Supplementary materials:

Fig. S1 Temporal responses with sub- or super-threshold TFA treatment. (A) Levels of active Bax monomer and Oligomer (MAC) with $5 \mu \mathrm{~mol} / \mathrm{L}$ TFA treatment. The pro-apoptotic Bax forms were maintained at relatively high levels when cells were treated with sub-threshold TFA. (B) Bcl-2 levels with $5 \mu \mathrm{~mol} / \mathrm{L}$ TFA treatment. (C) Active Bax forms (monomers and MAC) in cells treated with $50 \mu \mathrm{~mol} / \mathrm{L}$ TFA. (D) Bcl-2 levels with $50 \mu \mathrm{~mol} / \mathrm{L}$ TFA treatment. Super-threshold TFA treatment will lead to substantially upregulated Bcl-2 and nearly depleted active Bax forms.

Fig. S2 Model diagrams with Nimodipine and TFA. Nimodipine can inhibit Bax expression while increase Bcl-2 expression. Arrows indicate activation/upregulation, blunt arrows denote inhibition.

Table S1 Reactions of model

Reactions	Description	$k+$	$k-$
InBax+Act->AcBax+Act	Act-mediated InBax activation	k_{1}	-
AcBax+Bcl2<->AcBaxBcl2	AcBax-Bcl2 dimerization and dissociation	k_{2}	k_{3}
Act+Bcl2<->ActBcl2	Act-Bcl2 dimerization and dissociation	k_{4}	k_{5}
AcBax+ActBcl2<->AcBaxBcl2+Act	Displacement between AcBax and Act	k_{6}	k_{7}
AcBax->InBax	AcBax inactivation	k_{8}	-
Ena+Bcl2<->EnaBcl2	Ena-Bcl2 dimerization and dissociation	k_{9}	k_{10}
Act+EnaBcl2<->ActBcl2+Ena	Displacement between Act and Ena	k_{12}	k_{11}
AcBax+EnaBcl2<->AcBaxBcl2+Ena	Displacement between AcBax and Ena	k_{14}	k_{13}
InBax+AcBax->MAC	Bax auto-activation and dimerization	k_{15}	
$2 A c B a x<->M A C ~$	AcBax dimerization and dissociation	k_{16}	k_{17}
InBax<->Ф	InBax degradation and production	u_{1}	p_{1}
AcBax->Ф	AcBax degradation	u_{2}	-
Act<->Ф	Act degradation and production	u_{3}	p_{2}
Bcl2<->Ф	Bcl-2 degradation and production	u_{4}	$p_{\text {Bcl-2 }}$
ActBcl2->Ф	ActBcl2 degradation	u_{5}	-
AcBaxBcl2->Ф	AcBaxBcl2 degradation	u_{6}	-
Ena<->Ф	Ena degradation and production	u_{7}	p_{3}
EnaBcl2->Ф	EnaBcl2 degradation	u_{8}	-
MAC->Ф	MAC degradation	u_{9}	-

Abbreviations used: InBax (Inactive Bax/Bak), Act (Activator), AcBax (Activated Bax/Bak), Bcl2 (Anti-apoptotics), AcBaxBcl2 (Activated Bax/Bak-Bcl2 dimer), ActBcl2 (Activator-Bcl2 dimer), Ena (Enabler), EnaBcl2 (Enabler-Bcl2 dimer), MAC (Bax/Bak pore), Φ (null). Parametric expression " p " represents production, while " u " donates degradation. Parameter values were listed in Table S3.
In model with TFA treatment only, $p_{\text {Bcl- } 2}=p_{\text {TFA }} \times \mathrm{Nrf} 2_{\text {nuc }} /\left(\mathrm{Nrf} 2_{\text {nuc }}+K_{\text {Nrf }}\right), \mathrm{Nrf} 2_{\text {nuc }}=\left[k_{\text {basal }}+\left(1-k_{\text {basal }}\right) \times \mathrm{TFA} \times k_{\text {in }} /\left(\mathrm{TFA} \times k_{\text {in }}+k_{\text {out }}\right)\right] \times \mathrm{Nrf} 2_{\mathrm{T}}$. $\mathrm{Nrf} 2_{\text {nuc }}$ is the nuclear $\mathrm{Nrf2} \mathrm{Nrf2}_{\mathrm{T}}$ is the total Nrf 2 concentration.
In model with both TFA and Nimodipine treatment, $p_{\text {Bcl- } 2}=p_{\text {TFA }} \times \mathrm{Nrf2}_{\text {nuc }} /\left(\mathrm{Nrf2}_{\text {nuc }}+K_{\text {Nrf2 }}\right)+p_{\text {Nimo }} \times \mathrm{Nimo} /(E c+\mathrm{Nimo})$, $\mathrm{Nrf}_{\text {nuc }}=\left[k_{\text {basal }}+\left(1-k_{\text {basal }}\right) \times \mathrm{TFA} \times k_{\text {in }} /\left(\mathrm{TFA} \times k_{\text {in }}+k_{\text {out }}\right)\right] \times \mathrm{Nrf2}_{\text {T }}$. Meanwhile, $p_{1}{ }^{\prime}=p_{1} \times E c /(E C+\mathrm{Nimo})$.
$\mathrm{d}[$ InBax $] / \mathrm{d} t=J_{\text {InBax }}-J_{1}+J_{5}$
$\mathrm{d}[$ AcBax $] / \mathrm{d} t=J_{A c B a x}+J_{1}-J_{2}-J_{4}-J_{5}+J_{8}-J_{9}-2 \cdot J_{10}$
$\mathrm{d}[B c l 2] / \mathrm{d} t=J_{B c l 2}-J_{2}-J_{3}-J_{6}$
$\mathrm{d}[A c t] / \mathrm{d} t=J_{A c t}-J_{3}+J_{4}+J_{7}$
$\mathrm{d}\left[\right.$ ActBcl2] $/ \mathrm{d} t=J_{\text {ActBcl2 }}+J_{3}-J_{4}-J_{7}$
$\mathrm{d}\left[\right.$ AcBaxBcl2] $/ \mathrm{d} t=J_{\text {AcBaxBcl2 }}+J_{2}+J_{4}-J_{8}$
$\mathrm{d}[E n a] / \mathrm{d} t=J_{E n a}-J_{6}-J_{7}-J_{8}$
$\mathrm{d}\left[\right.$ EnaBcl2] $/ \mathrm{d} t=J_{\text {EnaBcl2 }}+J_{6}+J_{7}+J_{8}$
$\mathrm{d}[M A C] / \mathrm{d} t=J_{M A C}+J_{9}+J_{10}$

$$
\begin{array}{ll}
J_{\text {InBax }}=p_{1}-u_{1} \cdot[\text { InBax }] & J_{1}=k_{1} \cdot[\text { InBax }] \cdot[\text { Act }] \\
J_{\text {AcBax }}=-u_{2} \cdot[\text { AcBax }] & J_{2}=k_{2} \cdot[\text { AcBax }] \cdot[\text { Bcl } 2]-k 3 \cdot[\text { AcBaxBcl } 2] \\
J_{\text {Act }}=p_{2}-u_{3} \cdot[\text { Act }] & J_{3}=k_{4} \cdot[\text { Act }] \cdot[\text { Bcl } 2]-k_{5} \cdot[\text { ActBcl } 2] \\
J_{\text {Bcl2 } 2}=p_{\text {Bcl- }-2}-u_{4} \cdot[\text { Bcl } 2] & J_{4}=k_{6} \cdot[\text { AcBax }] \cdot[\text { ActBcl } 2]-k_{7} \cdot[\text { AcBaxBcl } 2] \cdot[\text { Act }] \\
J_{\text {ActBcl2 } 2}=-u_{5} \cdot[\text { ActBcl2] } & J_{5}=k_{8} \cdot[\text { AcBax }] \\
J_{\text {AcBaxBcl2 }}=-u_{6} \cdot[\text { AcBaxBcl } 2] & J_{6}=k_{9} \cdot[\text { Ena }] \cdot[\text { Bcl2 }]-k_{10} \cdot[\text { EnaBcl } 2] \\
J_{\text {Ena }}=p_{3}-u_{7} \cdot[\text { Ena }] & J_{7}=k_{11} \cdot[\text { Ena }] \cdot[\text { ActBcl2 }]-k_{12} \cdot[\text { Act }] \cdot[\text { EnaBcl } 2] \\
J_{\text {EnaBcl2 } 2}=-u_{8} \cdot[\text { EnaBcl2] } & J_{8}=k_{13} \cdot[\text { Ena }] \cdot[\text { AcBaxBcl2 }]-k_{14} \cdot[\text { AcBax }] \cdot[\text { EnaBcl } 2] \\
J_{\text {MAC }}=-u_{9} \cdot[\text { MAC }] & J_{9}=k_{15} \cdot[\text { InBax }] \cdot[\text { AcBax }] \\
& J_{10}=k_{16} \cdot[\text { AcBax }]^{2}-k_{17} \cdot[\text { MAC }]
\end{array}
$$

Table S3 Model parameters

Parameters	Description	Value
k_{1}	Act-mediated Activation of Bax	0.1
k_{2}	Dimerization between AcBax and $\mathrm{Bcl2}$	1
k_{3}	Dissociation of $\mathrm{Bax}-\mathrm{Bcl} 2$ dimer	0.001
k_{4}	Dimerization between Act and Bcl 2	10
k_{5}	Dissociation of Act-Bcl2 dimer	0.06
k_{6}	AcBax displace Act from Act-Bcl2 dimer	0.5
k_{7}	Act displace AcBax from $\mathrm{Bax}-\mathrm{Bcl} 2$ dimer	0.01
k_{8}	Bax/Bak inactivation	0.001
k_{9}	Dimerization between Ena and Bcl2	0.1
k_{10}	Dissociation of Ena-Bcl2 dimer	0.001
k_{11}	Ena displace Act from Act-Bcl2 dimer	0.5
k_{12}	Act displace Ena from Ena-Bcl2 dimer	0.05
k_{13}	Ena displace AcBax from $\mathrm{Bax}-\mathrm{Bc} 2$ dimer	10
k_{14}	AcBax displace Ena from Ena-Bcl2 dimer	0.5
k_{15}	Bax Auto-activation \& dimerization	0.2
k_{16}	Homo-dimerization of AcBax	0.2
k_{17}	Dissociation of Bax homo-dimer	0.01
p_{1}	Production rate of InBax	0.04
p_{2}	Production rate of Act	0.002
$p_{\text {Bcl-2 }}$	Production rate of Bcl 2	1
p_{3}	Production rate of Ena	0.002
u_{1}	Degradation rate of InBax	0.03
u_{2}	Degradation rate of AcBax	0.002
u_{3}	Degradation rate of Act	0.01
u_{4}	Degradation rate of Bcl 2	0.002
u_{5}	Degradation rate of Act-Bcl2 dimer	0.002
u_{6}	Degradation rate of Bax-Bcl2 dimer	0.01
u_{7}	Degradation rate of Ena	0.001
u_{8}	Degradation rate of Ena-Bcl2 dimer	0.005
u_{9}	Degradation rate of Bax oligomer	0.01
$p_{\text {TFA }}$	$\mathrm{Bcl}-2$ production rate by TFA treatment	0.03
$k_{\text {basal }}$	Basal Nrf2 nuclear fraction	0.2402
$k_{\text {in }}$	Nrf2 nuclear import rate	0.2099
$k_{\text {out }}$	Nrf2 nuclear import rate	0.4992
Nrf2 ${ }_{\text {T }}$	Total Nrf2 concentration	1
$K_{\text {Nrf2 }}$	Threshold concentration for $\mathrm{Nrf} 2_{\text {nuc }}$	1.6779
$p_{\text {Nimo }}$	$\mathrm{Bcl}-2$ production rate by Nimodipine	0.01
Ec	Threshold concentration for Nimodipine	70
Initial conditions	Description	Value
InBax	Inactivated Bax	0.47306
AcBax	Activated Bax	0.18182
Act	Activator	0.18577
Bcl2	$\mathrm{Bcl}-2$ protein	0.00420
ActBcl2	Activator-Bcl-2 complex	0.07114
ActBaxBcl2	Activated Bax and $\mathrm{Bcl}-2$ complex	0.16313
Ena	Enabler	0.02516
EnaBcl2	Enabler-Bcl-2 complex	0.39497
MAC	Mitochondrial apoptosis channel	1.19066

Units: The total amounts of different species are in units of $\mu \mathrm{mol} / \mathrm{L}$. The first and second order rate constants are expressed in units of min^{-1} and $\mu \mathrm{L} /(\mathrm{mol} \cdot \mathrm{min})$, respectively. The production rate constants are expressed in unit of $\mu \mathrm{mol} /(\mathrm{L} \cdot \mathrm{min})$. $p_{\text {Bcl-2 }}$ differs in distinct models as defined in Table S1.
The parameters $k_{1}-k_{17}, p_{1}, p_{3}, u_{1}-u_{9}$ were assigned according to our previous work (Sun et al., 2009).
The initial conditions correspond to an OGD/R induced apoptotic state with TFA or Nimodipine $=0 \mu \mathrm{~mol} / \mathrm{L}$.

Reference

Sun T, Chen C, Wu Y, et al., 2009. Modeling the role of p53 pulses in DNA damage- induced cell death decision. BMC Bioinformatics, 10:190. https://doi.org/10.1186/1471-2105-10-190

