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S1. Formulation of coupled periodic tunnel-soil analytical model 13 
S1.1 Model description 14 

Fig. S1 illustrates a tunnel embedded in a multilayered half-space in the global coordinate system. The 15 
model is periodic and comprises N+1 parts, including (N-2) standard interior soil layers where both 16 
ascending and descending waves exist, one interior layer n with a cavity where ascending, descending, and 17 
outgoing (irregular) waves exist, one semi-infinite region N where only descending waves exist, and one 18 
hollow cylinder for the tunnel where outgoing and regular waves exist. In each part, the interfaces are 19 
bonded with their adjoining parts, implying that the tractions and deflections can be directly transferred to 20 
the adjoining parts. The external force p that is periodic in space with periodicity length L and harmonic in 21 
time with circular frequency ω is applied at the bottom of the inner surface of the hollow cylinder and 22 
moves toward the positive z-axis at a constant speed of v. The material of each part is assumed to be 23 
isotropic, homogeneous, and viscoelastic; therefore, the integral transformation and superposition 24 
techniques can be applied in this case. Because the applied force is periodic in the z-direction, the entire 25 
system is periodic in the z-direction. This periodic dynamic problem can be solved by the utilisation of the 26 
generalised modal functions in the z-direction. 27 

The geometry, local coordinate system, and state variables along the interface for each part are shown 28 
in Fig. S2. These parts can be further divided into four categories: standard layer, semi-infinite region, layer 29 
with a cavity, and hollow cylinder. The origin of the local coordinate system for the standard layer above 30 
the tunnel is located at its bottom interface, whereas that below the tunnel is located at its upper interface, 31 
as illustrated in Figs. S2a and S2b. The thickness of the standard layer is donated as Hi or j where i<n and 32 

j>n. The state variable 
ˆ
S  is defined as the collection of the displacement vector Tˆ ˆ ˆ ˆ[ ,  ,  ]x y zu u uu     and 33 

traction vector Tˆ ˆ ˆ ˆ[ ,  ,  ]xx xy xz  σ     as T T Tˆ ˆ ˆ[   ]S u σ    which exists at both the upper and bottom interfaces. 34 

The tilde, bar, and caret represent the Fourier transform with respect to time t, decomposition in the 35 
generalised modal space, and Fourier transform with respect to the y-coordinate, respectively. Fig. S2c 36 
shows the semi-infinite region, where the state variable only exists at the upper interface. Fig. S2d shows 37 
the layer with a cavity, where the local Cartesian and cylindrical coordinates are both located at the centre 38 
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Lamé constants can be rewritten as λ=λ(1+iζ) and μ=μ(1+iζ). 61 
To solve this equation in the frequency-wavenumber generalised modal space, the Fourier transforms 62 

with respect to time t and coordinate y are used: 63 

 i i1( ) ( )e d , ( ) ( )e d
2π

t tf f t t f t f   
 

 
     (S2) 64 

 i i1ˆ ˆ( ) ( )e d , ( ) ( )e d
2π

y yk y k y
y y yf k f y y f y f k k

 

 
    (S3) 65 

where ω and ky are the circular frequency and wavenumber. 66 
As this case is a periodicity problem in the z-direction, generalised modal functions were applied in 67 

this study. Provided that the structure has a periodicity length of L under the harmonic load ωl moving at a 68 
constant speed of v in the z-direction, the responses of adjacent points with spacing L yield the following 69 
relationship (Belotserkovskiy, 1996; Belotserkovskiy, 1998; Hussein and Hunt, 2009): 70 

  i( , ) e ,l L vR z L t L v R z t    (S4) 71 

This is known as the periodic condition. It can be found that the response is both periodic in time and 72 
space. After applying a Fourier transform with respect to t and utilising the auxiliary periodic function of 73 
the first kind, the response in the frequency domain can be decomposed in the generalised modal space 74 
(Hussein and Hunt, 2009; Ma and Liu, 2018) as follows: 75 

