CLC number: TP181
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-09-18
Cited: 0
Clicked: 1337
Lequan LIN, Zhengkun LI, Ruikun LI, Xuliang LI, Junbin GAO. Diffusion models for time-series applications: a survey[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300310 @article{title="Diffusion models for time-series applications: a survey", %0 Journal Article TY - JOUR
扩散模型在时间序列的应用综述1悉尼大学商学院,澳大利亚新南威尔士州,坎伯当,2006 2中泰证券股份有限公司博士后科研工作站,中国济南市,250000 摘要:扩散模型,一类基于深度学习的生成模型家族,在前沿机器学习研究中变得日益重要。扩散模型以在生成与观察数据相似样本方面的卓越性能而著称,如今广泛用于图像、视频和文本合成。近年来,扩散的概念已扩展到时间序列应用领域,涌现出许多强大的模型。鉴于这些模型缺乏系统性总结和讨论,我们提供此综述作为此领域新研究人员的基础资源,并为激发未来研究提供灵感。为更好理解,引入了有关扩散模型基础知识的介绍。除此之外,主要关注基于扩散的时间序列预测、插补和生成方法,并将它们分别在三个独立章节中呈现。还比较了同一应用的不同方法,并强调它们之间的关联(若适用)。最后,总结了扩散方法的共同局限性,并突出强调潜在的未来研究方向。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Alcaraz JML, Strodthoff N, 2023. Diffusion-based time series imputation and forecasting with structured state space models. Trans Mach Learn Res. [2]Anderson BDO, 1982. Reverse-time diffusion equation models. Stoch Process Their Appl, 12(3):313-326. [3]Austin J, Johnson DD, Ho J, et al., 2021. Structured denoising diffusion models in discrete state-spaces. Proc 35th Conf on Neural Information Processing Systems, p.17981-17993. [4]Biloš M, Rasul K, Schneider A, et al., 2023. Modeling temporal data as continuous functions with stochastic process diffusion. Proc 40th Int Conf on Machine Learning, p.2452-2470. [5]Cao W, Wang D, Li J, et al., 2018. BRITS: bidirectional recurrent imputation for time series. Proc 32nd Conf on Neural Information Processing Systems, p.6776-6786. [6]Capel EH, Dumas J, 2023. Denoising diffusion probabilistic models for probabilistic energy forecasting. [7]Chang P, Li HY, Quan SF, et al., 2023. TDSTF: transformer-based diffusion probabilistic model for sparse time series forecasting. [8]Che ZP, Purushotham S, Cho K, et al., 2018. Recurrent neural networks for multivariate time series with missing values. Sci Rep, 8(1):6085. [9]Chen T, 2023. On the importance of noise scheduling for diffusion models. [10]Choi J, Choi H, Hwang J, et al., 2022. Graph neural controlled differential equations for traffic forecasting. Proc 36th AAAI Conf on Artificial Intelligence, p.6367-6374. [11]Chu C, Minami K, Fukumizu K, 2020. Smoothness and stability in GANs. Proc 8th Int Conf on Learning Representations. [12]Chung J, Gulcehre C, Bengio K, et al., 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. [13]Coletta A, Gopalakrishan S, Borrajo D, et al., 2023. On the constrained time-series generation problem. [14]Croitoru FA, Hondru V, Ionescu RT, et al., 2023. Diffusion models in vision: a survey. IEEE Trans Patt Anal Mach Intell, 45(9):10850-10869. [15]Desai A, Freeman C, Wang ZH, et al., 2021. TimeVAE: a variational auto-encoder for multivariate time series generation. [16]Dhariwal P, Nichol A, 2021. Diffusion models beat GANs on image synthesis. Proc 35th Conf on Neural Information Processing Systems, p.8780-8794. [17]Donahue C, McAuley JJ, Puckette MS, 2019. Adversarial audio synthesis. Proc 7th Int Conf on Learning Representations. [18]Esteban C, Hyland SL, Rätsch G, 2017. Real-valued (medical) time series generation with recurrent conditional GANs. [19]Fortuin V, Baranchuk D, Rätsch G, et al., 2020. GP-VAE: deep probabilistic time series imputation. Proc 23rd Int Conf on artificial intelligence and statistics, p.1651-1661. [20]Goel K, Gu A, Donahue C, et al., 2022. It’s raw! Audio generation with state-space models. Proc 39th Int Conf on Machine Learning, p.7616-7633. [21]Gu A, Goel K, Ré C, 2022. Efficiently modeling long sequences with structured state spaces. Proc 10th Int Conf on Learning Representations. [22]Harvey W, Naderiparizi S, Masrani V, et al., 2022. Flexible diffusion modeling of long videos. Proc 36th Conf on Neural Information Processing Systems, p.27953-27965. [23]Ho J, Jain A, Abbeel P, 2020. Denoising diffusion probabilistic models. Proc 34th Int Conf on Neural Information Processing Systems, p.6840-6851. [24]Ho J, Saharia C, Chan W, et al., 2022a. Cascaded diffusion models for high fidelity image generation. J Mach Learn Res, 23(1):47. [25]Ho J, Salimans T, Gritsenko A, et al., 2022b. Video diffusion models. Proc 36th Conf on Neural Information Processing Systems, p.8633-8646. [26]Hochreiter S, Schmidhuber J, 1997. Long short-term memory. Neur Comput, 9(8):1735-1780. [27]Hyvärinen A, 2005. Estimation of non-normalized statistical models