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S1 J2 plasticity model
In addition to the elastic constitutive model, the J2 plasticity model with isotropic hardening
is utilized in this paper. The yield criterion is

f(6,6) =427, —x <0, (S1)

where J, denotes the second invariant of the deviatoric stress tensor, x represents the plastic

internal variable, which can be regarded as a linear function of the cumulative plastic strain:

K=K, +§H“°,1, A=[]&|d, (S2)
where &” denotes the equivalent plastic strain rate, A represents the cumulative plastic strain,
Ky = \/gay denotes the initial plastic internal variable, o, represents the initial yield stress, and

H ™ denotes the isotropic plastic modulus.

S2  Search for closest target particles
The algorithm for the parallel contact search procedures is summarized in Algorithm S1.

Algorithm S1 Search for closest target particles

// Neo: number of contactor particles

2 /i index of contactor particle P,

3 parallelfor (0<i <N, )

4 Obtain the index of cell that contains particle i.,: (fcx,fcy,z;)

5 Assign a large value to the minimum distance dpin: dmin = 1x10"



6 Initialize the closest target particle: i = -1

7 // Loop over target particles within cell i., and the 26 adjacent cells
8 for i, —1<i_<i_+1 do

9 for i:y—ISinstﬁLl do

10 for i —1<i <i_ +1 do

11 Compute cell index i. of the current cell

12 Read the first particle stored in cell i.: i, = pHead [i.]

13 while i is a target particle do

14 Compute distance between the two particles: d = dist(i,,, i)
15 if d <dpyp, do

16 d...=d, i =i

17 end if

18 Read the next contact particle: i, = pNext [i]

19 end while

20 end for

21 end for

22 end for

23 end parallel for

"The keyword pair “parallel for ... end parallel” indicates that the codes within it are executed in
parallel in GPU threads.

S3 Normal and tangential penalty stiffness
The normal and tangential stiffness can be evaluated using the following equations (Hallquist
et al., 1985):

K A2

kn,i =s, —;/ =, (83)
K A?

k=5 o (54

where V; is the volume of the hexahedral element containing target face S;, K; and A; denote the
bulk modulus and area of face S;, respectively, s, and s, denote the scaling factors for the normal

and tangential penalty stiffness, respectively. The default values of s, and s, are 1.0.

S4 Flowchart of parallel FPM solvers
The flowchart of the parallel FPM solvers is shown in Fig. S1. The computational procedures
in the solvers are performed in GPU threads, and the thread counts are listed in Table S1.
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Fig. S1 Flowchart of the parallel FPM solvers
Table S1 Number of threads for each computational procedure
Solver =~ Number Procedure Number of threads
1 Calculate deformation of the elements N,
2 Evaluate strain increments Ag N, xN,,
Element
3 Evaluate stress increments Ao N, xN,,
4 Obtain elemental internal forces Fiu N,
1 Construct connected list data structure N,
Search for the closest target particles for contactor
Contact 2 . N,
particles
3 Project contactor particles onto target faces N, %8 .«



4 Calculate normal contact forces N xS§

5 Calculate tangential contact forces N, xS .

6 Assemble resultant contact forces N P

1 Assemble equivalent internal forces F, N,
Particle 2 Assemble resultant particle forces N,

3 Solve motion equations N,

N, : element count

N, : particle count

: integration point count

int
N_ : contact particle count (including contactor particles and target particles)
N,_, : contactor particle count

S : maximum face count linked by each target particles

S5 Verification example: elastic contact

The frictional contact between two elastic beams is considered in this example, as shown in
Fig. S2, which has been studied in the literature (Litewka and Wriggers, 2002). Beam 2 is initially
located above the center of cantilever beam 1. The length of both beams is 1000 mm. The section
sizes of beam 1 and beam 2 are 100 mm x 100 mm and 50 mm x 50 mm, respectively. These two
beams are perpendicular to each other, and the initial gap between them is 5.0 mm. The horizontal
displacement (Ax = 400 mm) and vertical displacement (Az = -200 mm) are applied to both ends
of beam 2 from ¢t =0 to = 1 s, which makes beam 2 move toward the free end of beam 1.

The elastic material properties of the beams are given by Young’s modulus 300 MPa and
Poisson’s ratio 0.17. Beam 1 and beam 2 are discretized into 2,160 and 1,280 hexahedral elements,
respectively. A frictionless case and two frictional cases (¢ = 0.5, 1.0) are investigated. Both
scaling factors s, and s, are set to 1.0. The mass damping coefficient is set to 1x10°,

The deformed configurations with contour plots of vertical displacement at 0.3 s, 0.6 s, and
1.0 s are shown in Fig. S3. It can be found that the deformation of beam 2 is greatly affected by
the friction coefficient. The horizontal displacement history of point A (the center point of beam 2,
see Fig. S2) is presented in Fig. S4 for different friction coefficients. It can be observed that the
horizontal displacement of point A decreases with the increase of friction coefficient, which can
also be concluded from Fig. S3. The displacement curves obtained by FPM match well with that
obtained by FEM (Litewka and Wriggers, 2002). Thus, the proposed method is effective in
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modeling elastic frictional contact of structures.

Fig. S2 Contact between two beams: geometry
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Fig. S3 Contact between two beams: contour plots of vertical displacement (unit: mm)
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Fig. S4 Contact between two beams: horizontal displacement history of point A



S6 Computer configuration
The efficiency tests are performed on a computer with double precision. The configuration of
the computer is listed in Table S2.

