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S1. Formulation of coupled periodic tunnel-soil analytical model
S1.1 Model description

Fig. S1 illustrates a tunnel embedded in a multilayered half-space in the global coordinate system. The
model is periodic and comprises N+1 parts, including (N-2) standard interior soil layers where both
ascending and descending waves exist, one interior layer n with a cavity where ascending, descending, and
outgoing (irregular) waves exist, one semi-infinite region N where only descending waves exist, and one
hollow cylinder for the tunnel where outgoing and regular waves exist. In each part, the interfaces are
bonded with their adjoining parts, implying that the tractions and deflections can be directly transferred to
the adjoining parts. The external force p that is periodic in space with periodicity length L and harmonic in
time with circular frequency w is applied at the bottom of the inner surface of the hollow cylinder and
moves toward the positive z-axis at a constant speed of v. The material of each part is assumed to be
isotropic, homogeneous, and viscoelastic; therefore, the integral transformation and superposition
techniques can be applied in this case. Because the applied force is periodic in the z-direction, the entire
system is periodic in the z-direction. This periodic dynamic problem can be solved by the utilisation of the
generalised modal functions in the z-direction.

The geometry, local coordinate system, and state variables along the interface for each part are shown
in Fig. S2. These parts can be further divided into four categories: standard layer, semi-infinite region, layer
with a cavity, and hollow cylinder. The origin of the local coordinate system for the standard layer above
the tunnel is located at its bottom interface, whereas that below the tunnel is located at its upper interface,
as illustrated in Figs. S2a and S2b. The thickness of the standard layer is donated as /7;,.; where i<n and

1" and

<
<

j>n. The state variable S is defined as the collection of the displacement vector ﬁz[ﬁx,

e

N

traction vector 6=[6,, 6,,, 6.]' as S=[a" & which exists at both the upper and bottom interfaces.

The tilde, bar, and caret represent the Fourier transform with respect to time ¢, decomposition in the
generalised modal space, and Fourier transform with respect to the y-coordinate, respectively. Fig. S2c
shows the semi-infinite region, where the state variable only exists at the upper interface. Fig. S2d shows
the layer with a cavity, where the local Cartesian and cylindrical coordinates are both located at the centre

1
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of the cavity. H,; and H,, denote the distances between the centre and the upper and lower interfaces,

respectively. An additional state variable in terms of the cylindrical coordinate exists at the wall of the

cavity, expressed as S§” =[a"" §""]" where &” =[a", @), a"]" and &" =[G, &1, 61" . Fig. S2e

r

shows the hollow cylinder for the tunnel lining with an inner radius of R and a thickness of 4. The local
polar coordinate system is located at the centre of the hollow cylinder, and the state variables exist at the

inner and outer interfaces.
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Z,

z 5 _
l Layer 1 (0m, 0 m, 0 m) [nterfacal

Interface 2

Interface n

Layer n
Interface st
\ Interface n+l
Interface N

Fig. S1 Tunnel embedded in a multilayered half-space subjected to spatially periodic harmonic moving load

p in a global coordinate system.

Layer i above Layer j below
tunnel 1
0 < . Hj tunne
45
z Y X—>»

(a) Layer above tunnel, i<n (b) Layer below tunnel, j>n

X =, 2
¥ r
z y R—» [ — S
B A /1 m
Hnl z l/, @’\ o (e) Hollow cylinder, ¢
Hio Y T g

Layer with a cavity

Tunnel

Semi-infinite
region

Infinity

(c) Semi-infinite region, N (d) Layer with a cavity, n

Fig. S2 The geometry, local coordinate system, and state variable at the corresponding interface of (a) and
(b) soil layer above and below tunnel, (c) the semi-infinite region, (d) soil layer with a cavity, and (e) hollow

cylinder for tunnel lining.