      , , , ,
n

l n n l
n

R z R z    




    (S5) 76 

where  , ,lz    is the generalised modal function, which takes form as follows: 77 

   i 2π, , =e ,n z l
n l n

nz
L v

  
  


    (S6) 78 

With the aid of a generalised modal function, Eq. (S1) can be solved in Cartesian or cylindrical 79 
coordinates to provide the displacement and stress fields owing to the dynamic load. 80 
S1.3 Displacement and stress solutions for each part 81 

The governing equation of motion shown in Eq. (S1) can be solved using the techniques proposed by 82 
Schevenels (2007) and Kausel (2006). Furthermore, the expressions for displacements and stresses in both 83 
Cartesian and cylindrical coordinate systems derived in terms of the wave potential functions by Pilant 84 
(1979) can be directly applied to obtain general solutions with the aid of Eqs. (S2), (S3), and (S5). 85 

First, the general solutions of the displacement for the standard interior layer illustrated in Figs. S2a 86 
and S2b in Cartesian coordinates can be derived as 87 

 
3

1

ˆ ˆˆ ˆ ˆ ˆ[ , , ]T
x y z ak ak dk dk

k
u  u  u A A



    
 

u         (S7) 88 

where vectors ˆ
ak
  and ˆ

dk
  are the ascending and descending plane wave potentials for the displacements, 89 

respectively. k=1, 2, and 3 represent P-, SH-, and SV-plane waves, respectively. Aak and Adk are the 90 
unknowns for ascending and descending waves, respectively. The ascending plane wave displacement 91 

potentials ˆ
ak
  were derived as follows (Pilant, 1979): 92 



 

4 
 

 

T i
1

T i
2

T i2 2
3

ˆ
= i i i e

ˆ
= i i 0 e

ˆ
= e

xp

xs

xs

k x
a xp y n

k x
a y xs

k x
a xs n y n xs y

k k

k k

k k k k



 

  

  

    













 (S8) 93 

where 2 2 2
xj j y nk k k     (j=p or s) represents the wavenumbers in the x-direction. kj=ω/cj (j=p or s) are 94 

the complete wavenumbers, where the P- and S-wave velocities are expressed as ( 2 )pc      and 95 

sc   , respectively. To ensure that the ascending plane waves decay from the bottom interface to the 96 

upper interface, the wavenumbers in the x-direction kxj (j=p or s) should meet the condition Im(kxj)≥0 (j=p 97 
or s). 98 

According to the displacement-strain relationship and constitutive relationship, the traction vector can 99 
be obtained as follows by considering Eq. (S7), 100 

  3
T

1

ˆ ˆˆ ˆ ˆ ˆ[ ,  ,  ]xx xy xz ak ak dk dk
k

A A  


  σ         (S9) 101 

where ˆ
ak  and ˆ

dk  are the ascending and descending plane wave potentials for the tractions, respectively. 102 

The ascending plane traction potentials ˆ
ak  can be explicitly expressed as follows (Pilant, 1979): 103 
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 (S10) 104 

The descending plane wave potentials for displacements ˆ
dk
  and tractions ˆ

dk  can be obtained by 105 

directly replacing kxj (j=p or s) with –kxj (j=p or s) in Eqs. (S8) and (S10). 106 
Similarly, the general solutions of displacement for the hollow cylinder of the tunnel, as illustrated in 107 

Fig. S2e, in the cylindrical coordinate can be written as 108 

  
3

T

0 1
[ ,  ,  ]

