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6 Initialize the closest target particle: 1ti
    

7 // Loop over target particles within cell ico and the 26 adjacent cells 

8 for ˆ ˆ1 1cz cz czi i i     do 

9 for ˆ ˆ1 1cy cy cyi i i     do 

10 for ˆ ˆ1 1cx cx cxi i i     do 

11 Compute cell index ic of the current cell 
12 Read the first particle stored in cell ic: it = pHead [ic] 
13 while it is a target particle do 
14 Compute distance between the two particles: d = dist(ico, it) 
15 if d < dmin do 

16 min , t td i id    

17 end if 
18 Read the next contact particle: it = pNext [it] 
19 end while 
20 end for 
21 end for 
22 end for 
23 end parallel for 
*The keyword pair “parallel for ... end parallel” indicates that the codes within it are executed in 
parallel in GPU threads. 

 
S3  Normal and tangential penalty stiffness 

The normal and tangential stiffness can be evaluated using the following equations (Hallquist 
et al., 1985): 
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where Vi is the volume of the hexahedral element containing target face Si, Ki and Ai denote the 
bulk modulus and area of face Si, respectively, sn and st denote the scaling factors for the normal 
and tangential penalty stiffness, respectively. The default values of sn and st are 1.0. 
 
S4  Flowchart of parallel FPM solvers 

The flowchart of the parallel FPM solvers is shown in Fig. S1. The computational procedures 
in the solvers are performed in GPU threads, and the thread counts are listed in Table S1. 
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4 Calculate normal contact forces  maxcoN S  

5 Calculate tangential contact forces  maxcoN S  

6 Assemble resultant contact forces  cpN  

Particle 

1 Assemble equivalent internal forces intF  pN  

2 Assemble resultant particle forces pN  

3 Solve motion equations pN  

eN : element count 

pN : particle count 

intN : integration point count 

cpN : contact particle count (including contactor particles and target particles) 

coN : contactor particle count 

maxS : maximum face count linked by each target particles 

 
S5  Verification example: elastic contact 

The frictional contact between two elastic beams is considered in this example, as shown in 
Fig. S2, which has been studied in the literature (Litewka and Wriggers, 2002). Beam 2 is initially 
located above the center of cantilever beam 1. The length of both beams is 1000 mm. The section 
sizes of beam 1 and beam 2 are 100 mm × 100 mm and 50 mm × 50 mm, respectively. These two 
beams are perpendicular to each other, and the initial gap between them is 5.0 mm. The horizontal 
displacement (∆x = 400 mm) and vertical displacement (∆z = -200 mm) are applied to both ends 
of beam 2 from t = 0 to t = 1 s, which makes beam 2 move toward the free end of beam 1. 

The elastic material properties of the beams are given by Young’s modulus 300 MPa and 
Poisson’s ratio 0.17. Beam 1 and beam 2 are discretized into 2,160 and 1,280 hexahedral elements, 
respectively. A frictionless case and two frictional cases (µ = 0.5, 1.0) are investigated. Both 
scaling factors sn and st are set to 1.0. The mass damping coefficient is set to 1×104. 

The deformed configurations with contour plots of vertical displacement at 0.3 s, 0.6 s, and 
1.0 s are shown in Fig. S3. It can be found that the deformation of beam 2 is greatly affected by 
the friction coefficient. The horizontal displacement history of point A (the center point of beam 2, 
see Fig. S2) is presented in Fig. S4 for different friction coefficients. It can be observed that the 
horizontal displacement of point A decreases with the increase of friction coefficient, which can 
also be concluded from Fig. S3. The displacement curves obtained by FPM match well with that 
obtained by FEM (Litewka and Wriggers, 2002). Thus, the proposed method is effective in 
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10 1,350,000 1991.0  2453.0 623.2 3806.1 5.7  29.6  
The speedups of the contact calculation are shown in Fig. S8a. With the increase of element 

count, the speedup of the parallel FPM over the serial FPM grows at first and reaches the 
maximum value of 113 when the number of elements exceeds 0.8 million, demonstrating that the 
GPU parallel implementation significantly accelerates the parallel contact solver. Meanwhile, the 
maximum speedup of the parallel FPM over Abaqus is 346 when the number of elements is 
approximately 1.3 million. It indicates that the serial FPM contact solver is faster than the contact 
solver in Abaqus, which might be mainly owing to the bucket sort approach adopted in the contact 
search procedures. 

The speedups of the overall computation are presented in Fig. S8b. The maximum speedups 
of the parallel FPM over the serial FPM and Abaqus are 140 and 82, respectively. Thus, the 
parallel FPM is proved to be efficient. It can also be found that the serial FPM solver is less 
efficient than the Abaqus/Explicit solver. This might be because FPM needs more computations on 
the fictitious reverse motion compared with the method utilized in Abaqus. 

Fig. S8 also indicates that the GPU is running at full load when the number of elements 
reaches approximately 0.8 ~ 1.4 million, and the improvement of computational efficiency 
gradually stabilizes. Similar observations can be found in the literature (Dong et al., 2015). One 
can achieve higher speedups by using GPUs with larger device memory and more CUDA cores. 

Fig. S9 depicts the proportions of contact calculation time in the overall computational time. 
As the element count increases, the three time-consumption percentages in Fig. S9 increase a little 
bit at first and nearly remain unchanged after-wards. The contact calculation accounts for 
ap-proximately 80%, 16%, and 19% in Abaqus, serial FPM, and parallel FPM, respectively. 
Therefore, the proposed parallel implementation dramatically reduces the proportion of contact 
calculation in overall computation compared with commercial finite element codes. 
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Fig. S8  Multilayer pinched cylinder: speedups 
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Fig. S9  Multilayer pinched cylinder: proportion of contact calculation time 

 
S8  Efficiency test: large-scale dynamic elastoplastic contact 

The computational times for the efficiency test of the dynamic elastoplastic contact are given 
in Table S4. 

 
Table S4  Multilayer plate under impact loading: computational times in seconds 

Number 
of 

layers 

Number 
of 

elements 

Abaqus (CPU) FPM (CPU) FPM (GPU) 

Contact Total Contact Total Contact Total 

4 250,000 266.0  368.0 123.6 706.6 1.1  6.2  
8 500,000 591.0  794.0 280.4 1438.0 2.1  11.6  

12 750,000 921.0  1224.0 437.8 2221.8 3.0  16.9  
16 1,000,000 1257.0  1657.0 594.0 2904.0 4.0  22.1  
20 1,250,000 1590.0  2102.0 751.2 3664.0 5.1  27.7  
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