 
3  Object and methods 

3.1  Problem Definition 

Trusted machine learning (TML) refers to the 
problem of quantifying the performance of an 
inference model deployed in an intelligent 
transportation system (Ghosh et al., 2016; Toreini, E 
et al., 2020; Qolomany, B et al .,2020). When an 
inference model is trained using a currently collected 
traffic dataset, the complex integrity constraints 
present in that dataset specify a safety range that 
describes the data on which the model is likely to 
make credible inferences. If the data exceed the safety 
range (violates the complex integrity constraint), then 
the deployed model may produce an untrustworthy 

result. Generally, the lower the level of violation, the 
lower the level of trust. 

The TML problem is different from quantifying 
a dataset's credibility, and the difference is that the 
data assumptions are different. The problem of 
quantifying the credibility of a dataset assumes that 
the data may contain erroneous data and quantifies the 
credibility of the dataset by detecting the proportion 
of incorrect data. The TML problem is to divide the 
dataset into a training set and a dataset to be inferred. 
It assumes that the training set is reliable and finds 
unsafe data from the data to be inferred. In practical 
problems, the data to be inferred are often generated 
in real-time. 

In the context of trusted machine learning, we 
formalize the concept of unsafe tuples on which 
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3.5 Trusted Machine Learning 

In this section, we show theoretically why 
complex integrity constraints are effective in 
identifying those tuples for which the learning model 
may make incorrect predictions. To this end, we 
define unsafe tuples and show that the "ideal" 
complex integrity constraint provides a robust and 
complete mechanism for detecting unsafe tuples. 

We formally define the unsafe tuple. We use 
;  to denote the labeled dataset obtained by 

attaching the label attribute Y to the instance r 
collected by the intelligent railroad system and 

 to denote the domain of . 
Unsafe tuple. Given a class  of functions, and 

a labeled instance ; ⊂ 	  a 
tuple 	 ∈  is an unsafe tuple w.r.t.  and 
;  if ∃	 , ∈ 	 . . 	  but 

. 
Intuitively, if there exist two different prediction 

functions  and  that agree on all tuples in  but not 
on , then  is unsafe. Therefore, we can use the 
following approach for trusted machine learning: 
Learn complex integrity constraints Φ  for the 
instance . 

Declare  as unsafe if  does not satisfy Φ. 
The above approach is sound and complete for 

characterizing unsafe tuples. The characterization of 
unsafe tuples is attributed to the following 
proposition: 

Proposition. There exists a complex integrity 
constraint Φ for  s.t. The following statement is true: 
“ ∃Φ t 	 	  is unsafe w.r.t  and ; 	 for all 
∈ ”. 

The required complex integrity constraint Φ is 
∃ , ∈ : 	 ⟹ t . 
Intuitively, when all possible pairs of functions that 
agree on  also agree on , only then can the 
prediction on  can be trusted. 

4 Experimental setup 

We now present experimental evaluations to 
demonstrate the effectiveness of complex integrity 
constraints in our case study application: trusted 
machine learning in intelligent railroad systems (R. 
Ak et al., 2016). Our experiments address the 

following research question. 
- How effective are complex integrity constraints 

for plausible machine learning? 
- Is there a relationship between the score of 

constraint violations and the prediction accuracy of 
ML models? 
 

Implementations: The current prototype of 
AUDITOR is implemented in Python and with an 
AMD Ryzen Processor with 3.40 GHZ and 16 GB 
memory. 

Datasets. We use one real subway operation 
dataset, which is described as follows. 

Xiamen Subway. The Xiamen metro data 
contain 13 attributes : date, time, total miles run, 
traction energy consumption, regenerative energy 
consumption, auxiliary energy consumption, brake 
resistor energy consumption, network flow, network 
pressure, traction brake value, on-board rate, train 
speed, station number, and vehicle status. We use a 
subset of the dataset that contains all information 
about the vehicle operations in 2018. In this dataset, 
most of the attributes are numerical attributes (e.g., 
total miles run, traction energy consumption, 
on-board rate, etc.) 

Evaluation Metrics. We evaluate our complex 
integrity constraint discovery approach on both 
PR-AUC (Kieu et al., 2019) and mean absolute error 
(MAE) (Ranjan et al., 2021). The definition of MAE 
is described as follows: 

 ∑ | |
 （ 3 ） 

where n is the number of sample tuples. In 
addition, the threshold  used to search for spatial 
pruning in our experiments took some time. We set 
the threshold by checking object pairs in the 100 
probability subranges. Eventually we obtain the  to 
0.3.  