by score matching. J Mach Learn Res, 6(24):695-709. [28]Kashif R, Abdul-Saboor S, Ingmar S, et al., 2021. Multi-variate probabilistic time series forecasting via conditioned normalizing flows. [29]Kingma DP, Welling M, 2013. Auto-encoding variational Bayes. [30]Kingma DP, Salimans T, Jozefowicz R, et al., 2016. Improved variational inference with inverse autoregressive flow. Proc 30th Conf on Neural Information Processing Systems, p.29. [31]Kong ZF, Ping W, Huang JJ, et al., 2021. DiffWave: a versatile diffusion model for audio synthesis. Proc 9th Int Conf on Learning Representations. [32]Li RK, Li XL, Gao SY, et al., 2023. Graph convolution recurrent denoising diffusion model for multivariate probabilistic temporal forecasting. Proc 19th Int Conf on Advanced Data Mining and Applications. [33]Li XL, Thickstun J, Gulrajani I, et al., 2022. Diffusion-LM improves controllable text generation. Proc 36th Conf on Neural Information Processing Systems, p.4328-4343. [34]Li Y, Lu XJ, Wang YQ, et al., 2022. Generative time series forecasting with diffusion, denoise, and disentanglement. Proc 36th Conf on Neural Information Processing System, p.23009-23022. [35]Li YG, Yu R, Shahabi C, et al., 2018. Diffusion convolutional recurrent neural network: data-driven traffic forecasting. Proc 6th Int Conf on Learning Representations. [36]Li YN, Chen ZZ, Zha DC, et al., 2021. Learning disentangled representations for time series. [37]Lim H, Kim M, Park S, et al., 2023. Regular time-series generation using SGM. [38]Liu DC, Wang J, Shang S, et al., 2022. MSDR: multi-step dependency relation networks for spatial temporal forecasting. Proc 28th ACM SIGKDD Conf on Knowledge Discovery and Data Mining, p.1042-1050. [39]Liu MZ, Huang H, Feng H, et al., 2023. PriSTI: a conditional diffusion framework for spatiotemporal imputation. Proc IEEE 39th Int Conf on Data Engineering, p.1927-1939. [40]Lugmayr A, Danelljan M, Romero A, et al., 2022. RePaint: inpainting using denoising diffusion probabilistic models. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.11451-11461. [41]Luo C, 2022. Understanding diffusion models: a unified perspective. [42]Luo YH, Cai XR, Zhang Y, et al., 2018. Multivariate time series imputation with generative adversarial networks. Proc 32nd Conf on Neural Information Processing Systems, p.1603-1614. [43]Mogren O, 2016. C-RNN-GAN: continuous recurrent neural networks with adversarial training. [44]Mulyadi AW, Jun E, Suk HI, 2022. Uncertainty-aware variational-recurrent imputation network for clinical time series. IEEE Trans Cybern, 52(9):9684-9694. [45]Neifar N, Ben-Hamadou A, Mdhaffar A, et al., 2023. Diff-ECG: a generalized probabilistic diffusion model for ECG signals synthesis. [46]Nikolay S, Junyoung C, Mikolaj B, et al., 2022. Step-unrolled denoising autoencoders for text generation. Int Conf on Learning Representations. [47]Osman MS, Abu-Mahfouz AM, Page PR, 2018. A survey on data imputation techniques: water distribution system as a use case. IEEE Access, 6:63279-63291. [48]Rasul K, Seward C, Schuster I, et al., 2021. Autoregressive denoising diffusion models for multivariate probabilistic time series forecasting. Proc 38th Int Conf on Machine Learning, p.8857-8868. [49]Ronneberger O, Fischer P, Brox T, 2015. U-Net: convolutional networks for biomedical image segmentation. Proc 18th Int Conf on Medical Image Computing and Computer-Assisted Intervention, p.234-241. [50]Saremi S, Hyvärinen A, 2019. Neural empirical Bayes. J Mach Learn Res, 20(181):1-23. [51]Seng DW, Lv FS, Liang ZY, et al., 2021. Forecasting traffic flows in irregular regions with multi-graph convolutional network and gated recurrent unit. Front Inform Technol Electron Eng, 22(9):1179-1193. [52]Seo S, Arık S Ö, Yoon J, et al., 2021. Controlling neural networks with rule representations. Proc 35th Conf on Neural Information Processing Systems, p.11196-11207. [53]Shen LF, Kwok J, 2023. Non-autoregressive conditional diffusion models for time series prediction. Proc 40th Int Conf on Machine Learning, p.31016-31029. [54]Shu K, Zhao YC, Wu L, et al., 2023. Data augmentation for seizure prediction with generative diffusion model. [55]Sikder MF, Ramachandranpillai R, Heintz F, 2023. Transfusion: generating long, high fidelity time series using diffusion models with transformers. [56]Simeunović J, Schubnel B, Alet PJ, et al., 2022. Spatio-temporal graph neural networks for multi-site PV power forecasting. IEEE