Electronic Supplementary Materials

For https://doi.org/10.1631/jzus.A2200311

GPU-accelerated vector-form particle-element method for 3D elastoplastic contact of structures

Wei WANG ${ }^{1,2}$, Yanfeng ZHENG ${ }^{1,3,4 \boxtimes}$, Jingzhe TANG ${ }^{1}$, Chao YANG ${ }^{1,4}$, Yaozhi LUO ${ }^{1,4}$

${ }^{1}$ College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
${ }^{2}$ Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China
${ }^{3}$ Architectural Design and Research Institute of Zhejiang University Co., Ltd., Hangzhou 310028, China
${ }^{4}$ Key Laboratory of Space Structures of Zhejiang Province, Hangzhou 310058, China
${ }^{\boxtimes}$ Yanfeng ZHENG, yanfeng39@zju.edu.cn

S1 J2 plasticity model

In addition to the elastic constitutive model, the J 2 plasticity model with isotropic hardening is utilized in this paper. The yield criterion is

$$
\begin{equation*}
f(\boldsymbol{\sigma}, \kappa)=\sqrt{2 J_{2}}-\kappa \leq 0, \tag{S1}
\end{equation*}
$$

where J_{2} denotes the second invariant of the deviatoric stress tensor, κ represents the plastic internal variable, which can be regarded as a linear function of the cumulative plastic strain:

$$
\begin{equation*}
\kappa=\kappa_{0}+\frac{2}{3} H^{\mathrm{iso}} \lambda, \quad \lambda=\int_{t}\left|\dot{\boldsymbol{\varepsilon}}^{p}\right| \mathrm{d} t \tag{S2}
\end{equation*}
$$

where $\dot{\boldsymbol{\varepsilon}}^{p}$ denotes the equivalent plastic strain rate, λ represents the cumulative plastic strain, $\kappa_{0}=\sqrt{\frac{2}{3}} \sigma_{y}$ denotes the initial plastic internal variable, σ_{y} represents the initial yield stress, and $H^{\text {iso }}$ denotes the isotropic plastic modulus.

S2 Search for closest target particles

The algorithm for the parallel contact search procedures is summarized in Algorithm S1.

Algorithm S1 Search for closest target particles
1 // $N_{c o}$: number of contactor particles
$2 / / i_{c o}$: index of contactor particle P_{c}
3 parallel for $\left(0 \leq i_{c o} \leq N_{c o}\right)$

4 Obtain the index of cell that contains particle $i_{c o}:\left(\hat{i}_{c x}, \hat{i}_{c y}, \hat{i}_{c z}\right)$
$5 \quad$ Assign a large value to the minimum distance $d_{\min }: d_{\min }=1 \times 10^{10}$
// Loop over target particles within cell $i_{\text {co }}$ and the 26 adjacent cells
for $\hat{i}_{c z}-1 \leq i_{c z} \leq \hat{i}_{c z}+1$ do
for $\hat{i}_{c y}-1 \leq i_{c y} \leq \hat{i}_{c y}+1$ do
for $\hat{i}_{c x}-1 \leq i_{c x} \leq \hat{i}_{c x}+1$ do
Compute cell index i_{c} of the current cell
Read the first particle stored in cell $i_{c}: i_{t}=p H e a d\left[i_{c}\right]$
while i_{t} is a target particle do
Compute distance between the two particles: $d=\operatorname{dist}\left(i_{c o}, i_{t}\right)$
if $\mathrm{d}<d_{\text {min }}$ do
$d_{\text {min }}=d, \quad i_{t}^{*}=i_{t}$
end if
Read the next contact particle: $i_{t}=p N e x t\left[i_{t}\right]$
end while
end for
end for
end for
end parallel for
*The keyword pair "parallel for ... end parallel" indicates that the codes within it are executed in parallel in GPU threads.