In order to quantify how credible the dataset is in 
general, we designed the Average Violation. The 
definition of Average Violation is described as 
follows: 

| ∑ ∈ | Φ |
 （ 5 ） 

where | ∑ ∈ | Φ | denotes the number 
of unsafe tuples in relation instance . 

Intuitively, the larger the number of unsafe 
tuples, the more likely the results of model inference 
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will be unreliable. Therefore, the larger the Average 
Violation value is for a dataset, the higher the ratio of 
unsafe tuples to the dataset, and the more unreliable 
the inference result will be using the model to reason 
about this dataset. 

4.1 Applicability 

To simulate the actual operation scenario of 
modern intelligent railroad systems, we divide the 
dataset into two parts: the training set and the inferred 
dataset. The training set is used to train the system's 
deployed model and discover complex integrity 
constraints. The inferred dataset is used to verify the 
model performance and the association between 
unsafe tuples that violate complex integrity 
constraints. 

First, we choose the case of train operating speed 
prediction with the motivation of applying complex 
integrity constraints to test the credibility of models 
deployed on modern intelligent railroad systems. The 
use of models for predicting train operating speed is a 
beneficial application, as it assists the driver in mak-
ing decisions to control the train's current speed 
(avoiding late trains). The accuracy of the model is 
critical to the driver's decision-making. Therefore, we 
need to check in real-time whether the inference re-
sults of the model are plausible. With this in mind, we 
apply complex integrity constraints to analyze the 
impact of the proportion of unsafe data found during 
the train's operation on the model's accuracy. Ideally, 
the complex integrity constraint detects unsafe data 
when the train collects operational data in real-time 
before inputting them to the model. Finally, the driver 
ignores the model's results based on unsafe data in-
ference, thus achieving the safety and effectiveness of 
modern intelligent transportation systems. 

 
References 

Chen, Hongtian, et al., 2020. "Data-driven fault diagnosis for 
traction systems in high-speed trains: A survey, chal-
lenges, and perspectives." IEEE Transactions on Intelli-
gent Transportation Systems. doi: 
10.1109/TITS.2020.3029946. 

Hu, Q.X., Long, J.S., Wang, S.K., He, J.J., Bai, L., Du, H.L. 
and Huang, Q.X., 2021. A novel time-span input neural 
network for accurate municipal solid waste incineration 
boiler steam temperature prediction. Journal of Zhejiang 
University-SCIENCE A, 22(10), pp.777-791. 

Zhou, P., Li, T., Zhao, C.F. and Zhang, J.Y., 2020. Numerical 
study on the flow field characteristics of the new 

high-speed maglev train in open air. Journal of Zhejiang 
University-SCIENCE A, 21(5), pp.366-381. 

Ho, L.V., Nguyen, D.H., de Roeck, G., Bui-Tien, T. and 
Wahab, M.A., 2021. Damage detection in steel plates 
using feed-forward neural network coupled with hybrid 
particle swarm optimization and gravitational search al-
gorithm. Journal of Zhejiang University-SCIENCE A, 
22(6), pp.467-480. 

L. Zhu, F. R. Yu, Y. Wang, B. Ning and T. Tang, 2019. "Big 
Data Analytics in Intelligent Transportation Systems: A 
Survey," in IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 20, no. 1, pp. 383-398, Jan., doi: 
10.1109/TITS.2018.2815678. 

Vikrant Sharma, S.S. Chandel, 2013. Performance and deg-
radation analysis for long term reliability of solar pho-
tovoltaic systems: A review, Renewable and Sustainable 
Energy Reviews, Volume 27, Pages 753-767, 
https://doi.org/10.1016/j.rser.2013.07.046. 

Fariha, A., Tiwari, A., Radhakrishna, A., Gulwani, S. and 
Meliou, A., 2021, June. Conformance constraint discov-
ery: Measuring trust in data-driven systems. In Proceed-
ings of the 2021 International Conference on Manage-
ment of Data (pp. 499-512). 

Wentao Hu, Dongxiang Zhang, Dawei Jiang, Sai Wu, Ke 
Chen, Kian-Lee Tan, and Gang Chen. 2020. AUDITOR: 
A System Designed for Automatic Discovery of Complex 
Integrity Constraints in Relational Databases. In Pro-
ceedings of the International Conference on Management 
of Data (SIGMOD '20). Association for Computing 
Machinery, New York, NY, USA, 2697–2700. 
DOI:https://doi.org/10.1145/3318464.3384683 

Bai, Q., Bedi, A.S., Agarwal, M., Koppel, A. and Aggarwal, 
V., 2022, June. Achieving zero constraint violation for 
constrained reinforcement learning via primal-dual ap-
proach. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence (Vol. 36, No. 4, pp. 3682-3689). 

Livshits, E., Kimelfeld, B. and Roy, S., 2020. Computing 
optimal repairs for functional dependencies. ACM 
Transactions on Database Systems (TODS), 45(1), 
pp.1-46. 

Wu, P., Yang, W., Wang, H. and Huang, L., 2020, September. 
GDS: General Distributed Strategy for Functional De-
pendency Discovery Algorithms. In International Con-
ference on Database Systems for Advanced Applications 
(pp. 270-278). Springer, Cham. 

Fan, W., Hu, C., Liu, X. and Lu, P., 2020. Discovering graph 
functional dependencies. ACM Transactions on Database 
Systems (TODS), 45(3), pp.1-42. 

Y. Huhtala, J. Kärkkäinen, P. Porkka and H. Toivonen,1999 
"Tane: An Efficient Algorithm for Discovering Func-
tional and Approximate Dependencies," in The Computer 
Journal, vol. 42, no. 2, pp. 100-111, Jan. doi: 
10.1093/comjnl/42.2.100. 

W. Fan, F. Geerts, J. Li and M. Xiong, 2010. "Discovering 
Conditional Functional Dependencies," in IEEE Trans-
actions on Knowledge and Data Engineering, vol. 23, no. 
5, pp. 683-698, May 2011, doi: 10.1109/TKDE.154. 



|  J Zhejiang Univ-Sci A (Appl Phys & Eng)   in press 8

Sebastian Kruse and Felix Naumann. 2018. Efficient discovery 
of approximate dependencies. Proc. VLDB Endow. 11, 7, 
759–772. 
DOI:https://doi.org/10.14778/3192965.3192968 

L. Caruccio, V. Deufemia and G. Polese, 2016. "Relaxed 
Functional Dependencies—A Survey of Approaches," in 
IEEE Transactions on Knowledge and Data Engineering, 
vol. 28, no. 1, pp. 147-165, doi: 
10.1109/TKDE.2015.2472010. 

Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. 2017. 
Efficient denial constraint discovery with hydra. Proc. 
VLDB Endow. 11, 3 (November 2017), 311–323. 
DOI:https://doi.org/10.14778/3157794.3157800 

Pena, E.H., de Almeida, E.C. and Naumann, F., 2021. Fast 
detection of denial constraint violations. Proceedings of 
the VLDB Endowment, 15(4), pp.859-871. 

Breve, B., Caruccio, L., Deufemia, V. and Polese, G., 2022. 
RENUVER: A Missing Value Imputation Algorithm 
based on Relaxed Functional Dependencies. In EDBT 
(pp. 1-52). 

Berti-Equille, L., Harmouch, H., Naumann, F., Novelli, N. and 
Saravanan, T., 2018, August. Discovery of genuine 
functional dependencies from relational data with missing 
values. In The 44th International Conference on Very 
Large Data Bases (VLDB) (Vol. 11, No. 8), doi: 
10.14778/3204028.3204032 

Wei, Z., Leck, U. and Link, S., 2019. Discovery and ranking of 
embedded uniqueness constraints. Proceedings of the 
VLDB Endowment, 12(13), pp.2339-2352. 

Wei, Z. and Link, S., 2019. Embedded functional dependen-
cies and data-completeness tailored database design. 
Proceedings of the VLDB Endowment, 12(11), 
pp.1458-1470. 

Wei, Z., Hartmann, S. and Link, S., 2020, June. Discovery 
algorithms for embedded functional dependencies. In 
Proceedings of the 2020 ACM SIGMOD International 
Conference on Management of Data (pp. 833-843). 

Kossmann, J., Papenbrock, T. and Naumann, F., 2022. Data 
dependencies for query optimization: a survey. The 
VLDB Journal, 31(1), pp.1-22. 

