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S1 Finite Difference Method (FDM)

Finite Difference Method (FDM) is one of the methods used to solve differential equations
that are difficult or impossible to solve analytically.

Three basic types are commonly considered: forward, backward, and central finite
differences.

Forward difference:
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Central difference:
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Through using FDM, a large number of sampling method are selected, and their
corresponding performance functions are calculated, then the sensitivity index can be calculated.

The perturbation step is selected as Ax = 0.1%x .

S2. The detail of representation method of sparse variables Y
The distribution types ¢ and distribution parameters € for dispersion part y of sparse
variables ¥ are uncertainty variables due to insufficient input data. The available insufficient

data of p, contains a point data [aw_,--- a ] Seven common distribution types (Normal

>,y
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distribution, Lognormal distribution, Weibull distribution, Gumbel distribution, Gamma
distribution, Extreme distribution, Extreme Type II distribution) are considered, let f, ( ¥, |§ k,ﬂ)
denote the PDF of 7, under k-th candidate distribution type ¢, (k= 1,2,---,7) and distribution
parameters 6 . For k-th candidate distribution type ¢, , the likelihood estimation function
L, ((; k,ﬂ) (Sankararaman and Mahadevan 2011) based on the prescribed insufficient input data

is constructed in Eq. (12).
L, (¢.0)~ 11/, (5. =a,,.0) (S12)
j-1
The optimum likelihood estimations of # under distribution type ¢, are calculated by

maximizing L; (£,,0) in Eq. (S12). After calculating the maximum value of L; (¢.0), the

optimum distribution type are determined using Akaike information criterion (AIC) method, the

detailed procedure can be found in Peng’s work (Peng et al. 2017). The AIC value of k-th

distribution type ¢, is calculated using Eq. (S13).
AIC, =2n, —2In [H fi (3 =500, )} (S13)
j=1

Where n, =2 is the amount of estimated distribution parameters for distribution type ¢, ;
/5 ( Vi=a,; |§ k,ﬂom,k) is the PDF of j-th sampling points a,; under k-th distribution type ¢,

0

opt .k

and corresponding optimum distribution parameters 6 is calculated through

optk >
maximizing L; (é’k,ﬂ) in Eq. (S12).

The AIC values of the seven candidate distribution types are calculated and denoted as
AIC, AIC,, -+, AIC, , respectively. Let AIC_; be the minimum value of these seven values, the
probability F, , that the k-th distribution type minimizes the estimated information loss is
interpreted using Eq. (S14).

P, , =exp((4IC,, — AIC,)/2) (S14)

The distribution types with P, , >0.2 are selected to represent the dispersion part y of

sparse variables Y . The weight ratios w, of these selected distribution types are proportional to

the probability P, ,, and the summation of these weight ratios is equal to 1.

P
ek (S15)

2P

After determining the distribution types and corresponding weight ratios, the distribution

Wk:

parameters are determined using the Bayesian model averaging method (Sankararaman and

Mahadevan 2013; Nannapaneni et al. 2016). The combined likelihood function for insufficient
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input data under multiple distribution types is calculated using Eq. (S16).
L;, (0):szkf}‘z ()71’ =4;5 |§k’0) (S16)
j=1
Where ¢, is the selected distribution type, w, is the corresponding weight ratio, and

/5 ( yi=a,; |é’ k,H) is the PDF of j-th sampling points a, ; under distribution type ¢, .
The uncertainties of the distribution parameters 6 are calculated using Bayes’ theorem. The

PDF f,. (0) of uncertain distribution parameters 6 for dispersion part ¥, is expressed in Eq.

(S17).

L, (9)

fos (0)= I y,.

) s17
L, (0)do G179

The dispersion part y are represented using weight summation of multiple types of

distribution function, the represented function of sparse variables ¥ under design points y can

be determined.

S3. The detail computation procedure of sensitivity analysis for reliability index
The failure probability p, is an uncertainty variable due to insufficient input data. However,

it is also a critical constraint in many reliability-based design optimization problems. Sensitivity
analysis is an efficient technique to determinate the optimum individuals in the iteration steps of
gradient-based reliability optimization methods. The design sensitivity of failure probability can
be obtained using the first-order score function and chain rules in Eq. (S18) (Cho et al. 2016).

0

ﬁFpu (ﬁG

a)=[ [0, 7 (Pcs”,v'Ia)%lnfd (d|a)i6dydg (S18)

Where the input variables d contain X, Y and Z, the design points d are their

corresponding mean values X, y, z, respectively. The representation types of X, ¥ and

Z are different, therefore, the detailed formulations of %ch ( Do a), %ch ( ]36|a), and
X. V.

i i

%F e ( Dg |a) are different.

For the sparse variables ¥ , which are represented using the weight summation of multiple
distribution types ¢ with uncertain distribution parameters @, the sensitivity index is calculated
using Eq. (S19).

0
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Where - 5
00, , 89,(,1.

are sensitivity indices between PDF of k-th

distribution type ¢, for Y, and their corresponding distribution parameter 49,:’1. and 9,(2’1. ,

1

AL and

which can be calculated directly based on the PDF of specific distribution types.

i

2
ki

;

are the sensitivity indices of distribution parameters 6,, and 6;, with respect to mean

value y,, which can be calculated based on correlation relationship between distribution
parameters and mean values of specific distribution types. The derivation results of some common
distribution types are listed in Ref. (Cho et al. 2017). Therefore, SF ()_4,19,:,1.,49;,,. |a) in Eq. (S20)
can be calculated directly according to the uncertainty representation function of ¥ at design
point y,, which do not need the complicated computation of reliability performance function
G(X.,Y.Z).