S1.2 The governing equation, Fourier transform, and generalised modal function
The motion of the isotropic, homogeneous, and viscoelastic continuum is governed by the free

elastodynamics equation, expressed in vector form as (Sheng et al., 2002):
LV u+ (A+ p)V(V-u)=pi (S1)

where u is the displacement vector in Cartesian coordinates u=[u,, u,, uZ]T, or in cylindrical coordinates
u=[u,, u,, uZ]T. p is the density of the material. The symbol ‘> denotes the second-order derivative with

respect to time ¢. A and u are the Lamé constants. Considering nondimensional material damping ¢, the
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Lamé constants can be rewritten as A=A(1+i{) and u=u(1+i{).
To solve this equation in the frequency-wavenumber generalised modal space, the Fourier transforms
with respect to time 7 and coordinate y are used:

F@ =] re . f0 =" fordo (s2)
T

~ +00 —ik,y 1 +00 A ik
FU) =] e dy, )= [T )e dk, (S3)
where o and £, are the circular frequency and wavenumber.
As this case is a periodicity problem in the z-direction, generalised modal functions were applied in
this study. Provided that the structure has a periodicity length of L under the harmonic load w; moving at a
constant speed of v in the z-direction, the responses of adjacent points with spacing L yield the following

relationship (Belotserkovskiy, 1996; Belotserkovskiy, 1998; Hussein and Hunt, 2009):
R(z+L,t+L/v)=e“"""R(z,t) (S4)

This is known as the periodic condition. It can be found that the response is both periodic in time and
space. After applying a Fourier transform with respect to ¢ and utilising the auxiliary periodic function of
the first kind, the response in the frequency domain can be decomposed in the generalised modal space
(Hussein and Hunt, 2009; Ma and Liu, 2018) as follows:

n=+0 —

ﬁ(z,a),a),): Z R, (0)®,(z,0,,0) (S5)

n=—ow

where @ (z,w,,w) is the generalised modal function, which takes form as follows:

(S6)

With the aid of a generalised modal function, Eq. (S1) can be solved in Cartesian or cylindrical
coordinates to provide the displacement and stress fields owing to the dynamic load.
S1.3 Displacement and stress solutions for each part

The governing equation of motion shown in Eq. (S1) can be solved using the techniques proposed by
Schevenels (2007) and Kausel (2006). Furthermore, the expressions for displacements and stresses in both
Cartesian and cylindrical coordinate systems derived in terms of the wave potential functions by Pilant
(1979) can be directly applied to obtain general solutions with the aid of Egs. (S2), (S3), and (S5).

First, the general solutions of the displacement for the standard interior layer illustrated in Figs. S2a
and S2b in Cartesian coordinates can be derived as

J=2

3
k=1

>

=
1N
>
<

~[d,, @,

[ik 4, +3dkAdkj (S7)

where vectors ¢, and ¢, are the ascending and descending plane wave potentials for the displacements,

respectively. &=1, 2, and 3 represent P-, SH-, and SV-plane waves, respectively. A, and Ay are the
unknowns for ascending and descending waves, respectively. The ascending plane wave displacement

potentials $ak were derived as follows (Pilant, 1979):
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-e-zl>

[ 1k 11] el
3 ,=ik, 0] et (S8)
3 =[ko 4, —k2, k2+k2}e

where k =,/k; =k} —A; (j=p or s) represents the wavenumbers in the x-direction. k=w/c; (j=p or s) are
the complete wavenumbers, where the P- and S-wave velocities are expressed as ¢, = JA+2u)/p and

¢, =+Ju/ p , respectively. To ensure that the ascending plane waves decay from the bottom interface to the

upper interface, the wavenumbers in the x-direction k,; (j=p or s) should meet the condition Im(k,;)>0 (j=p
ors).
According to the displacement-strain relationship and constitutive relationship, the traction vector can
be obtained as follows by considering Eq. (S7),
2 a2 3 (2 S
= [&u’ &xy’ 6-):2 ]T = Z(cpakA <pdk dk ) (89)

k=1

A

Q

where (%pak and (%p 4« are the ascending and descending plane wave potentials for the tractions, respectively.
The ascending plane traction potentials (%ak can be explicitly expressed as follows (Pilant, 1979):

