Full Text:  <1037>

Summary:  <176>

CLC number: TN43

On-line Access: 2023-05-06

Received: 2022-03-01

Revision Accepted: 2022-09-13

Crosschecked: 2023-05-06

Cited: 0

Clicked: 1162

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ayoub SADEGHI

https://orcid.org/0000-0001-9904-9813

Hossein GHASEMIAN

https://orcid.org/0000-0002-8069-8845

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Efficient and optimized approximate GDI full adders based on dynamic threshold CNTFETs for specific least significant bits


Author(s):  Ayoub SADEGHI, Razieh GHASEMI, Hossein GHASEMIAN, Nabiollah SHIRI

Affiliation(s):  Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz 7198774731, Iran; more

Corresponding email(s):  H.ghasemian@sutech.ac.ir

Key Words:  Carbon nanotube field-effect transistor (CNTFET); Optimization algorithm; Nondominated sorting based genetic algorithm II (NSGA-II); Gate diffusion input (GDI); Approximate computing


Share this article to: More <<< Previous Paper|Next Paper >>>

Ayoub SADEGHI, Razieh GHASEMI, Hossein GHASEMIAN, Nabiollah SHIRI. Efficient and optimized approximate GDI full adders based on dynamic threshold CNTFETs for specific least significant bits[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2200077

@article{title="Efficient and optimized approximate GDI full adders based on dynamic threshold CNTFETs for specific least significant bits",
author="Ayoub SADEGHI, Razieh GHASEMI, Hossein GHASEMIAN, Nabiollah SHIRI",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2200077"
}

%0 Journal Article
%T Efficient and optimized approximate GDI full adders based on dynamic threshold CNTFETs for specific least significant bits
%A Ayoub SADEGHI
%A Razieh GHASEMI
%A Hossein GHASEMIAN
%A Nabiollah SHIRI
%J Frontiers of Information Technology & Electronic Engineering
%P 599-616
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2200077"

TY - JOUR
T1 - Efficient and optimized approximate GDI full adders based on dynamic threshold CNTFETs for specific least significant bits
A1 - Ayoub SADEGHI
A1 - Razieh GHASEMI
A1 - Hossein GHASEMIAN
A1 - Nabiollah SHIRI
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 599
EP - 616
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2200077"


Abstract: 
Carbon nanotube field-effect transistors (CNTFETs) are reliable alternatives for conventional transistors, especially for use in approximate computing (AC) based error-resilient digital circuits. In this paper, CNTFET technology and the gate diffusion input (GDI) technique are merged, and three new AC-based full adders (FAs) are presented with 6, 6, and 8 transistors, separately. The nondominated sorting based genetic algorithm II (NSGA-II) is used to attain the optimal performance of the proposed cells by considering the number of tubes and chirality vectors as its variables. The results confirm the circuits’ improvement by about 50% in terms of power-delay-product (PDP) at the cost of area occupation. The Monte Carlo method (MCM) and 32-nm CNTFET technology are used to evaluate the lithographic variations and the stability of the proposed circuits during the fabrication process, in which the higher stability of the proposed circuits compared to those in the literature is observed. The dynamic threshold (DT) technique in the transistors of the proposed circuits amends the possible voltage drop at the outputs. Circuitry performance and error metrics of the proposed circuits nominate them for the least significant bit (LSB) parts of more complex arithmetic circuits such as multipliers.

基于特定最低有效位动态阈值碳纳米管场效应晶体管的高效优化近似栅极扩散输入全加器

Ayoub SADEGHI1,Razieh GHASEMI2,Hossein GHASEMIAN3,Nabiollah SHIRI1
1伊斯兰阿扎德大学设拉子分校电气工程系,伊朗设拉子,7198774731
2伊朗科技大学电气工程学院,伊朗德黑兰,1684613114
3设拉子技术大学电气与电子工程系,伊朗设拉子,7155713876
摘要:碳纳米管场效应晶体管(CNTFET)可替代传统晶体管,尤其在基于近似计算的容错数字电路中。本文结合CNTFET技术和栅极扩散输入(GDI)技术,提出3种分别具有6、6和8个晶体管的基于近似计算的全加器。采用基于非支配排序的遗传算法II,将管数和手性向量作为变量,对所提单元进行性能寻优。结果表明,在电路面积有所增加的情况下,功耗延时积性能指标提升约50%。采用蒙特卡罗方法(MCM)和32 nm CNTFET技术,评估所提电路在制造过程中的工艺偏差和稳定性。与文献中的方法相比,所提电路具有更高稳定性。在电路晶体管中使用的动态阈值技术修正了可能出现的输出压降。所提电路出色的电路性能和差错率使其可以作为复杂算术电路(如乘法器)的最低有效位(LSB)部分。

关键词组:碳纳米管场效应晶体管(CNTFET);优化算法;基于非支配排序的遗传算法II(NSGA-II);栅极扩散输入(GDI);近似计算

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdul Hadi MF, Hussin H, Soin N, 2022. The impact of variation in diameter and dielectric materials of the CNT field-effect transistor. ECS J Sol State Sci Technol, 11(2):023002.

