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S1  Finite Difference Method (FDM) 

Finite Difference Method (FDM) is one of the methods used to solve differential equations 

that are difficult or impossible to solve analytically. 

Three basic types are commonly considered: forward, backward, and central finite 

differences. 

Forward difference: 
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Backward difference: 
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Central difference: 
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Through using FDM, a large number of sampling method are selected, and their 

corresponding performance functions are calculated, then the sensitivity index can be calculated. 

The perturbation step is selected as 0.1%x x  . 

S2. The detail of representation method of sparse variables Y 

The distribution types ζ  and distribution parameters θ  for dispersion part y  of sparse 

variables Y  are uncertainty variables due to insufficient input data. The available insufficient 

data of iy  contains α point data 1, ,, ,
i iy ya a    . Seven common distribution types (Normal 
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distribution, Lognormal distribution, Weibull distribution, Gumbel distribution, Gamma 

distribution, Extreme distribution, Extreme Type II distribution) are considered, let  ,
iy i kf y  θ   

denote the PDF of iy  under k-th candidate distribution type  1,2, ,7k k    and distribution 

parameters θ . For k-th candidate distribution type k , the likelihood estimation function 

 ,
iy kL  θ  (Sankararaman and Mahadevan 2011) based on the prescribed insufficient input data 

is constructed in Eq. (12). 
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The optimum likelihood estimations of θ  under distribution type k  are calculated by 

maximizing  ,
iy kL  θ  in Eq. (S12). After calculating the maximum value of  ,

iy kL  θ , the 

optimum distribution type are determined using Akaike information criterion (AIC) method, the 

detailed procedure can be found in Peng’s work (Peng et al. 2017). The AIC value of k-th 

distribution type k  is calculated using Eq. (S13). 
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Where 2kn   is the amount of estimated distribution parameters for distribution type k ; 

 , ,,
i iy i j y k opt kf y a  θ   is the PDF of j-th sampling points , ij ya   under k-th distribution type k  

and corresponding optimum distribution parameters ,opt kθ , ,opt kθ  is calculated through 

maximizing  ,
iy kL  θ  in Eq. (S12). 

The AIC values of the seven candidate distribution types are calculated and denoted as 

1 2 7, , ,AIC AIC AIC , respectively. Let minAIC  be the minimum value of these seven values, the 

probability _ kP that the k-th distribution type minimizes the estimated information loss is 

interpreted using Eq. (S14). 

   _ minexp 2k kP AIC AIC    (S14) 

The distribution types with _ 0.2kP   are selected to represent the dispersion part y  of 

sparse variables Y . The weight ratios kw  of these selected distribution types are proportional to 

the probability _ kP , and the summation of these weight ratios is equal to 1. 
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After determining the distribution types and corresponding weight ratios, the distribution 

parameters are determined using the Bayesian model averaging method (Sankararaman and 

Mahadevan 2013; Nannapaneni et al. 2016). The combined likelihood function for insufficient 



 

3 
 

input data under multiple distribution types is calculated using Eq. (S16). 
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Where k  is the selected distribution type, kw  is the corresponding weight ratio, and 

 ,= ,
i iy i j y kf y a  θ   is the PDF of j-th sampling points , ij ya   under distribution type k . 

The uncertainties of the distribution parameters θ  are calculated using Bayes’ theorem. The 

PDF  , iyfθ θ  of uncertain distribution parameters θ  for dispersion part iy  is expressed in Eq. 

(S17). 
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The dispersion part y  are represented using weight summation of multiple types of 

distribution function, the represented function of sparse variables Y  under design points y  can 

be determined. 

S3. The detail computation procedure of sensitivity analysis for reliability index 

The failure probability Gp  is an uncertainty variable due to insufficient input data. However, 

it is also a critical constraint in many reliability-based design optimization problems. Sensitivity 

analysis is an efficient technique to determinate the optimum individuals in the iteration steps of 

gradient-based reliability optimization methods. The design sensitivity of failure probability can 

be obtained using the first-order score function and chain rules in Eq. (S18) (Cho et al. 2016). 
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Where the input variables d  contain X , Y  and Z , the design points d  are their 

corresponding mean values x , y , z , respectively. The representation types of  X , Y  and 

Z  are different, therefore, the detailed formulations of  ˆ
Gp G

i

F p
x
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a , and 
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a  are different. 

