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S1  Derivation of formula 

Firstly, Eq. (12) may be simplified to ∂m/∂σ=0 since σ′ is not included in the expressions of m 

shown in Eqs. (10a) to (10c), namely, m is independent of σ′ (Baker and Garber, 1978). So there is 
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As for Eq. (S1), there are two solutions of λ2 in mathematics. Namely, λ2 = 0 and λ2 ≠ 0, which 

substantially means Eq. (3) is omitted and considered, respectively.  

Under the condition of λ2 = 0, one can get  
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So, Eq. (S2) indicates y′ is invariable, which naturally means the failure surface is planar. 

Substituting Eq. (S2) into Eq. (13), we can obtain the expression of the function m, and get the 

formula of normal stress σ in light of Eq. (12). Then, as per Eq. (11), we can obtain the functional 

formula of Ea and solve it using the extremum principle. As the process is fairly clear and simple, 



the related formulas are not elaborated herein. Actually, the planar failure may be mathematically 

considered as a special case of curved failures. Thus, the demonstration emphasis in this paper 

becomes the case of λ2 ≠ 0 related closely to the soil nonplanar failure modes.  

Presenting a polar coordinate system with a variable pole Oc (xc, yc) and transferring the 

rectangular to the polar coordinate system (see Fig. 1), we can get 
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where r and θ are radius and angular coordinate counterclockwise with reference to the pole Oc in 

the polar coordinate system, respectively. 

Then substituting Eqs. (S3) and (S4) into Eq. (S1), one can get 
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The solution of Eq. (S5) is  
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Eq. (S6) designates the critical sliding surface is log-spiral and the coordinates of the rotation 

center Oc are  
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Secondly, substituting Eq. (10) into Eq. (13), one can get 
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Substituting Eqs. (S3) and (S4) into Eq. (S8), there is 
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As a result, the solution of Eq. (S9) is 
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Then, substituting Eqs. (S6) and (S10) into Eqs. (6) to (8), one can get 
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where j is another calculation index related to dip angle of wall back and it is equal to 0 if α is not 

more than 90 degrees. Conversely, it is equal to 1. 

In light of the geometric relationships between the polar and rectangular coordinate system as 

well as boundary conditions of the segment of the slip surface MO, there are  
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Besides, according to basic principles of variational calculus method, the cross-sectional 

condition at point M is (Giaquinta and Hildebrandt, 2004) 
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For the same soil, vertical crack depth d can be assumed as an independent variable of x 

according to Rankine-Bell relationship of active earth pressure (Bell, 1915). Therefore, one can 



get 
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In the condition of a planar surface of the backfill, the function g(x) to generally express the soil 

surface AB can be simply written as  
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Then, the simplified surface function s(x) can be expressed as 
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Hence, substituting Eqs. (10), (S10), and (S21) into Eq. (S19), we can get 
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where the real conditions of Eqs. (S22a), (S22b) and (S22c) are xB ≥ a-H/tanα+b, a-H/tanα < xB < 

a-H/tanα+b, and xB ≤ a-H/tanα, respectively.  

Parameter study and discussion  

(1) Cohesion of soil c, unit weight γ and wall height H 

As shown in Fig. S1, Ka is almost linearly decreasing with the increase of the normalized 

cohesion c/(γH) as expected (Li & Yang, 2019). The minimum value of the ratio ξ is decreasing 

nonlinearly with the increase of c/(γH). Shear segment of the critical slip surface is always planar 

and gradually developing towards the wall as c/(γH) increases, but d/H is linearly increasing with 

c/(γH). Distribution of normal stress on the shear segment of the slip surface is still approximately 

linear with various values under different c. 

S2 Soil internal friction angle φ 

Fig. S2 shows Ka is nonlinearly reducing as φ increases, but the minimum value of the ratio ξ is 

almost not changed. The sliding surface develops gradually towards the wall as φ increases. Depth 

of the tension crack is approximately linearly increasing with the increase of φ. The normal stress 

σ is still of nearly linear distribution characteristics along the shear segment of the slip surface 

under different φ.  
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(c) Slip surfaces; (d) d/H vs. φ; (e) and (f) Distribution of normal stress on slip surface under φ = 

30° and 38°, respectively 

S3  Wall back dip angle α 

Fig. S3 displays that Ka is decreasing linearly with the increase of α, and the minimum value of 

the ratio ξ is nearly linearly decreasing as α increases. The failure surface is influenced evidently 

by α, and it develops towards the wall as α increases within 90° and towards the soil interior with 

the increase of α over 90°. However, depth of tension crack is increasing nonlinearly with α. 

Additionally, it can be inferred from Fig. S3 (a) that if α reaches 123.44°, Ka can arrive at zero, 

which means there is possibly no active earth pressure on the wall if the inclination of wall back is 

large enough. 

S4  Soil surface dip angle β 

As shown in Fig. S4, Ka nonlinearly increases with β as expected, and the minimum value of the 

ratio ξ is almost not altered. The critical sliding surface grows towards the soil interior with β, and 

depth of tension crack is increasing approximately linearly as β increases.  

S5  Strip surcharge q 

Fig. S5 displays that Ka is linearly growing with q/(γH) as expected (Greco, 2006), but the 

minimum value of the ratio ξ decreases faintly. The shear slip segment of the failure surface 

cannot be influenced by q/(γH), but the tension failure segment of the slip surface is slightly 

moving far away from the wall. Normal stress on the shear slip segment is influenced to some 

degree by q, but its distribution still keeps approximately linear under different q.  

S6  Horizontal offset distance of the surcharge a 

Fig. S6 shows Ka is decreasing linearly as a/H increases within a certain range. If a/H reaches a 
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Fig. S7 Influences of b on the active earth pressure and other related items (a) Ka vs. b/H; (b) ξ vs. 

b/H; (c) Slip surfaces; (d) d/H vs. b/H; (e) and (f) Distribution of normal stress on slip surface 

under b/H = 0.2 and 1, respectively 

 


