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Data S1

1 Example

Table S1 The sample train operation dataset shows only
the attributes of train departure time, next stop code, total
mileage, traction energy consumption, and braking energy
consumption in the dataset. The dataset does not contain
the attribute (traction energy - braking energy)/total
mileage, but the tuple (e.g., the last tuple) has a higher
attribute value on this attribute than the other tuples,
indicating that the current train has abnormal energy

Time Posi- Mileage | Traction | Braking (T-B)

tion (P)| (M) M (B) M
i 14:55 41 258 2160 200 7.59
. 15:30 41 279 2330 230 7.52
. 16:10 41 296 2460 240 7.50
v 17:40 41 342 2840 260 7.54
t  20:20 41 428 3640 340 7.71

Example: We train a linear regression model to pre-
dict whether a train is delayed using a dataset de-
scribing train operations, including train departure
time, following stop code, total mileage, traction
energy consumption, and braking energy consump-
tion. This linear regression model is trained on a
subset of this dataset that contains only records of
train afternoon runs (e.g., the first four tuples in Table
S1). In the evaluation of the accuracy of the regression
model, we found that the average error of the regres-
sion model output for the evening runs (e.g., tuple t5)
differs by more than 5% compared to the afternoon
runs of the trains. This is because the trains indicating
evening runs deviate from the training data features
that show only afternoon train runs. Specifically,
trains running in the afternoon satisfy the following:

"Trains with the same code at the next stop are very
close in the energy consumption difference between
traction and braking to their total mileage. Trains that
travel at night do not support this constraint. It is
worth noting that this constraint relies only on the
existing attributes in the table and does not involve
information on whether the marked trains are delayed
or not. In addition, this constraint is not used in con-
structing the regression model, but it is a good refer-
ence standard to measure the performance of the re-
gression model.

The sample example shows that when the train-
ing data contains interrelationships between numeri-
cal attributes (e.g., between train tractive force, train
braking force, and operating mileage for predicting
train operating speed), then the deployed model sets
the potential interrelationships as invariant con-
straints. Complex integrity constraints can represent
such invariant interrelationships and mark tuples
(shuttles running at night) that violate such con-
straints.

In this example, we train a linear regression
model to predict whether the train is currently likely
to be late. ty, t,, t3,t, model inference results in an
expected train arrival, while these four tuples also
meet the complex integrity constraints and are safe,
and the model inference results are plausible. For tg
tuple, the result of model inference is that the train
arrives normally. However, t5 violates the complex
integrity constraint and is an unsafe tuple, and the
inference result is not credible. If the user (driver)
does not take additional acceleration operation ac-
cording to the model inference result, it may cause the
train to be late and thus cause some economic loss.
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2 Related work

Table S2 summarizes previous work on related
problems, but our scope is quite different.
Specifically, we can detect data violations based on
the complex integrity constraints found without the
ground truth. This situation is critical in many
practical applications of smart transportation when
we detect extreme data violations. In this case, the
current data to be verified do not immediately yield
true results. For example, consider an urban subway
autopilot scenario where the subway utilizes a
superior trained controller to generate actions based
on train speed, the relative distance between stations,
and current load. In this case, we only need to alert the
driver to take over control of the vehicle based on
determining whether the sensor readings meet
complex integrity constraints. The system guides the
trustworthiness of the train operation model by
detecting the level of insecurity of the data used in
real-time through complex integrity constraints.

Complex integrity constraints belong to the
category of data parsing, which refers to the task of
extracting specific metadata in the dataset. Functional
Dependencies (FD) (Y.Huhtala et al., 1999; Wu, P et
al, 2020; Fan, W et al., 2020;Livshits, E., 2020;
Kossmann et al, 2022) and their variants obtain the
existence of a relationship between two sets of
attributes without providing an expression in the form
of parameters (W. Fan et al., 2010; Sebastian Kruse et
al., 2018; L. Caruccio et al., 2016). Another more
complex study, the Denial Constraint (DC) can
contain many different constraints, such as FD and its
variants (Tobias Bleiful} et al., 2017; Berti-Equille et
al., 2018; Pena, E.H.,2021) However, this can make
the constraints extremely complex and large, and it
will be a challenge to sift through them to find
potentially useful information. The goal of Pattern
Functional Dependencies (PFD) is to address the
deficiencies that exist in DC, but it targets attributes
whose values are text. This is not applicable for in-
telligent rail systems where the majority of attributes
are numeric. By using regular expressions and coding
numbers as characters, constraints with different se-
mantics are quickly detected (Pena, E.H et al., 2019 ;
Qahtan et al., 2020; Tang, N.,2020).

The presence of noisy data in a dataset is
commonly present. To reduce the impact of noise on
the discovery of constraints, FDs and DCs relax the
concept of constraints or add additional parameters to
allow a portion of the data to violate the constraints
(Xu Chu et al, 2013; Breve, B et a; .,2022).
Embedded Uniqueness Constraints(eUCs) constraints
represents unique column combinations embedded in
complete fragments of incomplete data (Wei, Z et al.,
2019; Link, S. et al 2019; Wei, Z. et al 2020). RFD
considers similar characteristics of attribute values
rather than equal characteristics(Caruccio et al.,
2020a,2020b,2020c).In contrast, complex integrity
constraints do not require any parameters from the
user and discover complex integrity constraints in
noisy datasets. Table S3 shows the information on the
variables that appear in this paper.

3 Contribution

- We present the motivation for our work based
on a Trusted Machine Learning (TML) case study.

- By studying the working definition of complex
integrity constraints (Hu et al., 2020), we describe a
consistent language for expressing complex integrity
constraints in an intelligent railroad system.

- In modern intelligent railroad systems, some
complex integrity constraints do not quantify the
performance of models deployed in the system. To
assess model performance by complex integrity
constraints to advertise practical complex integrity
constraints, we propose a concept of constraint
importance and measure the constraints accordingly.

- To discover complex integrity constraints, we
design a novel constraint discovery algorithm. The
algorithm utilizes the BitVector indexing technique to
vectorize the categorical attribute values in the
database into one-hot encoded matrices so that the
metric value of each attribute value can be quickly
computed by transforming the query into a matrix bit
operation without scanning the full table. We also
analyze its running time and memory complexity.

- We empirically analyze the effectiveness of
complex integrity constraints in a trust machine
learning case study. We show that complex integrity
constraints can reliably predict the trustworthiness of
linear models, outperforming the state of the art.
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Table S2: Complex Integrity Constraint complement existing constraint discovery and provide an efficient mechanism to

quantify trust in prediction.

Legend
f/D' Func;tlonal Dependency Coverage measure Algebraic operation | Domain distribution
: Applicable
1 : Not applicable
Complex Integrity Constraint (CIC) v v v
Functional Dependency (FD) 1 1l 1
Conditional FD 1 1 1
Denial Constraint (DC) 1 1 1
Pattern Functional Dependencies 1 1 1
(PFD)
Embedded Uniqueness Con- N 1 1
straints(eUCs)
Relaxed Functional Dependencies N 1 1
(RFDs)
Approximate FD v L L
Table S3 Description of the Notation.
Notation Domain Description
m R Number of attributes
n R Number of tuples
R R{mxn} Relation schema
X; R{1xn} ith attribute of R
Dom(X) R Domain of attribute X'
X, R Attribute values of the X
N; R{1xn} Numerical attribute
® {+ =%~} Algebraic constraint
ub, lb R the upper and lower bounds
r R{mxn} Instance defined over schema
() - Complex integrity constraint
t R{mx1} Tuple defined over instance
Vi [0, 1] i" vector value of t
q - Query represented by the bit vector
A,,B,,C,, D, R{1xn} Attribute values 4, B, C, D
S 0<§<1 Support threshold
c - Class of functions
£, g - Function

3 Object and methods
3.1 Problem Definition

Trusted machine learning (TML) refers to the
problem of quantifying the performance of an
inference model deployed in an intelligent
transportation system (Ghosh et al., 2016; Toreini, E
et al., 2020; Qolomany, B et al .,2020). When an
inference model is trained using a currently collected
traffic dataset, the complex integrity constraints
present in that dataset specify a safety range that
describes the data on which the model is likely to
make credible inferences. If the data exceed the safety
range (violates the complex integrity constraint), then
the deployed model may produce an untrustworthy

result. Generally, the lower the level of violation, the
lower the level of trust.

The TML problem is different from quantifying
a dataset's credibility, and the difference is that the
data assumptions are different. The problem of
quantifying the credibility of a dataset assumes that
the data may contain erroneous data and quantifies the
credibility of the dataset by detecting the proportion
of incorrect data. The TML problem is to divide the
dataset into a training set and a dataset to be inferred.
It assumes that the training set is reliable and finds
unsafe data from the data to be inferred. In practical
problems, the data to be inferred are often generated
in real-time.

In the context of trusted machine learning, we
formalize the concept of unsafe tuples on which
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predictions may be untrustworthy. We establish that
complex integrity constraints provide a robust and
complete procedure for detecting unsafe tuples,
which suggests that complex integrity constraints
should guide the models considered by intelligent
transportation systems.

3.2 Index Construction

BitVectors. The categorical attribute vector is a
bitmap over a tuple t of an instance r. The tuple t has
d unique categorical attributes, hence tuple t contains
d value bitvectors VB:{V;,V,, ..., V;}.

The BitVectors Internals. For every value of the
domain of the indexed attribute, BitVectors store a
value vector showing which bits contain the
corresponding value. For example, Fig. S1 shows the
two categorical attribute vectors corresponding to the
seven tuples that attribute 1 values A and B and
attribute 2 values 10, 20, and 30, respectively. Rows 1,
3 and 7 are equal to A, and rows 2, 4, 5, and 6 are
equal to B and rows 1, 4, and 7 are equal to 10, and
rows 2, and 5 are equal to 20, and rows 3, and 6 are
equal to 30. As a result, the value bitvectors have the
corresponding bits set to one.

Base Data BitVector Index

ID Columnl  Column2 ID Columnl  Column2
1 A 10 1 O 1 [EONNON 1
2 B 20 Build Index 2 1 NCHEON 1 B0
3 A 30 3 ol 1 1 BOENG
4 B 10 4 1 BONEOENON 1
5 B 20 5 1 BONEEE 1 NG
6 B 30 6 1 §oN 1 BolEO
7 A 10 ;7 [HoN 1 JCENON 1

Fig. S1 The internals of BitVector

Value-BitVector Mapping (VBM). A common
operation in the BitVector index is to locate the bit
corresponding to a specific value v of the domain
attribute. The query that needs to search the bitvector
index performs this action. Then, once we have
indexed the instance r, we use the index to quickly
calculate the support of each categorical attribute
value, as well as to find those categorical attribute
values that satisfy the minimum support and to
calculate the y and o of the derived attributes. To do
this, we have designed two operators for search and
computation.

Support Calculation. We first discuss how
BitVectior is probed for support calculation; that is,
how we calculate the attribution support and find
whether an attribution value meets the support
threshold. The first step is to sum the bitvector i that
corresponds to the times of domain attribution using
the VBM which links values to bitvectors. The next
step is to check whether the support of attribution
value over support threshold that are marked on V; . If
all bits in V; are unset then there is no attribution
pruning. Otherwise, if even a single bit is set, then
prunes the domain of attribution. For example, in Fig.
S2 we probe for a support threshold equal to 0.3. In
this case, we first sum the bitvectors for the support
value and check whether the value exceeds the
threshold.

BitVector Index
ID Columnl  Column2
0

Sum Vector
Sum(V) = 0.3

EIEIEIEE

N OO s W N e
© » » RO RO
~ 00 or Oom
© » o o r OO
© O~ 0o r

~ 00~ o or

Fig. S2 Support calculation for the sum vector with
bitvectors.

Search. We continue with how BitVector
handles exact match queries, which means how we
find whether a tuple t exists in the indexed column,
and in which position. The first step is to construct a
query represented by the bit vector q. The next step is
to check whether BitVector bits equal to g with the
AND operation that is marked. For example, in Fig.
S3 we probe for a query which Column 1 equals to A
and Columns 2 equals to 10. In this case we first
construct the query vector g and then with the AND
operation, we obtain the positions that contain this

query q.

BitVector Index

ID Columnl  Column2

Result Vector U

. Bl : GG : A
Query vector q 2 1 BONECE 1 0
;s Bl 1 : |CHEG G
< 1 HchEeN : G 5
¢ 1 HoN 1 GG G
; Bl : Bl : g

Fig. S3 Search for results with BitVector.