G =22 -k -2k2 2k k, -2k, 4] ¢
G = u[ 2k, K-k k2] ™ (S10)

Gu = u[ 222, 2k kA, ik, (K 4K - 22)] e

xs“n xs yTtn

A

The descending plane wave potentials for displacements $dk and tractions ¢, can be obtained by

directly replacing k,; (j=p or s) with —k,; (j=p or s) in Egs. (S8) and (S10).
Similarly, the general solutions of displacement for the hollow cylinder of the tunnel, as illustrated in

Fig. S2e, in the cylindrical coordinate can be written as

=[G, 7, A1 =3 3 (T8 +TLBY) (S11)

m=0 k=1
where %", and )_Zfl denote the m-th order outgoing and regular cylindrical wave potentials for

displacements, respectively. k=1, 2, and 3 represent the P-, SH-, and SV-waves in the cylindrical coordinate
system, respectively. This series converges rapidly with respect to m, implying that using M terms in the
calculation can produce satisfactory results. B!, and B!, are the unknown coefficients for the outgoing

and regular waves, respectively. ifk has the following explicit expressions (Pilant, 1979):
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T
=m ay m . : : )
x —{kam (k,,r)cosme —7Hm (k,,r)sinme i4,H, (kmr)cosm(p}
Xo2 =[—HS)(/€,-J)COSM¢ —~k, H,)" (k,r)sinmg 0} (512)
r

T
i:z=[ikmw;:)'<k,sr>cosm¢ i3, " HOr)sinmg k,iH,;“(k,sr)cosmq)}
r

where £, =./kf—/1,f (j=p or s) represents the wavenumbers in the r-direction. Similarly, the

wavenumbers in the r-direction &,; (j=p or s) should satisfy the condition Im(k,;)>0 (j=p or s). H, V() is the
Hankel function of the first kind. The superscript prime represents the derivative with respect to k.7 (j=p or
s).

Furthermore, considering the displacement—strain and constitutive relationships, the corresponding
traction vector can be calculated as follows:

p— 3 p— p—
o 610 = D D (B + LBy ) (S13)

6=[6,, 6

where @, and 7" are the m-th order outgoing and regular cylindrical wave potentials for tractions,

respectively. The outgoing cylindrical wave displacement potentials have the following forms (Pilant,
1979):

T
7 =u{[<2k,€—kf)H;”(kmr)+2k;H,S>”<k,,,r>}cosmw 2 1 )k, ) [sinmg 2iﬂ"k,,,H:,‘"<k,,,r)cosmw}
_ - : (S14)
ﬁ:;:u{z’" [t )= L ) [cosmo 2 [ 2H" G+ HY () [sinme MHS’(/c,‘Sr)cosmq)}
r

2
/%

- . 2i , . , T
= ﬂ{%ﬁnkm(“ (k,r)cosmp #[H?(ky)—k,ﬂ::’ () [sinmp (k2 =2 HL k, r)cos mw}

st m

The regular cylindrical wave potentials for displacement %" and traction 7", can be derived by

directly replacing the Hankel function of the first kind H,,"(+) with the Bessel function of the first kind
J,(+) in Egs. (S12) and (S14), respectively.

In the semi-infinite region, as illustrated in Fig. S2¢, only descending waves exist such that A4,=0.
Therefore, the displacement and traction vectors for the semi-infinite region are reduced to the following

formulations from Egs. (S7) and (S9) as follows:

~ ES 3. =
a=[i, i, ] =Y é,4, (S15)

S S S 3.2
6 :[&xx’ G)qv’ &xz]T = Z(pdkAdk (816)

As shown in Fig. S2d, in the soil layer with a cavity where the tunnel is embedded, ascending,
descending, and outgoing waves exist. Therefore, the displacement and traction vectors for the soil layer

with a cavity in the frequency-wavenumber (w-/4,) domain can be expressed as:

= 1 &% = ik,y G ~m pm
u= 2_4[—30 Z(d’akAak + ¢dkAdk je b dkv + Z ZXOkBOk (817)
n k=1 m=0 k=1
= 1 +o 3 = Z ik,y M3 =
G = E . Z(cpakAak +(pdkAdk)e ’ dky + ZZTIZ}(BZL (S18)
k=1 m=0 k=1

