# Detection, Isolation and Characterization of a Novel Impurity from Several Folic Acid Products

Qirong SHEN<sup>1,3\*</sup>, Quan HE<sup>1\*</sup>, Yuanjiang PAN<sup>2</sup>, Cuirong SUN<sup>1</sup>⊠

<sup>1</sup>College of Pharmaceutical Sciences, Zhejiang University, Hangzhoug 310058, China <sup>2</sup>Department of Chemistry, Zhejiang University, Hangzhou 310027, China <sup>3</sup>Hangzhou Qianyuan Pollen Pharmaceutical CO., Ltd., Hangzhou 310018, China

### Supporting Information includes the following items: Materials and methods

Table S1. The identified non-pharmacopeial impurities
Table S2. The HPLC retention time of folic acid and the detected impurities
Table S3. Comparison of the chemical shift data of impurity K and folic acid
Fig. S1. The detection of the impurities K and G in several folic acid products
Fig. S2. The molecular formula prediction of the impurity K
Fig. S3. The DEPT-135 spectrum of the impurity K
Fig. S4. The HSQC spectrum of the impurity K
Fig. S5. The H/D exchange experiment for the impurity K
Fig. S6. The 1H-1H COSY spectrum of the impurity K
Fig. S7. The HMBC spectrum of the impurity K
Fig. S8. The chemical resonance structures of the impurity K
Fig. S9. Comparison of the <sup>1</sup>H-NMR spectra of the impurities K, D, and G

Fig. S10. The UV-Vis spectra of the impurities K, D, and G

#### Materials and methods

#### Chemicals and materials

The commercial folic acid API product (batch no. 031611001) was obtained from Hebei Jiheng Group Pharmaceutical Co., Ltd (Hengshui, Hebei, China). Reagent-grade folic acid products were purchased from several reagent companies including Shanghai Aladdin Bio-Chem Technology Co., Ltd (batch no. K1908009), Shanghai Macklin Biochemical Co., Ltd (batch no. C11379431), and Shanghai Zhanyun Chemical Co., Ltd (batch no. 201020). Ammonium acetate (CH<sub>3</sub>COONH<sub>4</sub>), dipotassium hydrogen phosphate (K<sub>2</sub>HPO<sub>4</sub>) and acetic acid were purchased from Sigma-Aldrich. Methanol and acetonitrile of chromatographic grade were purchased from J&K Scientific Ltd. Deuterated dimethyl sulfoxide (DMSO-d<sub>6</sub>) containing 0.03% (v/v) TMS as internal standard and deuterated water (D<sub>2</sub>O, purity 99.9%) were purchased from Cambridge Isotope Laboratories, Inc. Distilled water was purchased from A.S. Watson Group (Hong Kong) Ltd. The folic acid impurity D was purchased from European Directorate for the Quality of Medicines & HealthCare (Strasbourg, France). The folic acid impurity G was purchased from Hangzhou Zebon Technology Co., Ltd.

#### High-performance liquid chromatography (HPLC) analysis of folic acid products

The folic acid products were analyzed in an isocratic mode using the Agilent 1260 Infinity II HPLC system equipped with a model G7112B pump, a G7115A diode array detector (DAD), a SCIEX X500 QTOF mass detector, and the Agilent OpenLAB software. The analysis method was based on the method of the European Pharmacopoeia 9.5 (The European Pharmacopoeia Commission, 2018) with some modifications for avoiding the damaging effect of phosphate buffer on mass detector and shortening analysis time. In brief, an ACE Excel SuperC18 ( $4.6 \times 250 \text{ mm}$ ,  $5 \mu \text{m}$ ) was used for analysis with the column temperature set at 20 °C. The folic acid products were dissolved in 0.1% sodium carbonate. The mobile phase was a mixture of an aqueous buffer and methanol (3/1, v/v). The aqueous buffer was 100 mM ammonium acetate at pH 5.8 (adjusted with acetic acid). The flow rate was set at 0.7 mL·min<sup>-1</sup>, and the UV-Vis detection wavelength was set at 317 nm. The MS parameters were optimized as follows: ionspray voltage, 5500 V; ion source gas 1 and 2 (nitrogen), 55 psi; ion source temperature, 550 °C; CAD gas, 8; ion accumulated time, 0.1s; declustering potential voltage, 80 V; collision energy, 10 V. Accurate mass was calibrated using ESI Positive Calibration Solution for the SCIEX X500 QTOF System. Retention time of folic acid and all the impurities detected by HPLC was calculated according to the results of 4 independent analyses.