S3 Normal and tangential penalty stiffness

The normal and tangential stiffness can be evaluated using the following equations (Hallquist et al., 1985):

$$
\begin{align*}
& k_{n, i}=s_{n} \frac{K_{i} A_{i}^{2}}{V_{i}} \tag{S3}\\
& k_{t, i}=s_{t} \frac{K_{i} A_{i}^{2}}{V_{i}} \tag{S4}
\end{align*}
$$

where V_{i} is the volume of the hexahedral element containing target face S_{i}, K_{i} and A_{i} denote the bulk modulus and area of face S_{i}, respectively, s_{n} and s_{t} denote the scaling factors for the normal and tangential penalty stiffness, respectively. The default values of s_{n} and s_{t} are 1.0.

S4 Flowchart of parallel FPM solvers

The flowchart of the parallel FPM solvers is shown in Fig. S1. The computational procedures in the solvers are performed in GPU threads, and the thread counts are listed in Table S1.

Fig. S1 Flowchart of the parallel FPM solvers

Table S1 Number of threads for each computational procedure
\(\left.\begin{array}{llll}\hline Solver \& Number \& Procedure \& Number of threads

\hline \& 1 \& Calculate deformation of the elements \& N_{e}

\& 2 \& Evaluate strain increments \Delta \boldsymbol{\varepsilon} \& N_{e} \times N_{int}

Element \& 3 \& Evaluate stress increments \Delta \boldsymbol{\sigma} \& N_{e} \times N_{int}

\& 4 \& Obtain elemental internal forces \hat{\mathbf{F}}_{int}^{e}\end{array}\right] N_{e} .\)| Construct connected list data structure |
| :--- |

	4	Calculate normal contact forces
	5	Calculate tangential contact forces
6	Assemble resultant contact forces	$N_{c o} \times S_{\max }$
1	Assemble equivalent internal forces $\mathbf{F}_{\mathrm{int}}$	$N_{c o} \times S_{\max }$
Particle 2	Assemble resultant particle forces	$N_{c p}$
	Solve motion equations	N_{p}

N_{e} : element count
N_{p} : particle count
$N_{\text {int }}$: integration point count
$N_{c p}$: contact particle count (including contactor particles and target particles)
$N_{c o}$: contactor particle count
$S_{\text {max }}:$ maximum face count linked by each target particles

S5 Verification example: elastic contact

The frictional contact between two elastic beams is considered in this example, as shown in Fig. S2, which has been studied in the literature (Litewka and Wriggers, 2002). Beam 2 is initially located above the center of cantilever beam 1 . The length of both beams is 1000 mm . The section sizes of beam 1 and beam 2 are $100 \mathrm{~mm} \times 100 \mathrm{~mm}$ and $50 \mathrm{~mm} \times 50 \mathrm{~mm}$, respectively. These two beams are perpendicular to each other, and the initial gap between them is 5.0 mm . The horizontal displacement $(\Delta x=400 \mathrm{~mm})$ and vertical displacement $(\Delta z=-200 \mathrm{~mm})$ are applied to both ends of beam 2 from $t=0$ to $t=1 \mathrm{~s}$, which makes beam 2 move toward the free end of beam 1 .

The elastic material properties of the beams are given by Young's modulus 300 MPa and Poisson's ratio 0.17 . Beam 1 and beam 2 are discretized into 2,160 and 1,280 hexahedral elements, respectively. A frictionless case and two frictional cases $(\mu=0.5,1.0)$ are investigated. Both scaling factors s_{n} and s_{t} are set to 1.0. The mass damping coefficient is set to 1×10^{4}.

The deformed configurations with contour plots of vertical displacement at $0.3 \mathrm{~s}, 0.6 \mathrm{~s}$, and 1.0 s are shown in Fig. S3. It can be found that the deformation of beam 2 is greatly affected by the friction coefficient. The horizontal displacement history of point A (the center point of beam 2, see Fig. S2) is presented in Fig. S4 for different friction coefficients. It can be observed that the horizontal displacement of point A decreases with the increase of friction coefficient, which can also be concluded from Fig. S3. The displacement curves obtained by FPM match well with that obtained by FEM (Litewka and Wriggers, 2002). Thus, the proposed method is effective in
modeling elastic frictional contact of structures.

Fig. S2 Contact between two beams: geometry

(a) $t=0.3 \mathrm{~s}$

(b) $t=0.6 \mathrm{~s}$

(c) $t=1.0 \mathrm{~s}$

Fig. S3 Contact between two beams: contour plots of vertical displacement (unit: mm)

Fig. S4 Contact between two beams: horizontal displacement history of point A

S6 Computer configuration

The efficiency tests are performed on a computer with double precision. The configuration of the computer is listed in Table S2.

Table S2 Computer configuration

Name	Parameter
OS	Windows $1064-$ bit
CPU	Intel $^{\circledR}$ Core $^{\text {TM }}$ i7-4790K @ 4.00 GHz
RAM	Kingston 16 GB DDR3
GPU	NVIDIA Titan V
	(5,120 CUDA cores, 12 GB memory)

S7 Efficiency test: large-scale quasi-static elastic contact

This example is adapted from the two-layer pinched cylinder example (Puso, 2004). As shown in Fig. S5, two opposing concentrated forces $F=400 \mathrm{~N}$ are applied to the two opposing center points of a multilayer cylinder. The average radius, thickness, and length of the cylinder are $300 \mathrm{~mm}, 6 \mathrm{~mm}$, and 600 mm , respectively. The elastic material properties are given by Young's modulus 30 MPa and Poisson's ratio 0.3 . The mass damping coefficient is set to 20.0 , and the scaling factor sn is set to 0.1 . The friction between contact surfaces is ignored. Only one eighth of the cylinder is modeled due to symmetry.

Fig. S5 Geometry of the multilayer pinched cylinder

A two-layer cylinder is studied first to demonstrate the results. Each layer has a thickness of 3 mm , and is discretized into $1,350(45 \times 30 \times 1)$ hexahedral elements. The displacement contour is shown in Fig. S6. It can be found that the displacement field is continuous at the contact surfaces of the two-layer cylinder as expected. The relation between the dis-placement of the upper corner node and the concentrated force F is presented in Fig. S7, indicating that the load-displacement curves obtained by FPM and Abaqus agree well.

Fig. S6 Two-layer pinched cylinder: contour plot of displacement (unit: mm)

Fig. S7 Two-layer pinched cylinder: load-displacement curve

To test the efficiency of the proposed method in quasi-static elastic contacts, multilayer pinched cylinders with same layer thickness $(0.6 \mathrm{~mm})$ but different layer counts are investigated. Each layer is discretized into $135,000(450 \times 300 \times 1)$ hexahedral elements. All cases are analyzed with a total number of 1,000 time steps. The computational times of contact calculation and overall computation are given in Table S3. Specifically, the CPU time consumed by Abaqus contact solver, denoted as T_{c}, is approximated by the following equation instead of directly obtained in Abaqus

$$
\begin{equation*}
T_{c}=T_{\text {involve_contact }}-T_{\text {no_contact }} \tag{S5}
\end{equation*}
$$

where $T_{\text {involve_contact }}$ and $T_{\text {no_contact }}$ denote the computational times considering and not considering contact, respectively.

Table S3 Multilayer pinched cylinder: computational times in seconds

| Number
 of
 layers | Number
 of
 elements | Contact | Total | Contact | Total | Contact | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | FPM (CPU) | FPM (GPU) | | |
| 2 | 270,000 | 208.5 | 301.0 | 72.1 | 738.4 | 0.9 | 6.2 |
| 4 | 540,000 | 641.0 | 826.0 | 221.0 | 1584.7 | 2.1 | 12.0 |
| 6 | 810,000 | 1090.5 | 1366.0 | 376.6 | 2466.6 | 3.3 | 18.0 |
| 8 | $1,080,000$ | 1528.0 | 1895.0 | 502.4 | 3286.9 | 4.5 | 23.5 |

The speedups of the contact calculation are shown in Fig. S8a. With the increase of element count, the speedup of the parallel FPM over the serial FPM grows at first and reaches the maximum value of 113 when the number of elements exceeds 0.8 million, demonstrating that the GPU parallel implementation significantly accelerates the parallel contact solver. Meanwhile, the maximum speedup of the parallel FPM over Abaqus is 346 when the number of elements is approximately 1.3 million. It indicates that the serial FPM contact solver is faster than the contact solver in Abaqus, which might be mainly owing to the bucket sort approach adopted in the contact search procedures.

The speedups of the overall computation are presented in Fig. S8b. The maximum speedups of the parallel FPM over the serial FPM and Abaqus are 140 and 82, respectively. Thus, the parallel FPM is proved to be efficient. It can also be found that the serial FPM solver is less efficient than the Abaqus/Explicit solver. This might be because FPM needs more computations on the fictitious reverse motion compared with the method utilized in Abaqus.

Fig. S8 also indicates that the GPU is running at full load when the number of elements reaches approximately $0.8 \sim 1.4$ million, and the improvement of computational efficiency gradually stabilizes. Similar observations can be found in the literature (Dong et al., 2015). One can achieve higher speedups by using GPUs with larger device memory and more CUDA cores.

Fig. S9 depicts the proportions of contact calculation time in the overall computational time. As the element count increases, the three time-consumption percentages in Fig. S9 increase a little bit at first and nearly remain unchanged after-wards. The contact calculation accounts for ap-proximately $80 \%, 16 \%$, and 19% in Abaqus, serial FPM, and parallel FPM, respectively. Therefore, the proposed parallel implementation dramatically reduces the proportion of contact calculation in overall computation compared with commercial finite element codes.

(a) speedup of contact calculation

(b) speedup of overall computation

Fig. S8 Multilayer pinched cylinder: speedups

Fig. S9 Multilayer pinched cylinder: proportion of contact calculation time

S8 Efficiency test: large-scale dynamic elastoplastic contact

The computational times for the efficiency test of the dynamic elastoplastic contact are given in Table S4.

Table S4 Multilayer plate under impact loading: computational times in seconds

| Number | Number | Abaqus (CPU) | | FPM (CPU) | | FPM (GPU) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| of
 layers | of
 elements | Contact | Total | Contact | Total | Contact | Total |
| 4 | 250,000 | 266.0 | 368.0 | 123.6 | 706.6 | 1.1 | 6.2 |
| 8 | 500,000 | 591.0 | 794.0 | 280.4 | 1438.0 | 2.1 | 11.6 |
| 12 | 750,000 | 921.0 | 1224.0 | 437.8 | 2221.8 | 3.0 | 16.9 |
| 16 | $1,000,000$ | 1257.0 | 1657.0 | 594.0 | 2904.0 | 4.0 | 22.1 |
| 20 | $1,250,000$ | 1590.0 | 2102.0 | 751.2 | 3664.0 | 5.1 | 27.7 |

References

Dong Y, Wang D, Randolph MF, 2015. A gpu parallel computing strategy for the material point method. Computers and Geotechnics, 66:31-38. https://doi.org/10.1016/j.compgeo.2015.01.009
Hallquist J, Goudreau G, Benson D, 1985. Sliding interfaces with contact-impact in large-scale lagrangian computations. Computer Methods in Applied Mechanics and Engineering, 51(1-3):107-137. https://doi.org/10.1016/0045-7825(85)90030-1
Litewka P, Wriggers P, 2002. Frictional contact between 3d beams. Computational Mechanics, 28(1):26-39. https://doi.org/10.1007/s004660100266
Puso MA, 2004. A 3d mortar method for solid mechanics. International Journal for Numerical Methods in Engineering, 59(3):315-336. https://doi.org/10.1002/nme.865