The above formulations show the general solutions of the displacements and tractions for the four

5
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categories stated in Subsection 1.1, where the boundary conditions have not yet been considered. The
unknown coefficients were determined from the boundary conditions in the following derivations.
S1.4 Interactions between standard soil layers and semi-infinite region

Commonly used techniques to analytically model layered media are the transfer matrix method
proposed by Thomson (1950) and Haskell (1953) and the dynamic stiffness matrix method used by Kausel
(2006) and Schevenels (2007). These techniques have been successfully used in multilayered half-spaces
(He et al., 2017) or tunnels embedded in half-spaces (He et al., 2018). As transformations between plane
waves and cylindrical waves were performed in this study, the transfer matrix method was adopted to
analytically solve the multilayered half-space, which was also applied by He et al. (2018). The coupled
tunnel-soil system is considered homogeneous in the loading direction in the study by He et al. (2018),

whereas it is periodic in the current study.

For the standard interior soil layer, as shown in Figs. S2a and S2b, the state variable S (=i or )

written in matrix form according to Egs. (S7) and (S9) yields:

R Al e BTN 19
5,() @, LA

where the superscript / denotes the I-th layer (/=i or j). x' is the x-coordinate in the local coordinate system,

A

as shown in Fig. S2. $a (x')= Fﬂ, (x") aﬂ(x’ ) $a3(xl )} . The other matrices have similar matrix forms. A’

and A/ are the ascending and descending wave coefficient vectors for the /-th soil layer, respectively,
A=A AL AL and A/=[AL A AT

To determine the unknown coefficients, the boundary and continuous conditions between each part
should be considered. Because the upper interface of the first layer (i=1) is a free surface, the tractions
along this interface should satisfy the following relationship:

& (x'=H,)=0 (S20)
Substituting Eq. (S19) into Eq. (S20), the following relationship is obtained:
AL ==, (' = )9, (x' = H)A} =R}, A} (s21)

According to the compatibility and equilibrium conditions, the state variables of the standard interior
layers and semi-infinite region should satisfy the following relationships because no external loads are

applied at these interfaces:

>

ST =0)=S8'(x' =H,), i<n (S22)

>

>

(x! = -H,)= S =0), j>n (S23)

The local coordinate system of the layer above the tunnel differed from that below the tunnel.
Substituting Eq. (S19) into Eq. (S22) and considering each value of i=2, 3, -+, n-1, the relationship between

coefficients A' and A" can be derived as follows:

A'=T

(1,n-1)

A" (S24)

where the transfer matrix T(; ,.1) is expressed as,

T

=M (¥ = 0)M (= B, )| M (& = 0)M (" = H, )| - H{M! (v = 0)M (x"" = i, , )| (S25)
6
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For a semi-infinite region, the unknown coefficients should satisfy A,"=0. Similarly, by substituting
Eq. (S19) into Eq. (S23) and considering each value of j=n+1, n+2, -, N, the relationship between the

coefficients AV and A" can be derived as follows:

A" =T

(N,n+1)

A" (S26)

where the transfer matrix T(y,+1) has the expression,

Ty = (M7 (" =0)M (" == M (5" = 0)M (2" = —h ) H M (2 = 0)M (v = -, )} (S27)

Based on Egs. (S21), (S24), and (S26), and A,"=0 for the semi-infinite region, the responses of the
multilayered half-space under the spatially periodic harmonic moving load can be solved completely if
there is no tunnel structure. Additional derivations should be performed to consider the effects of the tunnel
structure.

S1.5 Interaction between standard interior layers and layer with a cavity

Three types of waves exist in the soil layer with a cavity: the ascending plane, descending plane, and
outgoing cylindrical waves. To analytically model the coupled tunnel-soil system, transformations between
plane and cylindrical waves should be performed, as summarised by Bostrom (1991). These transformation
properties were successfully adopted by Yuan et al. (2017) and He et al. (2018) in a tunnel embedded in a
half-space and multilayered half-space, respectively, where these models are homogeneous in the
longitudinal direction.