For the sparse variables Y , which are represented using the weight summation of multiple 

distribution types ζ  with uncertain distribution parameters θ , the sensitivity index is calculated 

using Eq. (S19). 
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a
 are sensitivity indices between PDF of k-th 

distribution type ,k i  for iY  and their corresponding distribution parameter 1
,k i  and 2

,k i , 

which can be calculated directly based on the PDF of specific distribution types. 
1
,k i

iy



 and 

2
,k i

iy



 are the sensitivity indices of distribution parameters 1
,k i  and 2

,k i  with respect to mean 

value iy , which can be calculated based on correlation relationship between distribution 

parameters and mean values of specific distribution types. The derivation results of some common 

distribution types are listed in Ref. (Cho et al. 2017). Therefore,  1 2
, ,, ,i k i k iSF y   a  in Eq. (S20) 

can be calculated directly according to the uncertainty representation function of Y  at design 

point iy , which do not need the complicated computation of reliability performance function 

 , ,G X Y Z . 

The design sensitivity of sparse variables Y  can be calculated using the two-level MCS 

sampling method of probability of failure probability. In the sampling loop of θ  and ψ , the 

distribution parameters θ  for Y  are determinate,  1 2
, ,, ,i k i k iSF y   a  can be calculated 

according to their weight ratios, distribution types and distribution parameters. The sensitivity 

index of sparse variables Y  is calculated using Eq. (S22). 
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For the statistical variables X , the distribution type and distribution parameters are 

determinate, the PDF  1 2
, ,, ,X x i x if X    is also a determinate value, the sensitivity index 

 ˆ
Gp G
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a  can be calculated using Eq. (S23). 
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The  1 2
, ,, ,i x i x iSF x    in Eq. (S24) can be calculated directly according to the PDF 

 1 2
, ,, ,X x i x if X    of statistical variables X , which is independent of distribution parameters θ  

for Y  and auxiliary variables ψ  for Z , therefore,  1 2
, ,, ,i x i x iSF x    are changeable in the 

outer loop of the two-level sampling method, and the design sensitivity of statistical variables is 

calculated using Eq. (S25). 
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For the interval variables Z , there is not determinate distribution types and distribution 

parameters, their probability density functions are random, it is difficult to integrate Z  using 

probabilistic analysis method. Therefore, their PDFs are assumed to be weight summation of two 

distribution functions according to the auxiliary variables ψ  in Eq. (S26). The two distribution 

types are chosen as two common distribution types, which are Normal distribution and Weibull 

distribution. To represent the randomness of interval variables Z , the auxiliary variables ψ  are 

random variables, which is the same as the calculation of failure probability Gp . Therefore, the 

sensitivity index of . Z . can be calculated in Eq. (S27) using the similar method for sparse 

variables Y . 

      1, 1, 2, 2,1i z i i z i iZ      θ θ  (S26) 
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A two-level sampling method can be applied into the calculation of sensitivity index of 

interval variables Z , which is shown in Eq. (S29). 
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The sensitivity index of statistical variables X , sparse variables Y , and interval variables 

Z  can be calculated along with the calculation of probability of Gp , the calculation 

consumption of additional terms  1 2
, ,, ,i x i x iSF x   ,  1 2

, ,, ,i k i k iSF y   a , and  ,i zSF z   are little 

compared with the computation of performance function  , ,G X Y Z . Therefore, the reliability 

index and sensitivity index can be calculated simultaneously with little additional computational 
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proposed method and the finite difference method (FDM), and the results are listed in Table 1. The 

agreement between the developed sensitivity indices and results of FDM method varies from 

100.56% to 105.73%, which indicates that the proposed method can obtain accurate sensitivity 

results in the engineering problem of planar ten-bar structure. 

Table S1  Design sensitivity of conservativeness level for ten-bar structure 

 1P  
2P  

3P  Time (h)

Proposed method 3.304 -5.866 -9.421 3.87 

FDM 3.125 -5.833 -9.167 13.38 

Agreement 105.73% 100.56% 102.77% — 
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