Mean and variance calculation. We then
consider how BitVector handles the mean and
variance calculation, i.e., how we calculate the
normal range of a set of tuples in the derived
numerical attribution. The first step is to construct the
numerical attribution represented by the bit vector q.
The next step is to perform sum, mean, and variance
operations. For example, in Fig. S4 we probe for
operations which sum Column 1 and column2. In this
case, we first construct the query vector q and then
with the AND operation, we obtain the positions that
contain this query q.

BitVector Index

ID Columnl  Column2
1 ON 1 EONNON 1
) 1 BOMEON 1 WO
3 Ol 1 1 NOEEO
4 1 BUNEBONECE 1
5 1 BONEON 1 WO
¢ 1 HoN 1 HoENo
7 Ol 1 EOEENON 1

Sum(V) | 4 | 3 | 2| 2|3

Mean(v)| 0.57 | 0.42 | 0.57 | 0.57 | 0.42

Var(V) | 0.24|0.24 | 0.20| 0.20 | 0.24

Fig. S4 The mean and variance calculation for results with
BitVector.

Time Complexity. The time complexity of the
search operator and the computation operator is O (n).
The search operator runs O (m) times in the first loop,
where O(m) is the number of attributes. The
execution time is mainly related to the size of r,
where r is a matrix of the [m,n] structure of the
matrix, and n is much larger than n, where m is the
number of tuples in instance 7. The response time of
the Sup computation operator is determined whose
response time also depends on the number of tuples in
instance r. Thus, the algorithmic response time for
the search operator and the computation operator is
o(n).

3.3 Inference axioms for Complex Integrity Con-
straint

We developed an inference system for complex
integrity constraints, similar to Armstrong's axioms in
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FDs (P. Bohannon et al., 2007). Since the main search
space of complex integrity constraints lies in the
selection of conditional walues for categorical
attributes, our inference system is mainly used for the
optimization of this part.

Let A,, B, C,, D, be the attribute values of the
categorical attributes A,B,C,D in the relation
instance r. In the instance r, if the value A, of the
tuple in attribute A can determine the value B, in
attribute B, then we say that A, can determine B,,,
notated as A,, = B,,. For simplicity, we write A, B, to
represent the set of two attribute values A, and B,
instead of A, U B,,.

Union Rule. If 4,—->B,, 4,—>C, , then
A, = B,C,. This axiom states that an attribute value
determines each of the other two attribute values; then,
it must also determine the concatenation of the other
two attribute values.

Decomposition. If 4, — B,C,, A, = C,, then
A, = B,. This axiom states that an attribute value
determines the concatenation of two other attribute
values, and then it also determines each of them
separately.

Transitivity Rule. If A, - B,, B, = C,, then
A, —» C, . This axiom states the transitivity of
attribute-value dependencies for a categorical
attribute.

3.4 Search Space Pruning

Our support pruning is adopted from frequent
itemset mining which finds sets of items whose
frequency exceeds a given threshold. In our
application, the concept of support is measured by the
frequency of attribute combinations:

|Dom(X)|

Support(X) = 1)

where n is the cardinality of the relational
instance r. It is obvious that if the support of X is
lower than S, then the support for any superset of X
must also be smaller than S. We can prune X and all
of its attribute supersets.

Support Pruning rule: The support of a
conditional constraint of multiple attribute value
combinations has no more than the support of a single
attribute value constraint.

Support(Xy, ..., Xn)

= min(Support(X,), ... Support(X,) (2)
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3.5 Trusted Machine Learning

In this section, we show theoretically why
complex integrity constraints are effective in
identifying those tuples for which the learning model
may make incorrect predictions. To this end, we
define unsafe tuples and show that the "ideal"
complex integrity constraint provides a robust and
complete mechanism for detecting unsafe tuples.

We formally define the unsafe tuple. We use
[r;Y] to denote the labeled dataset obtained by
attaching the label attribute Y to the instance r
collected by the intelligent railroad system and
Dom(Y) to denote the domain of Y.

Unsafe tuple. Given a class C of functions, and
a labeled instance [r;Y] c [Dom(r) X Dom(Y)] a
tuple t € Dom(r) is an unsafe tuple w.r.t. C and
[r;Y] if 3f,gelCs.t.f(r)=gr)=Y but
f@®) #g(@.

Intuitively, if there exist two different prediction
functions f and g that agree on all tuples in r but not
on t, then t is unsafe. Therefore, we can use the
following approach for trusted machine learning:
Learn complex integrity constraints @ for the
instance r.

Declare t as unsafe if t does not satisfy ®.

The above approach is sound and complete for
characterizing unsafe tuples. The characterization of
unsafe tuples is attributed to the following
proposition:

Proposition. There exists a complex integrity
constraint @ for r s.t. The following statement is true:
“3AP(t) if f t is unsafe w.r.t C and [r;Y] for all
t € Dom(r)”.

The required complex integrity constraint @ is
AF,gECII) =g =Y = (O = g(t)
Intuitively, when all possible pairs of functions that
agree on 1 also agree on t, only then can the
prediction on t can be trusted.

4 Experimental setup

We now present experimental evaluations to
demonstrate the effectiveness of complex integrity
constraints in our case study application: trusted
machine learning in intelligent railroad systems (R.
Ak et al, 2016). Our experiments address the

following research question.

- How effective are complex integrity constraints
for plausible machine learning?

- Is there a relationship between the score of
constraint violations and the prediction accuracy of
ML models?

Implementations: The current prototype of
AUDITOR is implemented in Python and with an
AMD Ryzen Processor with 3.40 GHZ and 16 GB
memory.

Datasets. We use one real subway operation
dataset, which is described as follows.

Xiamen Subway. The Xiamen metro data
contain 13 attributes : date, time, total miles run,
traction energy consumption, regenerative energy
consumption, auxiliary energy consumption, brake
resistor energy consumption, network flow, network
pressure, traction brake value, on-board rate, train
speed, station number, and vehicle status. We use a
subset of the dataset that contains all information
about the vehicle operations in 2018. In this dataset,
most of the attributes are numerical attributes (e.g.,
total miles run, traction energy consumption,
on-board rate, etc.)

Evaluation Metrics. We evaluate our complex
integrity constraint discovery approach on both
PR-AUC (Kieu et al., 2019) and mean absolute error
(MAE) (Ranjan et al., 2021). The definition of MAE
is described as follows:

n C— X
MAE = Zl=1 |YL xll (3)
n

where n is the number of sample tuples. In
addition, the threshold S used to search for spatial
pruning in our experiments took some time. We set
the threshold by checking object pairs in the 100
probability subranges. Eventually we obtain the S to
0.3.

In order to quantify how credible the dataset is in
general, we designed the Average Violation. The
definition of Average Violation is described as
follows:

| Xizafti € r[2 @ (@}
n
where | Y1, {t; € 7|~ @ (t;)}| denotes the number

(5)

Average Violation =

of unsafe tuples in relation instance 7.
Intuitively, the larger the number of unsafe
tuples, the more likely the results of model inference



will be unreliable. Therefore, the larger the Average
Violation value is for a dataset, the higher the ratio of
unsafe tuples to the dataset, and the more unreliable
the inference result will be using the model to reason
about this dataset.

4.1 Applicability

To simulate the actual operation scenario of
modern intelligent railroad systems, we divide the
dataset into two parts: the training set and the inferred
dataset. The training set is used to train the system's
deployed model and discover complex integrity
constraints. The inferred dataset is used to verify the
model performance and the association between
unsafe tuples that violate complex integrity
constraints.

First, we choose the case of train operating speed
prediction with the motivation of applying complex
integrity constraints to test the credibility of models
deployed on modern intelligent railroad systems. The
use of models for predicting train operating speed is a
beneficial application, as it assists the driver in mak-
ing decisions to control the train's current speed
(avoiding late trains). The accuracy of the model is
critical to the driver's decision-making. Therefore, we
need to check in real-time whether the inference re-
sults of the model are plausible. With this in mind, we
apply complex integrity constraints to analyze the
impact of the proportion of unsafe data found during
the train's operation on the model's accuracy. Ideally,
the complex integrity constraint detects unsafe data
when the train collects operational data in real-time
before inputting them to the model. Finally, the driver
ignores the model's results based on unsafe data in-
ference, thus achieving the safety and effectiveness of
modern intelligent transportation systems.
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