To couple the standard layer and the layer with a cavity, the outgoing cylindrical wave should be
converted into ascending or descending plane waves. These transformation properties were proposed by
Bostrom (1991), and the transformations between wave potentials can be written as

A

3 ik,y
=m _ IJ-+°° ¢“.fe

= T dk
of e k. mj= "y
L (S28)
1 ik,y
=m 1 p+e ¢d.e g .

X

where the cylindrical waves are converted into ascending and descending plane waves. k,=k,, if j=1 and

ky=ky ifj=2,3. T, and T, are expressed as

mj

cos(mf,), B, = arcsin ky/k,,p ,j=1

) (k. /k,)
T, =i"{sin(mp,), B, =arcsin(k, [k, ), j =2
), By = arcsin(ky/km_),j 3
cos(mp,), B, = arcsin(ky/krp),j =1
1 =it | sin(ns). . =ansinfl )./ =2
cos(mp,), B, =arcsin(k, /k,, ), j =3

Substituting Egs. (S28) and (S29) into Egs. (S17) and (S18) for layer » with a cavity, the displacement
and traction vectors along its upper interface can be expressed in the following forms after some

cos(mp,

(S29)

manipulations:
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T:l(x” =H,)=9,(x" =H,)A, +$d (x"=H,)A, +2i$ﬂ (x"=H,)T,A!
. N N " (S30)
6(x"=H,)=¢,(x"=H, )AL +$,(x" =H, )A} +2>"§,(x" =H, )T A/
m=0
where T, = diag{% % %} .
w ke kg

Analogously, displacement and traction vectors along the bottom interface can be expressed as

A

ﬁ(x" =-H,)=4,(x" = -H,,)A! +$d (x"=-H,,)A;+ 2%@ (x" =-H,,)T;A!
m=0

. . R " (S31)
6(x"=-H,)=9,(x" =—H,)Al +§,(x" =—H,, A, +2)" ¢, (x" =—H,, ) T; A"
m=0
where T, =diag {Tiﬁ T TL;:I .
kxp kXS kXS

The compatibility and equilibrium conditions along the upper and bottom interfaces of the layer with a
cavity with adjoining layers can be written as

ﬁ(x"’l = 0) =ﬁ(x” =Hn1), g(x"’1 = )=c(x” = Hnl), upper interface s32)

A

ﬁ(x"+1 = 0) = u(x” =-H, ), g(x”+1 = 0) = g(x” =-H, ), bottom interface

Considering Egs. (S87), (S9), (S31), (S32), and the formulations in Subsection 1.4, the relationship
between the unknown coefficient A" for the plane waves and that A,=[ A(,1 AU2 AUM]T@(MH)XI) for the
cylindrical waves for the layer with a cavity can be derived by only matrix manipulation. For simplicity, the

relationship between A" and A, can be expressed as

n AZ J— Ta
A :{AJ:T(AH’A“)AG—{TJAG (S33)

where T( AA) is a 6x3(M+1) coefficient matrix.

Furthermore, considering Eqs. (S24), (S32), and (S33), the relationship between A' and A, is obtained
as follows:

A'=T A (S34)

(A'A,)" 0

where T( AlA) is a 6x3(M+1) coefficient matrix as well.

It can be observed that, if the unknown vector A, is calculated, the unknown vector A! for the first
standard layer can be directly determined using Eq. (S34). Subsequently, by substituting A' into Eq. (S19)
yields the displacement responses of the ground surface induced by a dynamic load. The unknown vector
A, is determined from the coupling between the layer with a cavity and the hollow cylinder which suffers
from the spatially periodic harmonic moving load at its inner interface.

