Electronic Supplementary Materials

For https://doi.org/10.1631/jzus.A2300343

Lightweight design and integrated method for manufacturing hydraulic wheel-legged robots

Xu $\mathrm{LI}^{1,2\boxtimes}$, Haoyang YU¹, Huaizhi ZONG², Haibo FENG¹, Yili FU^{1 \boxtimes}

¹State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China ²State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China Xu LI, hitlx@hit.edu.cn

Yili FU, meylfu@hit.edu.cn

Section S1

In the topology optimization process, the design domain is discretized into N finite elements. Each element can be represented by an optimization variable $\rho_e \in (0,1]$ to represent its relative density, where $\rho_e = 1$ denotes a material-filled element, $\rho_e \rightarrow 0$ denotes an void cell, and $e \in 1, ..., N$. These optimization variables can be aggregated into a vector ρ . The equilibrium equation for optimization ρ can be described as:

$$\boldsymbol{K}(\boldsymbol{\rho})\boldsymbol{u} = \boldsymbol{f},\tag{S1}$$

where $K(\rho)$ is the global stiffness matrix of the structure, u represents the global nodal displacement vector, and f represents the external loads acting on the component under the ultimate working condition.

To obtain well-defined structural boundaries, i.e., to confine the final design outcome to encompass solely material and void regions, it becomes imperative to introduce a penalization scheme targeting intermediate values of the optimization variables, aiming to enforce their proximity to the limiting values. The topological optimization problem can be written as:

$$\min_{\boldsymbol{\rho}} \sum_{e=1}^{N} m_{e} [\rho_{e} + \alpha \rho_{e} (1 - \rho_{e})] + (S_{w} \boldsymbol{\rho})^{2} + (S_{b} \boldsymbol{\rho} - \boldsymbol{I})^{2},$$
s.t.
$$\boldsymbol{K}(\boldsymbol{\rho})\boldsymbol{u} = \boldsymbol{f}, \qquad (S2)$$

$$F(\sigma_{e}) \leq \sigma_{y}, \qquad S_{w} \boldsymbol{\rho} = \boldsymbol{0}, S_{b} \boldsymbol{\rho} = \boldsymbol{I}, \qquad \varepsilon \leq \rho_{e} \leq 1,$$

where m_e is the mass of the material-filled element, and α is a penalty factor to produce a non-zero term when the density is at an intermediate value. σ_y is the material yield strength, and the material failure function $F(\sigma_e)$ can be obtained from the von Mises failure criterion:

$$F(\sigma_{e}) = \rho_{e}^{1/2} \sigma_{vm},$$

$$\sigma_{vm}^{2} = \frac{1}{2} \Big[(\sigma_{11} - \sigma_{22})^{2} + (\sigma_{22} - \sigma_{33})^{2} + (\sigma_{33} - \sigma_{11})^{2} \Big]$$

$$+ 3(\sigma_{12}^{2} + \sigma_{23}^{2} + \sigma_{31}^{2}),$$
(S3)

The use of selection matrices S_w and S_b is to confine the material distribution within specific regions, thereby enabling the resulting topological optimization to adhere to essential constraints such as the placement of oil lines and installation dimensions. As a result, we can obtain a 3D conceptual model, but whether the model meets the load conditions requires further finite element analysis. Then the topology structure is modified repeatedly until the part meets the load conditions.

Reference

Zhou M, Rozvany GIN, 1991. The COC algorithm, part II: topological, geometrical and generalized shape optimization. *Computer Methods in Applied Mechanics and Engineering*, 89(1-3):309-336. https://doi.org/10.1016/0045-7825(91)90046-9