#### **Obtaining impurity K**

Impurity K was isolated from 100g of the folic acid product from Shanghai Aladdin Bio-Chem Technology Co., Ltd using the Dynamic Axial Compression (DAC) preparative system equipped with a reversed-phase C18 Dynamic Axial Compression column (50 mm diameter, 8  $\mu$ m), two NP7000 serials pumps, and an NU3000 serials UV/VIS detector. The folic acid product was dissolved in 0.1% (w/v) sodium carbonate and then loaded onto the column. The flow rate was set at 50.0 mL·min<sup>-1</sup>. The UV-Vis detection wavelengths were set at 280 and 317 nm. A gradient

was used for sample elution: 0-35 min, 88% phase A; 35-36 min, 88-85% phase A; 36-56 min, 85% phase A. The phase A was 10 mM K<sub>2</sub>HPO<sub>4</sub> (pH 9.0) and the phase B was methanol. The impurity K fraction collected at 43-46 min was concentrated under reduced pressure to 20 mL. The pH value of the concentrated elute was adjusted to 5.0 using diluted hydrochloric acid and the impurity K was then precipitated. The precipitate was collected through centrifugation, desalinated with water and freeze-dried to obtain the impurity K sample (4.9 mg, yield 0.005%). The purity of the impurity K sample was determined according to the results of 4 independent HPLC analyses.

#### Structural characterization of impurity K

Multidimensional NMR spectroscopic analysis was performed on a Bruker Ascend TM 500M instrument using DMSO-d<sub>6</sub> containing TMS as solvent. The concentration of the impurity K for NMR analysis was 5 mg·mL<sup>-1</sup>. <sup>1</sup>H and <sup>13</sup>C NMR experiments were performed at 500 MHz and 125 MHz, respectively. <sup>1</sup>H and <sup>13</sup>C chemical shifts ( $\delta$ ) were reported in ppm. The data were obtained and analyzed using Bruker ICON software (Bruker Analytik, GmbH, Germany). The H/D exchange experiment was performed by adding several drops of D<sub>2</sub>O into the sample-containing NMR tube and recording the NMR spectrum again.

High-resolution mass spectrometric analysis was carried out in the positive ion mode (ES+) on the SCIEX X500 QTOF System equipped with an electrospray ionization (ESI) source. The isolated impurity K sample was dissolved in acetonitrile ( $0.24 \text{ mg} \cdot \text{mL}^{-1}$ ). Sample injection volume was 1 µL. The HRMS parameters were the same as those described in the above HPLC-UV/Vis-MS analysis. The MS/MS parameters were set as follows: mass range 50-1000 Da; declustering potential 80 V; DP spread 0 V; accumulation time 0.05 sec; collision energy 35 V; CE spread 15 V.

The UV-Vis spectra at 190-400 nm of the impurity K and folic acid were recorded using the G7115A DAD during the HPLC analysis (solvent: 1/3 100 mM CH<sub>3</sub>COONH<sub>4</sub> (pH 5.8)/CH<sub>3</sub>OH, v/v). Infrared spectroscopy analysis (KBr pellet method) was conducted with an Agilent Cary 630 FT-IR spectrometer (400–4000 cm<sup>-1</sup>).