[2]Abiri E, Darabi A, Salehi MR, et al., 2020. Optimized gate diffusion input method-based reversible magnitude arithmetic unit using non-dominated sorting genetic algorithm II. Circ Syst Signal Process, 39(9):4516-4551.

[3]Ben-Jamaa MH, Mohanram K, de Micheli G, 2011. An efficient gate library for ambipolar CNTFET logic. IEEE Trans Comput-Aided Des Integr Circ Syst, 30(2):242-255.

[4]Cardenas JA, Lu SH, Williams NX, et al., 2021. In-place printing of flexible electrolyte-gated carbon nanotube transistors with enhanced stability. IEEE Electron Dev Lett, 42(3):367-370.

[5]Cho G, Lombardi F, 2016. Design and process variation analysis of CNTFET-based ternary memory cells. Integration, 54:97-108.

[6]Deb K, Pratap A, Agarwal S, et al., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput, 6(2):182-197.

[7]Deng J, Wong HSP, 2007a. A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part I: model of the intrinsic channel region. IEEE Trans Electron Dev, 54(12):‍3186-3194.

[8]Deng J, Wong HSP, 2007b. A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part II: full device model and circuit performance benchmarking. IEEE Trans Electron Dev, 54(12):3195-3205.

[9]Ghasemian A, Abiri E, Hassanli K, et al., 2022. HF-QSRAM: half-select free quaternary SRAM design with required peripheral circuits for IoT/IoVT applications. ECS J Sol State Sci Technol, 11(1):011002.

[10]Ghorbani A, Dolatshahi M, Zanjani SM, et al., 2022. A new low-power dynamic-GDI full adder in CNFET technology. Integration, 83:46-59.

[11]Gupta V, Mohapatra D, Raghunathan A, et al., 2013. Low-power digital signal processing using approximate adders. IEEE Trans Comput-Aided Des Integr Circ Syst, 32(1):124-137.

[12]Hasan M, Zaman HU, Hossain M, et al., 2020. Gate diffusion input technique based full swing and scalable 1-bit hybrid full adder for high performance applications. Eng Sci Technol Int J, 23(6):1364-1373.

[13]Homulle H, Song L, Charbon E, et al., 2018. The cryogenic temperature behavior of bipolar, MOS, and DTMOS transistors in standard CMOS. IEEE J Electron Dev Soc, 6:263-270.

[14]Huang JL, Zhu MH, Gupta P, et al., 2010. A CAD tool for design and analysis of CNFET circuits. Proc IEEE Int Conf of Electron Devices and Solid-State Circuits, p.1-4.

[15]Huang JL, Zhu MH, Yang SQ, et al., 2012. A physical design tool for carbon nanotube field-effect transistor circuits. ACM J Emerg Technol Comput Syst, 8(3):25.

[16]Huang JQ, Kumar TN, Almurib HAF, et al., 2021. Commutative approximate adders: analysis and evaluation. Proc IEEE/ACM Int Symp on Nanoscale Architectures, p.1-6.

[17]Kandpal J, Tomar A, Agarwal M, et al., 2020. High-speed hybrid-logic full adder using high-performance 10-T XOR–XNOR cell. IEEE Trans Very Large Scale Integr Syst, 28(6):1413-1422.

[18]Karimi A, Rezai A, 2016. Improved device performance in CNTFET using genetic algorithm. ECS J Sol State Sci Technol, 6(1):M9-M12.

[19]Karimi A, Rezai A, 2017. A design methodology to optimize the device performance in CNTFET. ECS J Sol State Sci Technol, 6(8):M97-M102.

[20]Kordrostami Z, Raeini AGN, Ghoddus H, 2019. Design and optimization of lightly doped CNTFET architectures based on NEGF method and PSO algorithm. ECS J Sol State Sci Technol, 8(4):M39-M44.