Table S2 Computer configuration

Name Parameter
OS Windows 10 64-bit
CPU Intel® Core™ i7-4790K @ 4.00 GHz
RAM Kingston 16 GB DDR3
GPU NVIDIA Titan V

(5,120 CUDA cores, 12 GB memory)

S7 Efficiency test: large-scale quasi-static elastic contact

This example is adapted from the two-layer pinched cylinder example (Puso, 2004). As
shown in Fig. S5, two opposing concentrated forces F' = 400 N are applied to the two opposing
center points of a multilayer cylinder. The average radius, thickness, and length of the cylinder are
300 mm, 6 mm, and 600 mm, respectively. The elastic material properties are given by Young’s
modulus 30 MPa and Poisson’s ratio 0.3. The mass damping coefficient is set to 20.0, and the
scaling factor sn is set to 0.1. The friction between contact surfaces is ignored. Only one eighth of

the cylinder is modeled due to symmetry.

Contact
surfaces

Isometric view Front view

Fig. S5 Geometry of the multilayer pinched cylinder

A two-layer cylinder is studied first to demonstrate the results. Each layer has a thickness of 3
mm, and is discretized into 1,350 (45%30x1) hexahedral elements. The displacement contour is
shown in Fig. S6. It can be found that the displacement field is continuous at the contact surfaces
of the two-layer cylinder as expected. The relation between the dis-placement of the upper corner
node and the concentrated force F' is presented in Fig. S7, indicating that the load-displacement

curves obtained by FPM and Abaqus agree well.



Fig. S6 Two-layer pinched cylinder: contour plot of displacement (unit: mm)
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Fig. S7 Two-layer pinched cylinder: load-displacement curve

To test the efficiency of the proposed method in quasi-static elastic contacts, multilayer
pinched cylinders with same layer thickness (0.6 mm) but different layer counts are investigated.
Each layer is discretized into 135,000 (450x300x1) hexahedral elements. All cases are analyzed
with a total number of 1,000 time steps. The computational times of contact calculation and
overall computation are given in Table S3. Specifically, the CPU time consumed by Abaqus
contact solver, denoted as T, is approximated by the following equation instead of directly
obtained in Abaqus

T

¢~ “involve _contact Tno _contact ?

(S3)

and T

no _ contact

where T

involve _contact

denote the computational times considering and not

considering contact, respectively.

Table S3 Multilayer pinched cylinder: computational times in seconds

Number  Number Abaqus (CPU) FPM (CPU) FPM (GPU)

of of

Contact Total Contact Total Contact Total

layers elements

2 270,000 208.5 301.0 72.1 738.4 0.9 6.2
4 540,000 641.0 826.0 221.0 1584.7 2.1 12.0
6 810,000 1090.5 1366.0 376.6 2466.6 3.3 18.0
8 1,080,000 1528.0 1895.0 502.4 3286.9 4.5 235



10 1,350,000  1991.0 2453.0 623.2 3806.1 5.7 29.6

The speedups of the contact calculation are shown in Fig. S8a. With the increase of element

count, the speedup of the parallel FPM over the serial FPM grows at first and reaches the
maximum value of 113 when the number of elements exceeds 0.8 million, demonstrating that the
GPU parallel implementation significantly accelerates the parallel contact solver. Meanwhile, the
maximum speedup of the parallel FPM over Abaqus is 346 when the number of elements is
approximately 1.3 million. It indicates that the serial FPM contact solver is faster than the contact
solver in Abaqus, which might be mainly owing to the bucket sort approach adopted in the contact
search procedures.

The speedups of the overall computation are presented in Fig. S8b. The maximum speedups
of the parallel FPM over the serial FPM and Abaqus are 140 and 82, respectively. Thus, the
parallel FPM is proved to be efficient. It can also be found that the serial FPM solver is less
efficient than the Abaqus/Explicit solver. This might be because FPM needs more computations on
the fictitious reverse motion compared with the method utilized in Abaqus.

Fig. S8 also indicates that the GPU is running at full load when the number of elements
reaches approximately 0.8 ~ 1.4 million, and the improvement of computational efficiency
gradually stabilizes. Similar observations can be found in the literature (Dong et al., 2015). One
can achieve higher speedups by using GPUs with larger device memory and more CUDA cores.

Fig. S9 depicts the proportions of contact calculation time in the overall computational time.
As the element count increases, the three time-consumption percentages in Fig. S9 increase a little
bit at first and nearly remain unchanged after-wards. The contact calculation accounts for
ap-proximately 80%, 16%, and 19% in Abaqus, serial FPM, and parallel FPM, respectively.
Therefore, the proposed parallel implementation dramatically reduces the proportion of contact

calculation in overall computation compared with commercial finite element codes.
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Fig. S8§ Multilayer pinched cylinder: speedups
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Fig. S9 Multilayer pinched cylinder: proportion of contact calculation time

S8 Efficiency test: large-scale dynamic elastoplastic contact

The computational times for the efficiency test of the dynamic elastoplastic contact are given
in Table S4.

Table S4 Multilayer plate under impact loading: computational times in seconds

Number  Number Abaqus (CPU) FPM (CPU) FPM (GPU)
of of
Contact Total Contact Total Contact Total
layers elements
4 250,000 266.0 368.0 123.6 706.6 1.1 6.2
8 500,000 591.0 794.0 280.4 1438.0 2.1 11.6
12 750,000 921.0 1224.0 437.8 2221.8 3.0 16.9
16 1,000,000  1257.0 1657.0 594.0 2904.0 4.0 22.1
20 1,250,000  1590.0 2102.0 751.2 3664.0 5.1 27.7
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