1.6 Interaction between the layer with a cavity and hollow cylinder

To couple the layer with a cavity and hollow cylinder, the ascending and descending plane wave
potentials should be expanded in terms of regular cylindrical wave potentials. The transformation
properties have been proposed by Bostrom (1991) and can be written as

8



230

231
232
233
234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250
251

>

=g

M
ik,y =
= ZE»IXZTJ-
. " (S35)
1 ik, = _
o = 64,1,
m=0

where ¢, is the Neumann factor, ¢,=1 for m=0 and ¢,=2 for m>1.

Substituting Eq. (S35) into Egs. (S17) and (S18) for layer n with a cavity, the displacement and
traction vector along the inner interface (*=R+#h) of the cavity can be obtained after some manipulations as
follows:

‘Tlfn(”=R+h)={zirwsmif’(r:R+h)(T;T“ +T, T )dky + 2" ( :R+h)}A0 =C!(r=R+h)A,
Tc —0

(S36)
G, (r=R+h)= {Zijmsmﬁi”(r = R+m)(T;T* + T, T ) dky + 72" (r =R+h)}A0 =D, (r=R+h)A,
Tc —0

where C” and D" are 3x3(M+1) matrices. " :[i;”l . i:g] and /" :[ﬁ’”l a7 ﬁ;g]. % and

72" have the following expressions:

Zmr “m
Xo _|:03><3 R #55 S S 03><3:|3X3(M+1)

= - (S37)
n, :|:03><3 My, 3

0
33 Jaxa(m+1)

Eq. (S36) can be calculated using the numerical quadrature technique. The state variable 521 at the

cavity interface can be defined as:

5 _F;@:Rw)}:

(S38)

18 (r=R+h)| | D (r=R+h)

c;;(r=R+h)}A

For a hollow cylinder, the state variable §f§ can be defined according to Egs. (S11) and (S13),
expressed as follows:

5o _ Fjﬂ (r=R+ h)} _ Fg’ (r=R+h) ¥"(r= R+h)}Bm (539)

" |8, (r=R+h)| |R'(r=R+h) A"(r=R+h)

where B” :{

B,
B" |

According to the compatibility and equilibrium conditions along the interface g; = §j§ , the following

equation can be obtained

B F: (r=R+h) ¥"(r=R+ h)} {c;; (r=R+ h)} A (540)

W' (r=R+h) R'(r=R+h)| |DL(r=R+h)

The unknown coefficients B” for the tunnel structure and A, for the layer with a cavity are related by
Eq. (S40). Once A, is known, B” can be immediately calculated. Subsequently, the dynamic responses of
the tunnel structure under the moving load can be determined using Egs. (S11) and (S13).
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S1.7 Moving load applied at the inner interface of the tunnel structure
The applied external load is periodic in space with a periodicity length L, harmonic in time with a
circular frequency w;, and moves at a constant speed of v in the z-direction. The force applied at the
inverted arch of the tunnel structure can be mathematically expressed as (Xu and Ma, 2022)
p(r,o,z,t)= %6(1’ -R)S(p—m)S5(z— vt)eié”zem’[ & = 2Lﬂ (S41)
The origin of the moving load is located at (R, @, 0 m). By performing a Fourier transform with respect

to ¢, the force in the frequency domain can be obtained as
Pr.9.2,0) = — (= RS(p - m)e" (342)
\%

Considering the orthogonality of the generalised modal function, the components of the spatially
periodic harmonic moving load can be expressed as follows:
1
5, (r ) = 55(F—R)5(¢—n),q =n (S43)
0 ,q#nN
This means that only the n-th order components must be considered in the calculation of the spatially
periodic harmonic load. Furthermore, the n-th order component should be expanded in terms of the
trigonometric series, yielding

gm

_ Mo M
p,(r,p,0) = Z[)m (r=R)= Z (=D"6(r—R)cosme (S44)
m=0 m=0 ZTCVR
Therefore, the external load vector can be expressed as
= = T
t,(r=R)=[p,(r=R) 0 0] (S45)

According to the stress boundary condition of the inner interface of the tunnel structure, the following
formulation can be obtained:

[A(=R) W'(=R)|B"=1,(r=R) (S46)

Substituting Eq. (S40) into Eq. (S46) yields the following equation:

A, =t (r=R)  (S47)

[RG=R) R(r=B)] X" (r=R+h) f(;"(r:R+h)} {c;;v:mm} 1

N'(r=R+h) Q'(r=R+h)| | D! (r=R+h)

This resulted in three equations for each m. After considering m=0, 1, 2, -, M, there are 3(M+1)
equations where there are 3(M+1) unknowns A, as well. Therefore, the unknown coefficients A, can be
uniquely determined by solving Eq. (S47). Thereafter, the unknown coefficients for the tunnel structure B”
and first layer A' can be derived based on Egs. (S40) and (S34), respectively. Consequently, the dynamic
response can be constructed by considering the corresponding formulations in Subsection 1.3. Notably, the
formulations derived above were programmed in MATLAB, where M=12 was considered to obtain the
convergence result. A rapid analysis of ground-borne vibrations from a tunnel under a spatially periodic
harmonic moving load can be achieved using this program.

S2. Material parameters and additional cases in the validation
S2.1 Material parameters

To demonstrate the efficiency and accuracy of the proposed model, the ground-borne vibrations from
the model in which the tunnel is embedded in a homogeneous and multilayered half-space were compared

10
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with those from the literature (He et al., 2018; Yuan et al., 2017). The material parameters involved were
given below.

In the first case (Yuan et al., 2017), the soil in the half-space had a longitudinal wave velocity of
¢,=146 m/s, a shear wave velocity of ¢,=78 m/s, a material density of p=1900 kg/m®, and hysteretic
material damping ¢=0.05. The tunnel was made of concrete with a Young’s modulus of E=25 GPa,
Poisson’s ratio v=0.2, material density p=2400 kg/m’, and hysteretic material damping (=0.02. The inner
radius and thickness of the tunnel structure were R=2.75 m and 4=0.25 m, respectively. The distance
between the axis of the tunnel and the ground surface was d=15 m.

In the second case (He et al., 2018), the multilayered half-space had three soil layers, the third of
which was termed the half-space that extends to infinity. The first two layers had thicknesses of =5 and
10 m, respectively. Soils in the half-space had shear velocities of v=50, 100, and 150 m/s, longitudinal
velocities of v,=100, 200, and 300 m/s, material density of p=1800 kg/m’, and hysteretic material damping
of (=0.04. The centre of the tunnel was buried at a depth of =15 m and had an inner radius of R=2.75 m
and a thickness of #=0.25 m. The Young’s modulus of the tunnel concrete was E=50 GPa, Poisson’s ratio
v=0.3, material density p=2500 kg/m’, and hysteretic material damping ¢=0.03.

S2.2 Additional comparisons

Additional comparisons of the calculated results with those from the analytical solution (Yuan et al.,
2017) were given in the subsection.

Comparisons of vertical maximum velocities at the ground surface along the y-coordinate owing to the
constant load fo=0 Hz moving at the speed of v=10, 30, and 50 m/s with those from the analytical solution
(Yuan et al., 2017) are shown in Fig. S3. Good agreements were observed from the results. The vertical
maximum vibration attenuated along the y-coordinate under these circumstances.

Fig. S4 presents the comparison of the vertical and longitudinal displacements at (0 m, 0 m, 0 m)
subjected to the harmonic load f;=5 Hz moving at the speed of v=30 m/s with those from the analytical
solution (Yuan et al.,, 2017). Again, results from the current model agreed well with those from the
reference. At the time instant /=0 s when the load moved to the position beneath the observation point, the

vertical displacement reached the maximum while the longitudinal one reached the minimum.

x10°°
15}
i) Present-v=10m/s
E = = Present-v=30m/s
?». 1.2 5"‘"«, = === Present-v=50m/s
' \' Reference-v=10m/s
2 \0\ Reference-v=30m/s
'g 0.9 ’\' ¢ Reference-v=50m/s
. \’\
g 06M —, .
3 ~ A, >\
g S \ﬁ.’
<>é 03r B ~ .V~’. -
2 ~ v 7~
T T e Vv~
0 e S n o
0 10 20 30 40 50
y [m]

Fig. S3 Comparison of vertical maximum velocity along the y-axis at the ground under the constant load
(f0=0 Hz) moving at the speed of 10, 30, and 50 m/s.

11



317
318
319
320
321
322
323
324
325
326
327
328
329

330

x1071° . (a) ' x1071° . (b)

1
Present Present
= + == Reference = == Reference 1 '\
05 051
|
| I ]
E B I
=0 =, 0 1]
. 3"
\
. 1
051 -0.5 ] l’
-1 - a : -1 . ; ;
-2 -1 0 1 2 -2 -1 0 1 2

t[s] t[s]
Fig. S4 Comparison of (a) vertical and (b) longitudinal displacement history u, and u, at (0 m, 0 m, 0 m)
under moving harmonic load (v=30 m/s, f;=5 Hz).

S3. Additional numerical results
S3.1 General velocity results

Fig. S5 shows the corresponding velocity responses at points A (0 m, 0 m, 0 m) and B (0 m, 10 m, 0 m)
on the ground surface in both the time and frequency domains, from which the observations from
displacements in Fig. S7 in the main manuscript can also be noticed. Notably, the velocity vibrations
were much stronger than the displacement vibrations. This is because the velocity Vv in frequency domain

can be deduced from the displacement 1 in frequency domain, obeying the relation v =i2nfi, and the

frequency f'spreads around the critical frequency fe.
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Fig. S5 (a) Vertical velocity v, and (b) longitudinal velocity v, in time and frequency domain at A (0 m, 0 m,
0 m) and B (0 m, 10 m, 0 m) of the ground surface.

S3.2 Maximum and instantaneous displacements along the y-axis

The maximum and instantaneous displacements at =0 s along the y-axis under a spatially periodic
harmonic moving load are presented in Fig. S6. Unlike the ground vibration which is consistently
weakened by the soil along the y-axis under a moving constant load (Yuan et al., 2017), the vibration under
the spatially periodic harmonic moving load shows undulating behaviours similar to those under a
harmonic moving load, as shown in Fig. S6a. The highest vertical vibration level along the ground surface
appears at a point with a lateral distance of approximately 18 m owing to the propagating waves emanating
from the tunnel. The longitudinal vibration is generally weaker and attenuates more quickly than the
vertical vibration, which can also be observed in Fig. S6b. The wavelengths of the vertical and longitudinal
displacements were almost the same, and the propagating waves were excited, even under a load velocity
of v=25 m/s.

-12 -12
8 x10 . ' (a) . ’ 8 x10 ' ' (b)
Uz
Eer il E
B =
| |
ey
g 4 5
g Q,
C>é 2 L g
= ~
0 -8 : : : :
0 10 20 30 40 50

Fig. S6 (a) maximum displacement and (b) instantaneous displacement at the time instant /=0 s on the

ground surface in both vertical and longitudinal direction along the y-axis.

S3.3 Instantaneous displacements and velocities along the z-axis

Fig. S7 shows the instantaneous displacements and velocities at the time instant /=0 s along the z-axis
under a spatially periodic harmonic load. It can be observed that the vibrations mainly exist within a certain
area and decay quickly along the z-axis. Clearly, the vertical displacement and velocity at /=0 s are not
perfectly symmetric with respect to z=0, whereas the longitudinal displacement and velocity at /=0 s are not
perfectly antisymmetric owing to the Doppler effect. The velocity responses were much stronger than the
displacement responses, and similar observations were found by Yuan et al. (2017). In some areas,
longitudinal vibrations are stronger than vertical vibrations. The wavelengths of the vertical and
longitudinal vibrations were almost the same, and propagating waves could be observed. Comparing the
results from Fig. S7a and Fig. S6b, wavelengths along the z-axis are larger than those along the y-axis,

which is because the waves in the tunnel structure travel much faster than those in the soil.
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Fig. S7 Instantaneous (a) displacement and (b) velocity at the time instant /=0 s on the ground surface in

both vertical and longitudinal direction along the z-axis.
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