CLC number: TN911.72
On-line Access: 2025-06-04
Received: 2024-02-02
Revision Accepted: 2024-06-25
Crosschecked: 2025-06-04
Cited: 0
Clicked: 1015
Qinyan MA, Jing XIAO, Zeqi SHAO, Duona ZHANG, Yufeng WANG, Wenrui DING. Frequency-learning adversarial networks based on transfer learning for cross-scenario signal modulation classification[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400080 @article{title="Frequency-learning adversarial networks based on transfer learning for cross-scenario signal modulation classification", %0 Journal Article TY - JOUR
基于迁移学习下跨场景信号调制分类的频谱学习对抗网络1北京航空航天大学电子信息工程学院,中国北京市,100191 2北方工业大学人工智能与计算机学院,中国北京市,100144 3北京航空航天大学无人系统研究院,中国北京市,100191 摘要:自动调制分类(AMC)在无线通信中既具挑战性又起到至关重要的作用。尽管基于深度学习的方法在信号处理中得到广泛应用,但它们面临着信号分布变化的挑战,特别是在各种信道条件下。本文介绍了一种基于迁移学习的对抗迁移框架,名为频谱学习对抗网络(FLANs),用于跨场景信号分类。该方法利用频谱稳定性,通过引入频率适应(FA)技术,将目标信道信息融入源域信号。为解决信道中的不可预测干扰,采用拟合信道适应(FCA)模块,以减少因信道环境变化引起的源域和目标域之间的差异。实验结果表明,在高信噪比的跨场景真实采集数据集CSRC2023上,FLANs优于现有最先进迁移方法,其分类准确率最高值提高了5.2个百分点。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Alarabi A, Alkishriwo OAS, 2021. Modulation classification based on statistical features and artificial neural network. Proc IEEE 1st Int Maghreb Meeting of the Conf on Sciences and Techniques of Automatic Control and Computer Engineering MI-STA, p.748-751. ![]() [2]Bu K, He Y, Jing XJ, et al., 2020. Adversarial transfer learning for deep learning based automatic modulation classification. IEEE Signal Process Lett, 27:880-884. ![]() [3]Chen ZZ, Cui H, Xiang JY, et al., 2022. SigNet: a novel deep learning framework for radio signal classification. IEEE Trans Cogn Commun Netw, 8(2):529-541. ![]() [4]G N, Vijayan V, Jose R, 2021. Performance analysis of modulation classification using machine learning. Proc 8th Int Conf on Smart Computing and Communications, p.70-74. ![]() [5]Ganin Y, Ustinova E, Ajakan H, et al., 2015. Domain-adversarial training of neural networks. https://arxiv.org/abs/1505.07818 ![]() [6]Goodfellow IJ, Pouget-Abadie J, Mirza M, et al., 2014. Generative adversarial nets. Proc 27th Int Conf on Neural Information Processing Systems, p.2672-2680. ![]() [7]He KM, Zhang XY, Ren SQ, et al., 2016. Deep residual learning for image recognition. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.770-778. ![]() [8]Huang S, Dai R, Huang JJ, et al., 2020. Automatic modulation classification using gated recurrent residual network. IEEE Int Things J, 7(8):7795-7807. ![]() [9]Lin WS, Hou DB, Huang JS, et al., 2023. Transfer learning for automatic modulation recognition using a few modulated signal samples. IEEE Trans Veh Technol, 72(9):12391-12395. ![]() [10]Lin Y, Zhao HJ, Ma XF, et al., 2021. Adversarial attacks in modulation recognition with convolutional neural networks. IEEE Trans Reliab, 70(1):389-401. ![]() [11]Long MS, Cao Y, Wang JM, et al., 2015. Learning transferable features with deep adaptation networks. Proc 32nd Int Conf on Machine Learning, p.97-105. ![]() [12]Lukito WD, Rashad FE, Hamid EY, 2021. Multi features-based baseband modulation classification using support vector machine. Proc Int Conf on Radar, Antenna, Microwave, Electronics, and Telecommunications, p.227-231. ![]() [13]Meng F, Chen P, Wu LN, et al., 2018. Automatic modulation classification: a deep learning enabled approach. IEEE Trans Veh Technol, 67(11):10760-10772. ![]() [14]Nam H, Lee H, Park J, et al., 2021. Reducing domain gap by reducing style bias. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.8686-8695. ![]() [15]O’Shea TJ, Corgan J, Clancy TC, 2016. Convolutional radio modulation recognition networks. Proc 17th Int Conf on Engineering Applications of Neural Networks, p.213-226. ![]() [16]O’Shea TJ, Roy T, Clancy TC, 2018. Over-the-air deep learning based radio signal classification. IEEE J Sel Top Signal Process, 12(1):168-179. ![]() [17]Pan SJ, Yang Q, 2010. A survey on transfer learning. IEEE Trans Knowl Data Eng, 22(10):1345-1359. ![]() [18]Perenda E, Rajendran S, Bovet G, et al., 2021. Learning the unknown: improving modulation classification performance in unseen scenarios. Proc IEEE Conf on Computer Communications, p.1-10. ![]() [19]Rajendran S, Meert W, Giustiniano D, et al., 2018. Deep learning models for wireless signal classification with distributed low-cost spectrum sensors. IEEE Trans Cogn Commun Netw, 4(3):433-445. ![]() [20]Ramjee S, Ju ST, Yang DY, et al., 2021. Ensemble wrapper subsampling for deep modulation classification. IEEE Trans Cogn Commun Netw, 7(4):1156-1170. ![]() [21]Salama AA, Morsy ME, Darwish SH, et al., 2022. A novel SVM-based automatic modulation classifier. Proc Int Telecommunications Conf, p.1-3. ![]() [22]Tan X, Xie ZD, Yuan XW, et al., 2022. Small sample signal modulation recognition based on higher-order cumulants and CatBoost. Proc 7th Int Conf on Communication, Image and Signal Processing, p.324-329. ![]() [23]Tang B, Tu Y, Zhang ZY, et al., 2018. Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks. IEEE Access, 6:15713-15722. ![]() [24]Tzeng E, Hoffman J, Saenko K, et al., 2017. Adversarial discriminative domain adaptation. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.2962-2971. ![]() [25]Wang MY, Lin Y, Tian Q, et al., 2021. Transfer learning promotes 6G wireless communications: recent advances and future challenges. IEEE Trans Reliab, 70(2):790-807. ![]() [26]Wang Q, Du PF, Yang JY, et al., 2019. Transferred deep learning based waveform recognition for cognitive passive radar. Signal Process, 155:259-267. ![]() [27]Wang XC, Lv Z, Gao X, et al., 2022. Pervasive wireless channel modeling theory and applications to 6G GBSMs for all frequency bands and all scenarios. IEEE Trans Veh Technol, 71(9):9159-9173. ![]() [28]Wang ZG, Yan WZ, Oates T, 2017. Time series classification from scratch with deep neural networks: a strong baseline. Proc Int Joint Conf on Neural Networks, p.1578-1585. ![]() [29]Xiao WX, Ding ZM, Liu HF, 2021. Implicit semantic response alignment for partial domain adaptation. Proc 35th Int Conf on Neural Information Processing Systems, p.1059. ![]() [30]Xu Y, Li DZ, Wang ZY, et al., 2019. A deep learning method based on convolutional neural network for automatic modulation classification of wireless signals. Wirel Netw, 25(7):3735-3746. ![]() [31]Xu ZW, Han GJ, Liu L, et al., 2023. A lightweight specific emitter identification model for IIoT devices based on adaptive broad learning. IEEE Trans Ind Inform, 19(5):7066-7075. ![]() [32]Yao ZS, Fu X, Guo LT, et al., 2023. Few-shot specific emitter identification using asymmetric masked auto-encoder. IEEE Commun Lett, 27(10):2657-2661. ![]() [33]Zhao ZQ, Khan FN, Li YB, et al., 2022. Application and comparison of active and transfer learning approaches for modulation format classification in visible light communication systems. Opt Expr, 30(10):16351-16361. ![]() [34]Zheng Y, Yu L, Yang RR, et al., 2021. A general 3D non-stationary massive MIMO GBSM for 6G communication systems. Proc IEEE Wireless Communications and Networking Conf, p.1-6. ![]() [35]Zhou HJ, Wang X, Bai J, et al., 2022. Modulation signal recognition based on selective knowledge transfer. Proc IEEE Global Communications Conf, p.1875-1880. ![]() [36]Zhu YC, Zhuang FZ, Wang JD, et al., 2021. Deep subdomain adaptation network for image classification. IEEE Trans Neur Netw Learn Syst, 32(4):1713-1722. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>