Trans Sustain Energy, 13(2):1210-1220. [57]Sohl-Dickstein J, Weiss E, Maheswaranathan N, et al., 2015. Deep unsupervised learning using nonequilibrium thermodynamics. Proc 32nd Int Conf on Machine Learning, p.2256-2265. [58]Sønderby CK, Raiko T, Maaløe L, et al., 2016. Ladder variational autoencoders. Proc 30th Int Conf on Neural Information Processing Systems, p.3745-3753. [59]Song JM, Meng CL, Ermon S, 2021. Denoising diffusion implicit models. Proc 9th Int Conf on Learning Representations. [60]Song Y, Ermon S, 2019. Generative modeling by estimating gradients of the data distribution. Proc 33rd Int Conf on Neural Information Processing Systems, p.11918-11930. [61]Song Y, Garg S, Shi JX, et al., 2020. Sliced score matching: a scalable approach to density and score estimation. Proc 35th Uncertainty in Artificial Intelligence Conf, p.574-584. [62]Tashiro Y, Song JM, Song Y, et al., 2021. CSDI: conditional score-based diffusion models for probabilistic time series imputation. Proc 35th Conf on Neural Information Processing Systems, p.24804-24816. [63]Vahdat A, Kautz J, 2020. NVAE: a deep hierarchical variational autoencoder. Proc 34th Int Conf on Neural Information Processing Systems, p.19667-19679. [64]van den Oord A, Dieleman S, Zen HG, et al., 2016. WaveNet: a generative model for raw audio. 9th ISCA Speech Synthesis Workshop, p.135. [65]Vaswani A, Shazeer N, Parmar N, et al., 2017. Attention is all you need. Proc 31st Int Conf on Neural Information Processing Systems, p.6000-6010. [66]Vincent P, 2011. A connection between score matching and denoising autoencoders. Neur Comput, 23(7):1661-1674. [67]Wang ZX, Wen QS, Zhang CL, et al., 2023. DiffLoad: uncertainty quantification in load forecasting with diffusion model. [68]Wen HM, Lin YF, Xia YT, et al., 2023. DiffSTG: probabilistic spatio-temporal graph forecasting with denoising diffusion models. [69]Wu HX, Xu JH, Wang JM, et al., 2021. Autoformer: decomposition transformers with auto-correlation for long-term series forecasting. Proc 35th Conf on Neural Information Processing Systems, p.22419-22430. [70]Xiao ZS, Kreis K, Vahdat A, 2022. Tackling the generative learning trilemma with denoising diffusion GANs. Proc 10th Int Conf on Learning Representations. [71]Xu DW, Wang YD, Jia LM, et al., 2017. Real-time road traffic state prediction based on ARIMA and Kalman filter. Front Inform Technol Electron Eng, 18(2):287-302. [72]Xu TL, Wenliang LK, Munn M, et al., 2020. Cot-GAN: generating sequential data via causal optimal transport. Proc 34th Conf on Neural Information Processing Systems, p.8798-8809. [73]Yan TJ, Zhang HW, Zhou T, et al., 2021. ScoreGrad: multi-variate probabilistic time series forecasting with continuous energy-based generative models. [74]Yang L, Zhang ZL, Song Y, et al., 2023. Diffusion models: a comprehensive survey of methods and applications. [75]Yang RH, Srivastava P, Mandt S, 2022. Diffusion probabilistic modeling for video generation. [76]Yang S, Sohl-Dickstein J, Kingma DP, et al., 2021. Score-based generative modeling through stochastic differential equations. Proc 9th Int Conf on Learning Representations. [77]Yi XW, Zheng Y, Zhang JB, et al., 2016. ST-MVL: filling missing values in geo-sensory time series data. Proc 25th Int Joint Conf on Artificial Intelligence, p.2704-2710. [78]Yi XW, Zhang JB, Wang ZY, et al., 2018. Deep distributed fusion network for air quality prediction. Proc 24th ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining, p.965-973. [79]Yin H, Yang SQ, Zhu XQ, et al., 2015. Symbolic representation based on trend features for knowledge discovery in long time series. Front Inform Technol Electron Eng, 16(9):744-758. [80]Yoon J, Zame WR, van der Schaar M, 2019. Estimating missing data in temporal data streams using multi-directional recurrent neural networks. IEEE Trans Biomed Eng, 66(5):1477-1490. [81]Yu PY, Xie SR, Ma XJ, et al., 2022. Latent diffusion energy-based model for interpretable text modelling. Proc 39th Int Conf on Machine Learning, p.25702-25720. [82]Zhang HY, Cissé M, Dauphin YN, et al., 2018. Mixup: beyond empirical risk minimization. Proc 6th Int Conf on Learning Representations. [83]Zhang YF, Zhao ZD, Deng YJ, et al., 2021. ECGID: a human identification method based on adaptive particle swarm optimization and the bidirectional LSTM model. Front Inform Technol Electron Eng, 22(12):1641-1654. Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>