Qahtan, A., Tang, N., Ouzzani, M., Cao, Y. and Stonebraker, 
M., 2020. Pattern functional dependencies for data 
cleaning. Proc. {VLDB} Endow. 13, 5, 684-697, doi: 
10.14778/3377369.3377377 

Qahtan, A., Tang, N., Ouzzani, M., Cao, Y. and Stonebraker, 
M., 2020. Pattern functional dependencies for data 
cleaning. 

Pena, E.H., de Almeida, E.C. and Naumann, F., 2019. Dis-
covery of approximate (and exact) denial constraints. 
Proceedings of the VLDB Endowment, 13(3), 
pp.266-278. 

Caruccio, L., Deufemia, V., Naumann, F. and Polese, G., 2020. 
Discovering relaxed functional dependencies based on 
multi-attribute dominance. IEEE Transactions on 
Knowledge and Data Engineering, 33(9), pp.3212-3228. 

Caruccio, L., Deufemia, V. and Polese, G., 2020. Mining 
relaxed functional dependencies from data. Data Mining 

and Knowledge Discovery, 34(2), pp.443-477. 
Caruccio, L. and Cirillo, S., 2020. Incremental discovery of 

imprecise functional dependencies. Journal of Data and 
Information Quality (JDIQ), 12(4), pp.1-25. 

Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Discovering 
denial constraints. Proc. VLDB Endow. 6, 13 (August 
2013), 1498–1509. 
DOI:https://doi.org/10.14778/2536258.2536262 

Ghosh, S., Lincoln, P., Tiwari, A., Zhu, X. and Edu, W., 2016, 
June. Trusted machine learning for probabilistic models. 
In ICML Workshop on Reliable Machine Learning in the 
Wild. 

Toreini, E., Aitken, M., Coopamootoo, K., Elliott, K., Zelaya, 
C.G. and Van Moorsel, A., 2020, January. The relation-
ship between trust in AI and trustworthy machine learning 
technologies. In Proceedings of the 2020 conference on 
fairness, accountability, and transparency (pp. 272-283). 

Qolomany, B., Mohammed, I., Al-Fuqaha, A., Guizani, M. and 
Qadir, J., 2020. Trust-based cloud machine learning 
model selection for industrial IoT and smart city services. 
IEEE Internet of Things Journal, 8(4), pp.2943-2958. 

W. Chen, F. Guo and F. -Y. Wang, 2015."A Survey of Traffic 
Data Visualization," in IEEE Transactions on Intelligent 
Transportation Systems, vol. 16, no. 6, pp. 2970-2984, 
Dec. doi: 10.1109/TITS.2015.2436897. 

P. Bohannon, W. Fan, F. Geerts, X. Jia and A. Kementsietsidis, 
2007."Conditional Functional Dependencies for Data 
Cleaning," IEEE 23rd International Conference on Data 
Engineering, pp. 746-755, doi: 
10.1109/ICDE.2007.367920. 

R. Ak, O. Fink and E. Zio, 2016. "Two Machine Learning 
Approaches for Short-Term Wind Speed Time-Series 
Prediction," in IEEE Transactions on Neural Networks 
and Learning Systems, vol. 27, no. 8, pp. 1734-1747, 
Aug. doi: 10.1109/TNNLS.2015.2418739. 

Kieu, T., Yang, B., Guo, C. and Jensen, C.S., 2019, August. 
Outlier Detection for Time Series with Recurrent Auto-
encoder Ensembles. In IJCAI (pp. 2725-2732). 

N. Malini and M. Pushpa, "Analysis on credit card fraud 
identification techniques based on KNN and outlier de-
tection," 2017 Third International Conference on Ad-
vances in Electrical, Electronics, Information, Commu-
nication and Bio-Informatics (AEEICB), 2017, pp. 
255-258, doi: 10.1109/AEEICB.2017.7972424. 

Azzedine Boukerche, Lining Zheng, and Omar Alfandi. 2020. 
Outlier Detection: Methods, Models, and Classification. 
ACM Comput. Surv. 53, 3, Article 55 (May 2021), 37 
pages. DOI:https://doi.org/10.1145/3381028 

Ranjan, K.G., Tripathy, D.S., Prusty, B.R. and Jena, D., 2021. 
An improved sliding window prediction‐based outlier 
detection and correction for volatile time‐series. Inter-
national Journal of Numerical Modelling: Electronic 
Networks, Devices and Fields, 34(1), p.e2816. 

 


