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species s in the process of chemical transformation; Ms – molar mass of species s; hk – molar enthalpy of 

species k; N – number of species. 

 The gas-dynamic system of equations is solved numerically using modified Eulerian – Lagrangian 

method [Liberman et al., 2004; Liberman et al., 2006], having 2nd order of accuracy in space and 1st one in 

time. Coefficients of molecular transport processes are calculated according to relations presented in [Warnatz 

et al., 2001]. Hydrogen oxidation is modeled using the detailed mechanism of chemical kinetics [O Conaire et 

al., 2004], containing 21 reversible reactions between 8 species. N2 molecule is involved in chemical 

conversion only as a third body; the process of nitrogen oxidation in this study is not taken into account. 

 The numerical algorithm presented enables to obtain qualitatively as well as quantitatively reliable 

results for different combustion regimes. This algorithm was repeatedly applied for modelling of combustion 

in spark-ignition engines [Ivanov et al., 2018; Liberman et al., 2004; Liberman et al., 2006; Zaichenko et al., 

2018]. Furthermore, in [Liberman et al., 2004; Liberman et al., 2006; Zaichenko et al., 2018] a favourable 

agreement with experimental results was obtained that serves for a validation of the algorithm in solving such 

a class of problems. Thus, for example in [Zaichenko et al., 2018], when modeling combustion of hydrogen/air 

mixture with air-to-fuel equivalence ratio of 1.5 the error in numerical determination of the full duration of 

combustion compared with the experimental data was obtained to be less than 1% (numerical and experimental 

values were ~1.49 ms). In case of air-to-fuel equivalence ratio of 2.0 the error was 19% (1.67 ms numerical, 

1.99 ms experimental). 

 At the initial time instant the chamber is filled with hydrogen uniformly premixed with air. The 

hydrogen content is varied in the range from 29.5% (by volume; throughout the paper % designates % vol.) 

down to 18.0% for a certain simulation and corresponds to air-to-fuel equivalence ratio λ varied from 1.0 up to 

1.9. The initial velocity of mixture in the whole volume of the combustion chamber is set equal to zero. The 

initial temperature and pressure are 300 K and 0.1 MPa, respectively. The domain of combustion chamber is 

assumed adiabatically isolated, and the non-slip condition is set at its inner boundaries. 

 The spark ignition is modelled as an additional energy input during 12 μs into the region of 0.4 mm 

radius located at the center of the chamber on its top end wall. The sum spark energy is equal to nearly 17 mJ 

and the start of ignition is set at the time instant corresponding to 18.89 ms for each simulation. 

 The initial height (H) and the radius (R) of the chamber are 0.14 m and 0.065 m, correspondingly (fig. 

1). The space grid is uniform, the cell size is chosen equal to 100 μm that is sufficient for conducting the 

analysis of flame dynamics and front shape. Convergence test is carried out in the range of cell sizes from 400 

μm down to 50 μm. The full duration of the burning process is used as a test parameter, and it is found that rate 

of convergence (calculated according to the Richardson’ routine [Roache, 1994]) at 100 μm equals to 1.89 that 

shows sufficient degree of convergence and possibility to use this resolution for accurate computations. The 

error relative the estimated exact solution at 100 μm cell size is 18% while it goes down to 5% at 50 μm cell 

size. Nevertheless, all the peculiarities of flame evolution and pressure oscillations are reproduced well enough 

at 100 μm cell size and the following calculations are carried out using it. 
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