

Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering) www.jzus.zju.edu.cn; www.springer.com/journal/11582 E-mail: jzus\_a@zju.edu.cn

# **Electronic Supplementary Materials**

For https://doi.org/10.1631/jzus.A2300361

# Effects of high geotemperature and high altitude on the pressure wave of high-speed trains running in a long tunnel

Lei LIU, Lin JING<sup>⊠</sup>, Tian LI, Kaiyun WANG

State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, China

🖂 Lin JING, jinglin@swjtu.edu.cn

## S1 Introduction



Fig. S1 Geological condition of the tunnel construction (Zhao et al., 2023)

# S2 Numerical simulation and algorithm verification

| Table S1 | Grid parameters for three schemes |
|----------|-----------------------------------|
|----------|-----------------------------------|

| Scheme | Minimum size (m) |             | Total number (million) |
|--------|------------------|-------------|------------------------|
|        | Train surface    | Tunnel wall |                        |
| Coarse | 0.1              | 0.5         | 5.5                    |
| Middle | 0.05             | 0.2         | 7.7                    |
| Fine   | 0.02             | 0.1         | 19.8                   |



Fig. S2 Comparison of pressure variation curves of observation points calculated using different grid schemes: (a) on the tunnel wall; (b) on the train surface



Fig. S3 Comparison of the observation point pressure when trains pass through tunnels: (a) on the tunnel wall; (b) on the train surface



Fig. S4 Comparison of the observation point pressure when two trains pass by each other in a tunnel: (a) on the tunnel wall; (b) on the train surface.

#### S3 Determination of the computational tunnel length

- S3.1 Computational tunnel length for the train passing through the tunnel
- S3.1.1 Pressure wave characteristics in the tunnel



Fig. S5 Propagation processes of pressure waves and pressure variation curves of observation points when trains pass through tunnels: (a) propagation processes of pressure waves. The C, E, N, T denote the compression wave, expansion wave, the tip of the train nose and tail respectively, and the  $x_1$  denotes the position where the expansion wave reflected by the initial compression wave encounters the initial expansion wave for the first time; (b) tunnel midpoint (TU\_25). The grey area denotes the process of the train-passage; (c) train nose tip (TR\_1)

4 | J Zhejiang Univ-Sci A (Appl Phys & Eng)



#### S3.1.2 Determination of tunnel length

Fig. S6 Propagation processes of the pressure waves when trains pass through the 3 km and 5 km tunnels: (a) in the 3 km tunnel; (b) in the 5 km tunnel



Fig. S7 Pressure variation curves of observation points when trains pass through the 3 km and 5 km tunnels: (a) tunnel midpoint  $(TU_{25})$ ; (b) tip of the train nose  $(TR_{1})$ 





Fig. S8 Distributions of  $P_{\text{max}}$  and  $P_{\text{min}}$  along the tunnel and train when trains pass through tunnels of different lengths: (a), (b)  $P_{\text{max}}$  and  $P_{\text{min}}$  along the tunnel; (c), (d)  $P_{\text{max}}$  and  $P_{\text{min}}$  along the train

#### S3.2 Computational tunnel length for two trains passing by each other in a tunnel



## S3.2.1 Pressure wave characteristics in the tunnel

Fig. S9 Propagation processes of pressure waves and pressure variation curves of observation points when two trains pass by each other in a tunnel: (a) Propagation processes of pressure waves. The  $x_2$  and  $x_3$  respectively denote the position where the nose tip of

the train 1 encounters the compression wave for the first time, and compression waves and expansion waves on the same side of the tunnel midpoint encounter for the first time; (b) TU\_25; (c) TR\_1



#### S3.2.2 Determination of tunnel length

Fig. S10 Propagation processes of the pressure waves when two trains pass by each other in the 3 km and 5 km tunnels: (a) in 3 km tunnel; (b) in 5 km tunnel



Fig. S11 Pressure variation curves of observation points when two trains pass by each other in the 3 km and 5 km tunnels: (a)  $TU_25$ ; (b)  $TR_1$ 



Fig. S12 Distributions of  $P_{\text{max}}$  and  $P_{\text{min}}$  along the tunnel and train when two trains pass by each other in tunnels of different lengths: (a), (b)  $P_{\text{max}}$  and  $P_{\text{min}}$  along the tunnel; (c), (d)  $P_{\text{max}}$  and  $P_{\text{min}}$  along the train. TRa and TRb denote the measuring points on the train surface close to the tunnel wall and close to the tunnel centerline respectively

#### S4 Simulation results and discussion

#### S4.1 Effect of high geotemperature on the pressure wave

![](_page_6_Figure_5.jpeg)

Fig. S13 Distributions of  $P_{\text{max}}$  and  $P_{\text{min}}$  along the train when two trains pass by each other in the ambient-temperature tunnel and high-temperature tunnel: (a)  $P_{\text{max}}$ ; (b)  $P_{\text{min}}$ 

![](_page_7_Figure_1.jpeg)

Fig. S14 Pressure variation curves of observation points on the train when two trains pass by each other in the ambient-temperature tunnel and high-temperature tunnel: (a) TR\_1; (b) TR\_3b

![](_page_7_Figure_3.jpeg)

Fig. S15 Variation curve of the pressure difference between observation points TR\_6a and TR\_6b when two trains pass by each other in the ambient-temperature tunnel and high-temperature tunnel. The right part is the enlargement of the middle rectangle in the left part

![](_page_7_Figure_5.jpeg)

![](_page_7_Figure_6.jpeg)

Fig. S16 The pressure difference between observation points TR\_6a and TR\_6b during intersecting in the high-temperature tunnels of different altitudes: (a) variation curve; (b) fitting curve between the peak-peak value and the altitude

#### References

- Zhao KM, Yuan YP, Jiang FJ, et al., 2023. Numerical investigation on temperature–humidity field under mechanical ventilation in the construction period of hot-humid tunnel along the Sichuan–Tibet Railway. *Underground Space*, 8:123-143. https://doi.org/10.1016/j.undsp.2022.04.004
- Liu TH, Chen ZW, Chen XD, et al., 2017b. Transient loads and their influence on the dynamic responses of trains in a tunnel. *Tunnelling and Underground Space Technology*, 66:121-133. https://doi.org/10.1016/j.tust.2017.04.009