The design sensitivity of sparse variables ¥ can be calculated using the two-level MCS
sampling method of probability of failure probability. In the sampling loop of @ and w, the
distribution parameters @ for Y are determinate, SF ()7,,,9,15[,9,{27,, |a) can be calculated

according to their weight ratios, distribution types and distribution parameters. The sensitivity

index of sparse variables Y is calculated using Eq. (S22).

) ZZ [Om][pc( "y X0 ¥y 7 )JSF(% ) (s22)
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For the statistical variables X , the distribution type and distribution parameters are

determinate, the PDF f, (X 0!

x,i?

6’2) is also a determinate value, the sensitivity index

%ch ( Pe |a ) can be calculated using Eq. (S23).
— fX(X 0.,.62,)
‘ o
%F J 1, J S (Pg-0.wa) 1 (X606 d0dydg (S23)



= 2 p(x.6..8)

x.,0.,.02)=—" (S24)
) )
The SF (x 9;,6’25,.) in Eq. (S24) can be calculated directly according to the PDF
Iy (X HLI,GZJ) of statistical variables X , which is independent of distribution parameters 6

for ¥ and auxiliary variables w for Z, therefore, SF (x 6

X,i?

2, ) are changeable in the

outer loop of the two-level sampling method, and the design sensitivity of statistical variables is

calculated using Eq. (S25).
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For the interval variables Z, there is not determinate distribution types and distribution
parameters, their probability density functions are random, it is difficult to integrate Z using
probabilistic analysis method. Therefore, their PDFs are assumed to be weight summation of two

distribution functions according to the auxiliary variables  in Eq. (S26). The two distribution
types are chosen as two common distribution types, which are Normal distribution and Weibull
distribution. To represent the randomness of interval variables Z , the auxiliary variables w are
random variables, which is the same as the calculation of failure probability p.. Therefore, the

sensitivity index of .Z . can be calculated in Eq. (S27) using the similar method for sparse

variables Y

Z,=y.5,,(0,)+(1-v.),,(0.,) (S26)
2 F (b A\ =[" [ [ f(po.0.wla)SF(z.y. Wodyds (S27)
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A two-level sampling method can be applied into the calculation of sensitivity index of

interval variables Z , which is shown in Eq. (529).

Lo ()= S [0 X0 2 () )

i 2m1/1

The sensitivity index of statistical variables X, sparse variables Y , and interval variables

Z can be calculated along with the calculation of probability of p,, the calculation

consumption of additional terms SF (x 9;1,931), SF ()7,.,9,1,,.,9,(2’,.|a) and SF(Z,y.) are little

compared with the computation of performance function G(X Y. Z ) Therefore, the reliability

index and sensitivity index can be calculated simultaneously with little additional computational



burden.

S4. Engineering Example : A Planar Ten-Bar Structure

The planar ten-bar structure, as shown in Fig. S1, is used to demonstrate the effectiveness of
proposed approach under hybrid uncertainties. The three point loads £, P, and P are
uncertain variables. F 1is a statistical variable with normal distribution type, whose mean value is
P, =80kN and standard deviation is 0.6kN. P, is a sparse variable, the available information
for dispersion part is the 10 random points of normal distribution function N(0,03)kN. P is
an interval variable which can be represented with [133 -2, P, —2}kN. The length L of all

horizontal and vertical bars is 1 m, the elastic modulus of all bars E is 100 GPa, the section area
of every bar is fixed at 4, =10”m’. The performance function is the vertical displacement A
of node 3 in Eq. (S30).

S, NN, O NN, | L
A=Yy | 2 $30
R 0

i=1 i

Where N, is the axial internal force of the bar with number i, and N is the axial internal

force of the bar with number i when F =PF, =0 and P, =1, the calculation details of Eq. (S30)
can be found in Ref. (Wei et al. 2014).
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Fig. S1 A planar ten-bar structure

The limit state function is given as g=0.003-4 . At the design point
[1_’1 ,132,1_’3] =[80,10,10], the uncertainty of sparse variable B is represented firstly. The selected
distribution types for P, are Normal and Extreme Value types, and the corresponding weight
ratios are 0.6891 and 0.3109, respectively. The PDF of corresponding distribution parameters €

for P, are shown in Fig. S2.
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Fig. S2  Probability density function of distribution parameters for sparse variable B, : (a) 6, ; (b)
0,;(c) 6,;(d) 6,

The conservativeness level of failure probability considering hybrid uncertainties is
calculated using the proposed method and MCS method, and the results are shown in Fig. S3.
Results indicate that the proposed method can obtain accurate conservativeness level of failure
probability under hybrid uncertainties. However, compared to MCS method, the number of
sampling points of distribution parameters and design variables is greatly decreased due to the
determination of distribution types of sparse variables and probabilistic transformation of interval

variables.
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Fig. S3 Reliability measure result of planar ten-bar structure

The design sensitivity for p. =30% at [1_’1,1_’2,133]=[80,10,10] are computed using the
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proposed method and the finite difference method (FDM), and the results are listed in Table 1. The
agreement between the developed sensitivity indices and results of FDM method varies from
100.56% to 105.73%, which indicates that the proposed method can obtain accurate sensitivity

results in the engineering problem of planar ten-bar structure.

Table S1 Design sensitivity of conservativeness level for ten-bar structure

R R, R Time (h)
Proposed method 3.304 -5.866 -9.421 3.87
FDM 3.125 -5.833 -9.167 13.38
Agreement 105.73% 100.56% 102.77% —
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