Full Text:  <1052>

Suppl. Mater.: 

Summary:  <339>

CLC number: 

On-line Access: 2022-06-24

Received: 2021-11-05

Revision Accepted: 2022-02-16

Crosschecked: 2022-06-24

Cited: 0

Clicked: 1119

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiao-bin ZHANG

https://orcid.org/0000-0002-7784-3589

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A

Accepted manuscript available online (unedited version)


Flow-induced vibration characteristics of the U-type Coriolis mass flowmeter with liquid hydrogen


Author(s):  Xiang-xiang PEI, Xiang LI, Hao-hao XU, Xuan-hong YE, Xiao-bin ZHANG

Affiliation(s):  Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China; more

Corresponding email(s):  zhangxbin@zju.edu.cn

Key Words:  Coriolis mass flowmeter (CMF); Liquid hydrogen (LH2); Cryogenic fluid; Flow-induced vibration


Share this article to: More <<< Previous Paper|

Xiang-xiang PEI, Xiang LI, Hao-hao XU, Xuan-hong YE, Xiao-bin ZHANG. Flow-induced vibration characteristics of the U-type Coriolis mass flowmeter with liquid hydrogen[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2100560

@article{title="Flow-induced vibration characteristics of the U-type Coriolis mass flowmeter with liquid hydrogen",
author="Xiang-xiang PEI, Xiang LI, Hao-hao XU, Xuan-hong YE, Xiao-bin ZHANG",
journal="Journal of Zhejiang University Science A",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.A2100560"
}

%0 Journal Article
%T Flow-induced vibration characteristics of the U-type Coriolis mass flowmeter with liquid hydrogen
%A Xiang-xiang PEI
%A Xiang LI
%A Hao-hao XU
%A Xuan-hong YE
%A Xiao-bin ZHANG
%J Journal of Zhejiang University SCIENCE A
%P 495-504
%@ 1673-565X
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.A2100560"

TY - JOUR
T1 - Flow-induced vibration characteristics of the U-type Coriolis mass flowmeter with liquid hydrogen
A1 - Xiang-xiang PEI
A1 - Xiang LI
A1 - Hao-hao XU
A1 - Xuan-hong YE
A1 - Xiao-bin ZHANG
J0 - Journal of Zhejiang University Science A
SP - 495
EP - 504
%@ 1673-565X
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.A2100560"


Abstract: 
Compared with liquid nitrogen (LN2) and water, the density of liquid hydrogen (LH2) is more than one order of magnitude smaller, which leads to significantly different flow-induced vibration characteristics in the Coriolis mass flowmeter (CMF). Based on the Euler beam theory, the complex set of equations of fluid-solid interactions for the U-type pipe Coriolis flowmeter with LH2 is solved. The calculation results are firstly validated by comparing the dimensionless frequency, displacement, and twist mode shape with the theoretical and experimental results in the other publications with water and kerosene as the working fluids. Then, the results of dimensionless frequency, phase difference, and time lag for LH2 are compared with those for LN2 and water, and the effects of the dimensionless flow velocity, sensor position, and the radius of the curved pipe are analyzed in detail for LH2. Results show that the time lag of LH2 is an order of magnitude smaller than that for LN2 or water. The excitation frequency for LH2 is much larger than that for LN2. Effects of geometric parameters on the time lag are also analyzed for the three fluids and the results contribute to the design optimization of a CMF for LH2.

液氢U型科里奥利质量流量计的流致振动特性研究

作者:裴祥翔1,李想2,许好好2,叶宣宏1,张小斌1
机构:1浙江大学,制冷与低温研究所,中国杭州,310027;2浙江能源技术研究院有限公司,中国杭州,310003
目的:氢能因其清洁高效等优点正逐渐被用作减少二氧化碳排放的替代能源,而质量流量是氢能在使用、运输和交易过程中的重要控制参数。科里奥利质量流量计因其精度高、结构简单等优点而受到广泛关注。本研究基于欧拉梁和一维稳定流动模型对液氢科里奥利质量流量计的流致振动特性展开研究,分别对液氢科氏流量计的频率、时滞、流速、传感器位置以及测量管结构等影响因素展开讨论,并与水和液氮工质的结果进行对比,为专门开发用于测量液氢的科氏流量计提供参考。
创新点:1.本研究对液氢为工质的U型科里奥利质量流量计的流致振动特性展开了深入研究,同时对比了水和液氮两种工质的计算结果。2.研究分别从激振系统、时滞量级以及不同工质标定产生的误差进行分析,为研究开发测量液氢的科里奥利质量流量计提供理论支持。3.该研究探究了传感器的位置以及结构尺寸对时滞的影响,为科氏流量计的结构优化提供了参考。
方法:1.基于欧拉梁和一维稳定流动模型构建直管和弯管的面外流致振动方程,并对构建的控制方程进行验证(表1,图3和4)。2.探讨流速对结构固有频率的影响(图5和6)、流速对U型管两臂相位差及时滞的影响(图7和8)、传感器位置以及结构尺寸对时滞的影响(图9和10)。3.将液氢、液氮和水三种工质的计算结果进行对比,得出用于测量液氢的科氏流量计的独有特性。
结论:1.相比于水和液氮工质,液氢密度低的特点导致液氢对结构固有频率的影响更小;同时,也导致在相同流速下,液氢科氏流量计对应的时滞比水和液氮两种工质对应的时滞小一个量级,这对于相位差的提取明显是不利的。2.采用水和液氮标定的科氏流量计用于测量液氢,将分别产生-6.84%和0.63%的误差;如果用水标定的科氏流量计用于测量液氮,将会产生-7.42%的误差。3.随着相位检测器远离固支端,对应的时滞将会显著降低;改变结构的弯管尺寸可以显著提升时滞的大小。

关键词组:科里奥利质量流量计;液氢;低温流体;流致振动

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]CaoSQ, ZhangHT, TuYQ, et al., 2017. On-line detection method based on resonant frequency for dirt in single straight tube Coriolis mass flowmeter. Instrument Technique and Sensor, (9):30-33 (in Chinese).