| Table S1 The identified non-pharm | macopeial impurities |
|-----------------------------------|----------------------|
|-----------------------------------|----------------------|

| Peak No. | RT    | Identified structure     | m/z                          | Source                                                                |
|----------|-------|--------------------------|------------------------------|-----------------------------------------------------------------------|
| 1        | 4.140 | о соон о                 | [M+H] <sup>+</sup> 517.1903  | CAS: 19360-00-0                                                       |
|          |       |                          | [M+Na] <sup>+</sup> 593.1746 | Effectiveness of conjugated forms of folic acid in the treatment of   |
|          |       |                          | [M+K] <sup>+</sup> 609.1461  | tropical sprue. By Suarez, Ramon M.; Welch, Arnold D.; Heinle, Robert |
|          |       |                          | Fragments                    | W.; Suarez, Ramon M., Jr.; Nelson, Evelyn M.                          |
|          |       |                          | 295.0939                     | From Journal of Laboratory and Clinical Medicine (1946), 31,          |
|          |       |                          | 176.0574                     | 1294-1304.                                                            |
| 2        | 4.438 | О Н СООН                 | [M+H] <sup>+</sup> 443.1309  | CAS: 25663-25-6                                                       |
|          |       |                          | [M+K] <sup>+</sup> 481.0860  | Pteridine chemistry. II. The action of excess nitrous acid upon       |
|          |       |                          | Fragments                    | pteroylglutamic acid and derivatives. By Angier, Robert B.; Boothe,   |
|          |       |                          | 296.0779                     | James H.; Mowat, John H.; Waller, Coy W.; Semb, Joseph                |
|          |       |                          | 177.0416                     | From Journal of the American Chemical Society (1952), 74, 408-11.     |
|          |       |                          | 106.0401                     |                                                                       |
| 3        | 6.434 | ₽ <b>Ң</b> соон          | [M+H] <sup>+</sup> 456.1620  | CAS: 6810-75-9                                                        |
|          |       | о по соон                | [M+K] <sup>+</sup> 494.1178  | Anthranilic acid as an intermediate in the biosynthesis of            |
|          |       |                          | Fragments                    | tryptophan by Bacterium typhosum. By Rydon, H. N.                     |
|          |       | $H_2N$ N N $\rightarrow$ | 309.1086                     | From British Journal of Experimental Pathology (1948), 29, 48-57.     |
|          |       |                          | 148.0511                     |                                                                       |
| 4        | 9.422 | Isomer of impurity H     | [M+H] <sup>+</sup> 690.7278  | https://www.pharmaffiliates.com/en/parentapi/folic-acid-impurities    |
|          |       |                          | [M+K] <sup>+</sup> 728.1836  |                                                                       |
|          |       |                          | Fragments                    |                                                                       |
|          |       | О СООН                   | 543.1739                     |                                                                       |
|          |       |                          | 378.1327                     |                                                                       |

|   |        |                           | 295.0942                    |                                                                       |
|---|--------|---------------------------|-----------------------------|-----------------------------------------------------------------------|
| 5 | 15.433 | Он                        | [M+H] <sup>+</sup> 384.1428 | CAS: 897045-35-1                                                      |
|   |        | O N COOH                  | [M+K] <sup>+</sup> 422.0981 | Analogs of pteroylglutamic acid. IV. Replacement of glutamic acid     |
|   |        |                           | Fragments                   | by other amino acids. By Wright, Wm. B., Jr.; Cosulich, Donna B.;     |
|   |        |                           | 295.0940                    | Fahrenbach, Marvin J.; Waller, Coy W.; Smith, James M., Jr.;          |
|   |        | H                         | 176.0566                    | Hultquist, Martin E.                                                  |
|   |        |                           | 120.0449                    | From Journal of the American Chemical Society (1949), 71,             |
|   |        |                           |                             | 3014-17.                                                              |
| 6 | 16.795 | 0                         | [M+H] <sup>+</sup> 312.1224 | CAS: 109018-57-7                                                      |
|   |        | Q NH <sub>2</sub>         | [M+K] <sup>+</sup> 350.0754 | Efficient Syntheses of Pyrofolic Acid and Pteroyl Azide, Reagents for |
|   |        |                           | Fragments                   | the Production of Carboxyl-Differentiated Derivatives of Folic Acid.  |
|   |        | H H                       | 295.0940                    | By Luo, Jin; Smith, Michael D.; Lantrip, Douglas A.; Wang, Susan;     |
|   |        | H <sub>2</sub> N N N<br>H | 176.0566                    | Fuchs, P. L.                                                          |
|   |        |                           | 120.0449                    | From Journal of the American Chemical Society (1997), 119(42),        |
|   |        |                           |                             | 10004-10013.                                                          |
| 7 | 19.302 | О Н, соон                 | [M+H] <sup>+</sup> 456.1261 | CAS: 39707-61-4                                                       |
|   |        |                           | [M+K] <sup>+</sup> 494.0816 | Synthesis of pteridine-6-carboxamides. 9-Oxofolic acid and 9-         |
|   |        |                           | Fragments                   | oxoaminopterin. By Nair, M. G.; Baugh, Charles M.                     |
|   |        | $  H_2 N' N' N'$<br>H     | 309.0730                    | From Journal of Organic Chemistry (1973), 38(12), 2185-9.             |
|   |        |                           | 162.0411                    |                                                                       |
|   |        |                           | 121.0290                    |                                                                       |

| Compounds    | 1 <sup>st</sup> measurement | 2 <sup>nd</sup> measurement | 3 <sup>rd</sup> measurement | 4 <sup>th</sup> measurement | Average | Standard Deviation |
|--------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------|--------------------|
| Folic acid   | 4.874                       | 4.872                       | 4.871                       | 5.052                       | 4.917   | 0.090              |
| Impurity A   | 3.560                       | 3.560                       | 3.559                       | 3.505                       | 3.546   | 0.027              |
| Impurity D   | 12.219                      | 12.232                      | 12.226                      | 12.429                      | 12.277  | 0.102              |
| Impurity G   | 10.326                      | 10.338                      | 10.337                      | 10.325                      | 10.332  | 0.007              |
| Impurity H   | 7.756                       | 7.777                       | 7.777                       | 7.817                       | 7.782   | 0.026              |
| Impurity FOP | 7.283                       | 7.289                       | 7.289                       | 7.247                       | 7.277   | 0.020              |
| Impurity K   | 20.280                      | 20.321                      | 20.311                      | 20.387                      | 20.325  | 0.045              |
| Others       |                             |                             |                             |                             |         |                    |
| 1            | 4.145                       | 4.148                       | 4.148                       | 4.140                       | 4.145   | 0.004              |
| 2            | 4.374                       | 4.378                       | 4.378                       | 4.438                       | 4.392   | 0.031              |
| 3            | 6.265                       | 6.275                       | 6.275                       | 6.434                       | 6.312   | 0.081              |
| 4            | 9.446                       | 9.464                       | 9.465                       | 9.422                       | 9.449   | 0.020              |
| 5            | 15.452                      | 15.465                      | 15.425                      | 15.423                      | 15.441  | 0.021              |
| 6            | 16.886                      | 16.890                      | 16.888                      | 16.795                      | 16.865  | 0.047              |
| 7            | 19.384                      | 19.396                      | 19.390                      | 19.302                      | 19.368  | 0.044              |

Table S2The HPLC retention time (min) of folic acid and the detected impurities

| Position | lmpu<br>(DMSO-d₀                        | rity K<br>as solvent)             | Folic acid*<br>(DMSO-d₀ as solvent)     |                                   |  |
|----------|-----------------------------------------|-----------------------------------|-----------------------------------------|-----------------------------------|--|
| No.      | <sup>1</sup> Η ( <i>δ<sub>H</sub></i> ) | <sup>13</sup> C (δ <sub>C</sub> ) | <sup>1</sup> Η ( <i>δ<sub>H</sub></i> ) | <sup>13</sup> C (δ <sub>C</sub> ) |  |
| 1        | 11.30 (NH)                              | /                                 | /                                       | /                                 |  |
| 2        | 6.50 (NH <sub>2</sub> )                 | 151.90                            | /                                       | 156.16                            |  |
| 3        | /                                       | /                                 | /                                       | /                                 |  |
| 4        | /                                       | 160.73                            | /                                       | 161.27                            |  |
| 4a       | /                                       | 122.34                            | /                                       | 127.95                            |  |
| 5        | /                                       | /                                 | /                                       | /                                 |  |
| 6        | /                                       | 150.74                            | /                                       | 148.61                            |  |
| 7        | /                                       | 144.76                            | 8.75                                    | 148.61                            |  |
| 8        | /                                       | /                                 | /                                       | /                                 |  |
| 8a       | /                                       | 151.56                            | /                                       | 153.82                            |  |
| 9        | 2.62                                    | 21.69                             | 4.59                                    | 45.92                             |  |
| 10       | 8.71 (NH)                               | /                                 | 7.02                                    | /                                 |  |
| 11       | /                                       | 145.39                            | /                                       | 150.79                            |  |
| 12       | 7.98                                    | 117.34                            | 6.74                                    | 111.22                            |  |
| 13       | 7.86                                    | 130.04                            | 7.75                                    | 129.00                            |  |
| 14       | /                                       | 122.53                            | /                                       | 121.32                            |  |
| 15       | 7.86                                    | 130.04                            | 7.75                                    | 129.00                            |  |
| 16       | 7.98                                    | 117.34                            | 6.74                                    | 111.22                            |  |
| 17       | 12.48 (OH)                              | 167.04                            | /                                       | 166.44                            |  |

 Table S3
 Comparison of the chemical shift data of impurity K and folic acid

\* The chemical shift data of folic acid was obtained from the work of Rossi *et al* (Rossi et al., 1992).



Fig. S1 The detection of the impurities K and G in the folic acid products obtained from (a) Shanghai Aladdin Bio-Chem Technology Co., Ltd; (b) Shanghai Macklin Biochemical Co., Ltd; (c) Shanghai Zhanyun Chemical Co., Ltd.

## 👑 🗴 🤇 🗖 🗖 📾

Mass Property AA Property Mass Accuracy Isotopic Distribution Elemental Composition Hypermass Unit Conversion Custom Elements AA List AA Modifications

| Measured m/z:     | 313.10410 | Calculate |   | Formula    | m/z       | Error (ppm) |
|-------------------|-----------|-----------|---|------------|-----------|-------------|
| Charge state:     | 1         |           | 1 | C14H13N6O3 | 313.10436 | -0.8        |
| Min. composition: |           |           | 2 | C13H17N2O7 | 313.10303 | 3.4         |
| Mana              |           |           | 3 | C12H11N9O2 | 313.10302 | 3.4         |
| Max. composition  |           |           | 4 | C16H15N3O4 | 313.10571 | -5.1        |
| Max. error:       | 10.0      | ppm 🗸     | 5 | C11H15N506 | 313.10168 | 7.7         |
| Min. RDB:         | -0.5      |           | 6 | C25H13     | 313.10118 | 9.3         |
| Max. RDB:         | 50.0      |           | 7 | C17H11N7   | 313.10704 | -9.4        |
| Electron state:   | Both ~    |           | 8 | C18H1705   | 313.10705 | -9.4        |
|                   |           |           |   |            |           |             |

Fig. S2 The molecular formula prediction of the impurity K by the QTOF-MS software.





Fig. S3 The DEPT-135 spectrum of the impurity K.







Fig. S5 The HSQC spectrum of the impurity K. The C-H one-bond correlations are marked in red circles.



Fig. S6 The <sup>1</sup>H-<sup>1</sup>H COSY spectrum of the impurity K. The H-12/H-13 and H-15/H-16 three-bond correlations are marked in red circles.



Fig. S7 The HMBC spectrum of the impurity K. The five-bond H-9/C-4a, four-bond H-10/C-4a, three-bond H-10/C-6, three-bond H-9/C-6, and two-bond H-9/C-7 correlations are particularly marked in red circles, which clearly demonstrate the direct linkage of N-10 to C-6 and the direct linkage of C-9 to C-7.



Fig. S8 The chemical resonance structures of the impurity K.



Fig. S9 Comparison of the <sup>1</sup>H-NMR spectra of the impurities K, D, and G. (a) Comparison of impurities K and D; (b) comparison of impurities K and G.



Fig. S10 The UV-Vis spectra of the impurities K, D, and G.

#### References

Rossi C, Donati A, Ulgiati S, et al., 1992. Structural investigation of folic acid by nmr proton relaxation and molecular mechanics analysis. *Bulletin of Magnetic Resonance*, 14(1-4):181-185.