M
m m m m

r z ok ok rk rk
m k

u u u B B
 

  u         (S11) 109 

where m
ok  and m

rk  denote the m-th order outgoing and regular cylindrical wave potentials for 110 

displacements, respectively. k=1, 2, and 3 represent the P-, SH-, and SV-waves in the cylindrical coordinate 111 
system, respectively. This series converges rapidly with respect to m, implying that using M terms in the 112 
calculation can produce satisfactory results. m

okB  and m
rkB  are the unknown coefficients for the outgoing 113 

and regular waves, respectively. m
ok  has the following explicit expressions (Pilant, 1979): 114 
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 (S12) 115 

where 2 2
rj j nk k    (j=p or s) represents the wavenumbers in the r-direction. Similarly, the 116 

wavenumbers in the r-direction krj (j=p or s) should satisfy the condition Im(krj)≥0 (j=p or s). Hm
(1)(•) is the 117 

Hankel function of the first kind. The superscript prime represents the derivative with respect to krjr (j=p or 118 
s). 119 

Furthermore, considering the displacement–strain and constitutive relationships, the corresponding 120 
traction vector can be calculated as follows: 121 
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M
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  σ         (S13) 122 

where m
ok  and m

rk  are the m-th order outgoing and regular cylindrical wave potentials for tractions, 123 

respectively. The outgoing cylindrical wave displacement potentials have the following forms (Pilant, 124 
1979): 125 
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 (S14) 126 

The regular cylindrical wave potentials for displacement m
rk  and traction m

rk  can be derived by 127 

directly replacing the Hankel function of the first kind Hm
(1)(•) with the Bessel function of the first kind 128 

Jm
(1)(•) in Eqs. (S12) and (S14), respectively. 129 

In the semi-infinite region, as illustrated in Fig. S2c, only descending waves exist such that Aak=0. 130 
Therefore, the displacement and traction vectors for the semi-infinite region are reduced to the following 131 
formulations from Eqs. (S7) and (S9) as follows: 132 

 
3

1
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x y z dk dk

k
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  u       (S15) 133 

 
3

T
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k
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  σ       (S16) 134 

As shown in Fig. S2d, in the soil layer with a cavity where the tunnel is embedded, ascending, 135 
descending, and outgoing waves exist. Therefore, the displacement and traction vectors for the soil layer 136 
with a cavity in the frequency-wavenumber (ω-λn) domain can be expressed as: 137 
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 u        (S17) 138 

  3 3
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   σ        (S18) 139 

The above formulations show the general solutions of the displacements and tractions for the four 140 
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categories stated in Subsection 1.1, where the boundary conditions have not yet been considered. The 141 
unknown coefficients were determined from the boundary conditions in the following derivations. 142 
S1.4 Interactions between standard soil layers and semi-infinite region 143 

Commonly used techniques to analytically model layered media are the transfer matrix method 144 
proposed by Thomson (1950) and Haskell (1953) and the dynamic stiffness matrix method used by Kausel 145 
(2006) and Schevenels (2007). These techniques have been successfully used in multilayered half-spaces 146 
(He et al., 2017) or tunnels embedded in half-spaces (He et al., 2018). As transformations between plane 147 
waves and cylindrical waves were performed in this study, the transfer matrix method was adopted to 148 
analytically solve the multilayered half-space, which was also applied by He et al. (2018). The coupled 149 
tunnel-soil system is considered homogeneous in the loading direction in the study by He et al. (2018), 150 
whereas it is periodic in the current study. 151 

For the standard interior soil layer, as shown in Figs. S2a and S2b, the state variable 
ˆ lS  (l=i or j) 152 

written in matrix form according to Eqs. (S7) and (S9) yields: 153 

  T T T
ˆ ˆˆ ( ) ( )ˆ ˆ( ) [   ] =
ˆ ˆ( ) ( )

ll l
l l l laa d

l
l l d

a d

x xx x
x x

          

AS u σ M A
A

   
 

 

 
 (S19) 154 

where the superscript l denotes the l-th layer (l=i or j). xl is the x-coordinate in the local coordinate system, 155 

as shown in Fig. S2. 1 2 3

ˆ ˆ ˆ ˆ
( ) ( ) ( ) ( )l l l l

a a a ax x x x    
       . The other matrices have similar matrix forms. Aa

l 156 

and Ad
l are the ascending and descending wave coefficient vectors for the l-th soil layer, respectively, 157 

Aa
l=[Aa1

l Aa2
l Aa3

l]T and Ad
l=[Ad1

l Ad2
l Ad3

l]T. 158 
To determine the unknown coefficients, the boundary and continuous conditions between each part 159 

should be considered. Because the upper interface of the first layer (i=1) is a free surface, the tractions 160 
along this interface should satisfy the following relationship: 161 

  T 1
1

ˆ x H σ 0  (S20) 162 

Substituting Eq. (S19) into Eq. (S20), the following relationship is obtained: 163 

 1 1 1 1 1 1 1
1 1

ˆ ˆ( ) ( )a a d d ad dx H x H    A A R A    (S21) 164 

According to the compatibility and equilibrium conditions, the state variables of the standard interior 165 
layers and semi-infinite region should satisfy the following relationships because no external loads are 166 
applied at these interfaces: 167 

 1 1ˆ ˆ
( 0) ( ),  i i i i

ix x H i n     S S   (S22) 168 

 1 1ˆ ˆ
( ) ( 0),  j j j j

jx H x j n     S S   (S23) 169 

The local coordinate system of the layer above the tunnel differed from that below the tunnel. 170 
Substituting Eq. (S19) into Eq. (S22) and considering each value of i=2, 3, ∙∙∙, n-1, the relationship between 171 
coefficients A1 and An-1 can be derived as follows: 172 

 1 1
(1, 1)

n
n


A T A  (S24) 173 

where the transfer matrix T(1,n-1) is expressed as, 174 

                1 1 2 1 2 3 1 2 1
(1, 1) 2 3 1= 0 0 0n n

n nx x H x x H x x H    
      T M M M M M M  (S25) 175 
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For a semi-infinite region, the unknown coefficients should satisfy Aa
N=0. Similarly, by substituting 176 

Eq. (S19) into Eq. (S23) and considering each value of j=n+1, n+2, ∙∙∙, N, the relationship between the 177 
coefficients AN and An+1 can be derived as follows: 178 

 1
( , 1)

N n
N n


A T A  (S26) 179 

where the transfer matrix T(N,n+1) has the expression, 180 

                1 1 1 1 2 1 2 1
( , 1) 1 2 10 0 0N N N N n n
N n N N nx x H x x H x x H       

            T M M M M M M  (S27) 181 

Based on Eqs. (S21), (S24), and (S26), and Aa
N=0 for the semi-infinite region, the responses of the 182 

multilayered half-space under the spatially periodic harmonic moving load can be solved completely if 183 
there is no tunnel structure. Additional derivations should be performed to consider the effects of the tunnel 184 
structure. 185 
S1.5 Interaction between standard interior layers and layer with a cavity 186 

Three types of waves exist in the soil layer with a cavity: the ascending plane, descending plane, and 187 
outgoing cylindrical waves. To analytically model the coupled tunnel-soil system, transformations between 188 
plane and cylindrical waves should be performed, as summarised by Boström (1991). These transformation 189 
properties were successfully adopted by Yuan et al. (2017) and He et al. (2018) in a tunnel embedded in a 190 
half-space and multilayered half-space, respectively, where these models are homogeneous in the 191 
longitudinal direction. 192 

To couple the standard layer and the layer with a cavity, the outgoing cylindrical wave should be 193 
converted into ascending or descending plane waves. These transformation properties were proposed by 194 
Boström (1991), and the transformations between wave potentials can be written as 195 

 

i
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e1 d
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e1 d
π

y

y

k y
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k y
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oj mj y
xj

T k
k

T k
k

 



 























 (S28) 196 

where the cylindrical waves are converted into ascending and descending plane waves. kxj=kxp if j=1 and 197 

kxj=kxs if j=2, 3. mjT   and mjT   are expressed as 198 
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 (S29) 199 

Substituting Eqs. (S28) and (S29) into Eqs. (S17) and (S18) for layer n with a cavity, the displacement 200 
and traction vectors along its upper interface can be expressed in the following forms after some 201 
manipulations: 202 
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 (S30) 203 

where 1 2 3diag m m m
m

xp xs xs

T T T
k k k

  


 
  

  
T . 204 

Analogously, displacement and traction vectors along the bottom interface can be expressed as 205 
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 (S31) 206 

where 
+ + +

+ 1 2 3diag m m m
m

xp xs xs

T T T
k k k
 

  
  

T . 207 

The compatibility and equilibrium conditions along the upper and bottom interfaces of the layer with a 208 
cavity with adjoining layers can be written as 209 

 
       
       

1 1
1 1

1 1
2 2

ˆ ˆ ˆ ˆ0 ,  0 ,  upper interface
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n n n n
n n

n n n n
n n
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u u σ σ

u u σ σ

   

   
 (S32) 210 

Considering Eqs. (S7), (S9), (S31), (S32), and the formulations in Subsection 1.4, the relationship 211 
between the unknown coefficient An for the plane waves and that Ao=[ Ao

1 Ao
2 ∙∙∙ Ao

M]T
(3(M+1)×1) for the 212 

cylindrical waves for the layer with a cavity can be derived by only matrix manipulation. For simplicity, the 213 
relationship between An and Ao can be expressed as 214 

 
( , )

=n
o

n a
n a

o on d
d

   
    

  
A A

A TA T A A
A T

 (S33) 215 

where ( , )n
oA AT  is a 6×3(M+1) coefficient matrix. 216 

Furthermore, considering Eqs. (S24), (S32), and (S33), the relationship between A1 and Ao is obtained 217 
as follows: 218 

 1
1

( , )o
o A AA T A  (S34) 219 

where 1( , )oA AT  is a 6×3(M+1) coefficient matrix as well. 220 

It can be observed that, if the unknown vector Ao is calculated, the unknown vector A1 for the first 221 
standard layer can be directly determined using Eq. (S34). Subsequently, by substituting A1 into Eq. (S19) 222 
yields the displacement responses of the ground surface induced by a dynamic load. The unknown vector 223 
Ao is determined from the coupling between the layer with a cavity and the hollow cylinder which suffers 224 
from the spatially periodic harmonic moving load at its inner interface. 225 
1.6 Interaction between the layer with a cavity and hollow cylinder 226 

To couple the layer with a cavity and hollow cylinder, the ascending and descending plane wave 227 
potentials should be expanded in terms of regular cylindrical wave potentials. The transformation 228 
properties have been proposed by Boström (1991) and can be written as 229 
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 (S35) 230 

where εm is the Neumann factor, εm=1 for m=0 and εm=2 for m≥1. 231 
Substituting Eq. (S35) into Eqs. (S17) and (S18) for layer n with a cavity, the displacement and 232 

traction vector along the inner interface (r=R+h) of the cavity can be obtained after some manipulations as 233 
follows: 234 
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 (S36) 235 

where n
mC  and n

mD  are 3×3(M+1) matrices. 1 2 3
m m m m
r r r r           and 1 2 3

m m m m
r r r r          . m

o
  and 236 

m
o
  have the following expressions: 237 
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 (S37) 238 

Eq. (S36) can be calculated using the numerical quadrature technique. The state variable n
mS  at the 239 

cavity interface can be defined as: 240 

 
( ) ( )
( ) ( )

n n
n m m
m on n

m m

r R h r R h
r R h r R h

      
          

u CS A
σ D



  (S38) 241 

For a hollow cylinder, the state variable to
mS  can be defined according to Eqs. (S11) and (S13), 242 

expressed as follows: 243 

 
( ) ( ) ( )
( ) ( ) ( )

t m m
to mm o r
m t m m

m o r

r R h r R h r R h
r R h r R h r R h

       
            

uS B
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 (S39) 244 

where 
m

m o
m
r

 
  
 

BB
B

. 245 

According to the compatibility and equilibrium conditions along the interface n to
m mS S  , the following 246 

equation can be obtained 247 

 
1

( )( ) ( )
( )( ) ( )

nm m
m mo r

onm m
mo r

r R hr R h r R h
r R hr R h r R h


       

           

CB A
D

 
 
 
 

 (S40) 248 

The unknown coefficients Bm for the tunnel structure and Ao for the layer with a cavity are related by 249 
Eq. (S40). Once Ao is known, Bm can be immediately calculated. Subsequently, the dynamic responses of 250 
the tunnel structure under the moving load can be determined using Eqs. (S11) and (S13). 251 
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S1.7 Moving load applied at the inner interface of the tunnel structure 252 
The applied external load is periodic in space with a periodicity length L, harmonic in time with a 253 

circular frequency ωl, and moves at a constant speed of v in the z-direction. The force applied at the 254 
inverted arch of the tunnel structure can be mathematically expressed as (Xu and Ma, 2022) 255 

     i i1 2π, , , ( ) ( π) e e ,n lz t
n

np r z t r R z vt
R L

            (S41) 256 

The origin of the moving load is located at (R, π, 0 m). By performing a Fourier transform with respect 257 
to t, the force in the frequency domain can be obtained as 258 

 i1( , , , ) ( ) ( π)e n zp r z r R
vR

        (S42) 259 

Considering the orthogonality of the generalised modal function, the components of the spatially 260 
periodic harmonic moving load can be expressed as follows: 261 

 
1 ( ) ( π),

( , , )
0                             ,

q
r R q n

p r vR
q n

  
 

    
 

  (S43) 262 

This means that only the n-th order components must be considered in the calculation of the spatially 263 
periodic harmonic load. Furthermore, the n-th order component should be expanded in terms of the 264 
trigonometric series, yielding 265 

 
0 0

( , , ) ( ) ( 1) ( ) cos
2π

M M
mm

n m
m m

p r p r R r R m
vR


   

 

        (S44) 266 

Therefore, the external load vector can be expressed as 267 

 
T

( ) ( ) 0 0m mr R p r R    t   (S45) 268 

According to the stress boundary condition of the inner interface of the tunnel structure, the following 269 
formulation can be obtained: 270 

 ( ) ( ) ( )m m m
o r mr R r R r R     B t    (S46) 271 

Substituting Eq. (S40) into Eq. (S46) yields the following equation: 272 

 
1

( )( ) ( )
( ) ( ) ( )

( )( ) ( )

nm m
m m mo r
o r o mnm m
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C A t
D

   
 
 

 
 

 (S47) 273 

This resulted in three equations for each m. After considering m=0, 1, 2, ∙∙∙, M, there are 3(M+1) 274 
equations where there are 3(M+1) unknowns Ao as well. Therefore, the unknown coefficients Ao can be 275 
uniquely determined by solving Eq. (S47). Thereafter, the unknown coefficients for the tunnel structure Bm 276 
and first layer A1 can be derived based on Eqs. (S40) and (S34), respectively. Consequently, the dynamic 277 
response can be constructed by considering the corresponding formulations in Subsection 1.3. Notably, the 278 
formulations derived above were programmed in MATLAB, where M=12 was considered to obtain the 279 
convergence result. A rapid analysis of ground-borne vibrations from a tunnel under a spatially periodic 280 
harmonic moving load can be achieved using this program. 281 

 282 
S2. Material parameters and additional cases in the validation 283 
S2.1 Material parameters 284 

To demonstrate the efficiency and accuracy of the proposed model, the ground-borne vibrations from 285 
the model in which the tunnel is embedded in a homogeneous and multilayered half-space were compared 286 
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