[21]Lee C, Wong HSP, 2015. Stanford Virtual-Source Carbon Nanotube Field-Effect Transistors Model 1.0.1. NanoHUB. https://nanohub.org/publications/42/2 [Accessed on Mar. 1, 2022].

[22]Lindert N, Sugii T, Tang S, et al., 1999. Dynamic threshold pass-transistor logic for improved delay at lower power supply voltages. IEEE J Sol-State Circ, 34(1):85-89.

[23]Mahdiani HR, Ahmadi A, Fakhraie SM, et al., 2010. Bio-inspired imprecise computational blocks for efficient VLSI implementation of soft-computing applications. IEEE Trans Circ Syst I Regul Papers, 57(4):850-862.

[24]Majerus S, Merrill W, Garverick SL, 2013. Design and long-term operation of high-temperature, bulk-CMOS integrated circuits for instrumentation and control. Proc IEEE Energytech, p.1-6.

[25]Mirzaei M, Mohammadi S, 2020. Process variation-aware approximate full adders for imprecision-tolerant applications. Comput Electr Eng, 87:106761.

[26]Mirzaei M, Mohammadi S, 2021. Low-power and variation-aware approximate arithmetic units for image processing applications. AEU Int J Electron Commun, 138:153825.

[27]Morgenshtein A, Fish A, Wagner I, 2002. Gate-diffusion input (GDI): a power-efficient method for digital combinatorial circuits. IEEE Trans Very Large Scale Integr Syst, 10(5):566-581.

[28]Morgenshtein A, Yuzhaninov V, Kovshilovsky A, et al., 2014. Full-swing gate diffusion input logic—case-study of low-power CLA adder design. Integration, 47(1):62-70.

[29]Naseri H, Timarchi S, 2018. Low-power and fast full adder by exploring new XOR and XNOR gates. IEEE Trans Very Large Scale Integr Syst, 26(8):1481-1493.

[30]Rafiee M, Sadeghi Y, Shiri N, et al., 2021a. An approximate CNTFET 4:‍2 compressor based on gate diffusion input and dynamic threshold. Electron Lett, 57(17):650-652.

[31]Rafiee M, Pesaran F, Sadeghi A, et al., 2021b. An efficient multiplier by pass transistor logic partial product and a modified hybrid full adder for image processing applications. Microelectron J, 118:105287.

[32]Rafiee M, Shiri N, Sadeghi A, 2022a. High-performance 1-bit full adder with excellent driving capability for multistage structures. IEEE Embed Syst Lett, 14(1):47-50.

[33]Sabetzadeh F, Moaiyeri MH, Ahmadinejad M, 2019. A majority-based imprecise multiplier for ultra-efficient approximate image multiplication. IEEE Trans Circ Syst I Regul Papers, 66(11):4200-4208.

[34]Sadeghi A, Shiri N, Rafiee M, 2020. High-efficient, ultra-low-power and high-speed 4:2 compressor with a new full adder cell for bioelectronics applications. Circ Syst Signal Process, 39(12):6247-6275.

[35]Sadeghi A, Shiri N, Rafiee M, et al., 2022. An efficient counter-based Wallace-tree multiplier with a hybrid full adder core for image blending. Front Inform Technol Electron Eng, 23(6):950-965.

[36]Strollo AGM, Napoli E, de Caro D, et al., 2020. Comparison and extension of approximate 4-2 compressors for low-power approximate multipliers. IEEE Trans Circ Syst I Regul Papers, 67(9):3021-3034.

[37]Vasantha Kumar BVP, Murthy Sharma NS, Lal Kishore K, 2012. A technique to reduce glitch power during physical design stage for low power and less IR drop. Int J Comput Appl, 39(18):62-67.

[38]Venkatachalam S, Ko SB, 2017. Design of power and area efficient approximate multipliers. IEEE Trans Very Large Scale Integr Syst, 25(5):1782-1786.

[39]Waris H, Wang CH, Liu WQ, 2019. High-performance approximate half and full adder cells using NAND logic gate. IEICE Electron Expr, 16(6):20190043.

[40]Waris H, Wang CH, Liu WQ, et al., 2022. Hybrid partial product-based high-performance approximate recursive multipliers. IEEE Trans Emerg Top Comput, 10(1):507-513.

[41]Yang ZX, Han J, Lombardi F, 2015. Transmission gate-based approximate adders for inexact computing. Proc IEEE/ACM Int Symp on Nanoscale Architectures, p.145-150.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE