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where ߤ௧ is the turbulent viscosity, which can be computed as follows: 

௧ߤ ൌ ఓܥߩ
௞మ

ఌ
 ௧,                                                                                         (S3)ߤ

where ܥఓ ൌ 0.09 is a constant, ݇ and ߝ are the turbulence kinetic energy and the turbulence dissipation rate in ݇ െ  model (Rahman et ߝ

al., 2017). 

This study uses standard ݇ െ  model. It’s based on model transport equations for the turbulence kinetic energy (݇) and turbulence ߝ

dissipation rate (ߝ) : 
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In these equations, ܩ௞	represents the turbulent kinetic energy generated by the mean velocity gradients, calculated as 

௞ܩ ൌ െݑߩపᇱݑఫᇱതതതതതതത డ௨ೕ
డ௫೔

ൌ  ௧ܵଶ,                                                                              (S5)ߤ

while ܵ ൌ ඥ2 ௜ܵ௝ ௜ܵ௝  represents the modulus of the mean rate-of-strain tensor. ܩ௕ is generation of turbulence due to buoyancy, which is 

given by 

௕ܩ  ൌ ߚ ௜݃
ఓ೟
௉௥೟

డ்

డ௫಺
,                                                                                        (S6) 

where ߚ ൌ െ ଵ

ఘ
ሺడఘ
డ்
ሻఘ is the coefficient of thermal expansion, ௜݃ is the component of gravity vector in i direction and ܲݎ௧=0.85 is the 

turbulent Prandtl number for energy. ܥଵఌ ൌ 1.44, ଶఌܩ ൌ 1.92  are constants respectively. ߪ௞ ൌ 1.0  and ߪఌ ൌ 1.3  are the turbulent 

Prandtl number for ݇ and ܩ .ߝଷఌ determines the degree to which ߝ is affected by the buoyancy; it’s calculated as the following relation: 

ଷఌܩ ൌ tanh ቚ௩
௨
ቚ,                                                                                           (S7) 

where v is the velocity component parallel to the gravity vector and u is the velocity component perpendicular to the gravity vector. 
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S5  Drag and Added Mass Analysis 

The eccentricity leads to steerings/rotations that disturb the fluid field greater to make the drag and added mass more complicated 

(making the overall drag greater). To prove this phenomenon from happening, a theoretical analysis of the drag and added mass with 

eccentricities has been developed. To determine the torque caused by the thrust force, the eccentricity factor is defined as 

݁ ൌ ௗ

ோ
,                                                                                                   (S8) 

where d and R are the distance from the thrust force to the axial axis (i.e., the torque arm) and the radius of the robot, respectively. The 

added mass force ܨୟ is written as 

ୟܨ                                         ൌ  ୰,                                                                                               (S9)ܨߙ

where		ߙ is the added mass coefficient. The drag force ୢܨ  is given as 

ܨୢ      ൌ ଵ

ଶ
 ଶ,                                                                                          (S10)ݒ୮ܵୢܥߩ

where	ୢܥ ,ߩ, ܵ୮ and ݒ represent the density of water, drag coefficient, upstream area and moving velocity, respectively. ܵ୮ is a function 

of time that can be written as  

ܵ୮ ൌ
௛ሺඥଵାఒమିఒሻ

ଶ
sin ቀ2ݐߨ െ గ

ଶ
ቁ ൅ ௛ሺඥଵାఒమାఒሻ

ଶ
,                                                                    (S11) 

where	݄ and ߣ are the height of the robot and ratio of the width and length of the robot, respectively. Note that ߙ and ୢܥ are affected by 

the geometric and motion conditions of the robot. Given the main focus of the study is to control the robot, ߙ and ୢܥ are numerically 

calibrated in terms of the thrust force ܨ୲ and e as 

൜
௫ߙ ൌ െ21݁ଷ ൅ 18.2݁ଶ െ 0.2݁

௬ߙ ൌ 0.5 ,                                                                              (S12) 

where ߙ௫ and ߙ௬ are the added mass coefficient of the x and y directions, respectively. The drag coefficient is a function of the 

Reynolds number, which can be expressed as  

ୢܥ        ൌ
஺

ୖୣሺ௧ሻ
ሺ1 ൅ ߮Reሺݐሻሻ,                                                                                    (S13) 

where ܣ ൌ 24 and ߮ is a Reynolds adjusted parameter that is numerically fitted by simulation results as  

  ߮ ൌ 1.375݁ଷ െ 1.3݁ଶ ൅ 0.36݁ ൅ 0.1.                                                                      (S14) 
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