[2]CaoSQ, ZhangHT, TuYQ, et al., 2018. On-line detection method based on resonant frequency for dirt in U-shaped tube Coriolis mass flowmeter. Instrument Technique and Sensor, (6):24-28 (in Chinese).

[3]CheesewrightR, ClarkC, 1998. The effect of flow pulsations on Coriolis mass flow meters. Journal of Fluids and Structures, 12(8):1025-1039.

[4]CheesewrightR, ClarkC, BelhadjA, et al., 2003. The dynamic response of Coriolis mass flow meters. Journal of Fluids and Structures, 18(2):165-178.

[5]ClarkC, CheesewrightR, 2003. The influence upon Coriolis mass flow meters of external vibrations at selected frequencies. Flow Measurement and Instrumentation, 14(1-2):33-42.

[6]CostaFO, PopeJG, GillisKA, 2020. Modeling temperature effects on a Coriolis mass flowmeter. Flow Measurement and Instrumentation, 76:101811.

[7]EnzS, 2010. Effect of asymmetric actuator and detector position on Coriolis flowmeter and measured phase shift. Flow Measurement and Instrumentation, 21(4):497-503.

[8]EnzS, ThomsenJJ, 2011. Predicting phase shift effects for vibrating fluid-conveying pipes due to Coriolis forces and fluid pulsation. Journal of Sound and Vibration, 330(21):5096-5113.

[9]EnzS, ThomsenJJ, NeumeyerS, 2011. Experimental investigation of zero phase shift effects for Coriolis flowmeters due to pipe imperfections. Flow Measurement and Instrumentation, 22(1):1-9.

[10]CommissionEuropean, 2019. The European Green Deal Sets out How to Make Europe the First Climate-Neutral Continent by 2050, Boosting the Economy, Improving People’s Health and Quality of Life, Caring for Nature, and Leaving No One Behind. https://eeas.‍europa.‍eu/delegations/botswana/72327/european-green-deal-sets-out-how-make-europe-first-climate-neutral-continent-2050-boosting_ja

[11]KazahayaM, 2011. A mathematical model and error analysis of Coriolis mass flowmeters. IEEE Transactions on Instrumentation and Measurement, 60(4):1163-1174.

[12]KolheVA, EdlabadkarLR, 2021. Performance evaluation of Coriolis mass flow meter in laminar flow regime. Flow Measurement and Instrumentation, 77:101837.

[13]KutinJ, BajsićI, 2001. Stability-boundary effect in Coriolis meters. Flow Measurement and Instrumentation, 12(1):65-73.

[14]KutinJ, BajsićI, 2002. An analytical estimation of the Coriolis meter’s characteristics based on modal superposition. Flow Measurement and Instrumentation, 12(5-6):345-351.

[15]KutinJ, HempJ, BobovnikG, et al., 2005. Weight vector study of velocity profile effects in straight-tube Coriolis flowmeters employing different circumferential modes. Flow Measurement and Instrumentation, 16(6):375-385.

[16]LedbetterHM, 1981. Stainless-steel elastic constants at low temperatures. Journal of Applied Physics, 52(3):1587-1589.

[17]LiuJY, 2018. Gas-Liquid Two-Phase Flow Metering Using Coriolis Flowmeters. PhD Thesis, University of Kent, Kent, UK.

[18]LuoF, LiaoJB, ZhaoPJ, et al., 2012. Study on sensitivity of U-shape Coriolis mass flowmeter. Chinese Journal of Scientific Instrument, 33(2):255-262 (in Chinese).

[19]LuoF, LiaoJB, YangJB, et al., 2013. Study on error caused by density effect of Coriolis mass flowmeter. Journal of Sichuan University (Engineering Science Edition), 45(5):138-144 (in Chinese).

[20]RenJX, TanJ, XiongL, et al., 2012. The analysis of the process pressure effect on the measure of the straight tube Coriolis mass flowmeter based on the stiffness model. Mechanical Science and Technology for Aerospace Engineering, 31(1):67-70 (in Chinese).

[21]SongS, 2018. Research on Structure Analysis and Phase Difference Algorithm of Coriolis Mass Flowmeter. MS Thesis, Chongqing University, Chongqing, China(in Chinese).

[22]SultanG, 1992. Single straight-tube Coriolis mass flowmeter. Flow Measurement and Instrumentation, 3(4):241-246.

[23]SultanG, HempJ, 1989. Modelling of the Coriolis mass flowmeter. Journal of Sound and Vibration, 132(3):473-489.

[24]ThomsenJJ, FugledeN, 2020. Perturbation-based prediction of vibration phase shift along fluid-conveying pipes due to Coriolis forces, nonuniformity, and nonlinearity. Nonlinear Dynamics, 99(1):173-199.

[25]WangLJ, 2013. Study on Compensation Method of Zero Drift Effect for Coriolis Mass Flowmeters Based on Transducer Model. PhD Thesis, Zhejiang University, Hangzhou, China(in Chinese).

[26]WangT, HussainY, 2009. Coriolis mass flow measurement at cryogenic temperatures. Flow Measurement and Instrumentation, 20(3):110-115.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE