Full Text:  <926>

Suppl. Mater.: 

Summary:  <267>

CLC number: 

On-line Access: 2022-07-19

Received: 2021-11-29

Revision Accepted: 2022-02-09

Crosschecked: 2022-07-19

Cited: 0

Clicked: 861

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Tao HU

https://orcid.org/0000-0002-4868-7150

Xiao LI

https://orcid.org/0000-0002-0133-0197

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A

Accepted manuscript available online (unedited version)


Free-standing MXene/chitosan/Cu2O electrode: an enzyme-free and efficient biosensor for simultaneous determination of glucose and cholesterol


Author(s):  Tao HU, Man ZHANG, Hui DONG, Tong LI, Xiao-bei ZANG, Xiao LI, Zhong-hua NI

Affiliation(s):  School of Mechanical Engineering, Southeast University, Nanjing 211189, China; more

Corresponding email(s):  lx2016@seu.edu.cn

Key Words: 


Share this article to: More <<< Previous Paper|

Tao HU, Man ZHANG, Hui DONG, Tong LI, Xiao-bei ZANG, Xiao LI, Zhong-hua NI. Free-standing MXene/chitosan/Cu2O electrode: an enzyme-free and efficient biosensor for simultaneous determination of glucose and cholesterol[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2100584

@article{title="Free-standing MXene/chitosan/Cu2O electrode: an enzyme-free and efficient biosensor for simultaneous determination of glucose and cholesterol",
author="Tao HU, Man ZHANG, Hui DONG, Tong LI, Xiao-bei ZANG, Xiao LI, Zhong-hua NI",
journal="Journal of Zhejiang University Science A",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.A2100584"
}

%0 Journal Article
%T Free-standing MXene/chitosan/Cu2O electrode: an enzyme-free and efficient biosensor for simultaneous determination of glucose and cholesterol
%A Tao HU
%A Man ZHANG
%A Hui DONG
%A Tong LI
%A Xiao-bei ZANG
%A Xiao LI
%A Zhong-hua NI
%J Journal of Zhejiang University SCIENCE A
%P 579-586
%@ 1673-565X
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.A2100584"

TY - JOUR
T1 - Free-standing MXene/chitosan/Cu2O electrode: an enzyme-free and efficient biosensor for simultaneous determination of glucose and cholesterol
A1 - Tao HU
A1 - Man ZHANG
A1 - Hui DONG
A1 - Tong LI
A1 - Xiao-bei ZANG
A1 - Xiao LI
A1 - Zhong-hua NI
J0 - Journal of Zhejiang University Science A
SP - 579
EP - 586
%@ 1673-565X
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.A2100584"


Abstract: 
The incidence of "three highs", referring to hyperglycemia, hypertension, and hyperlipidemia, has been increasing rapidly all over the world (Dey and Raj, 2013; Gao et al., 2019). These illnesses may be attributed to the perturbations of blood metabolites which are small molecules within biofluids (Patil et al., 2018). Among them, the presence of cholesterol and glucose in blood at abnormal levels highly increases the risk of cardiac and brain vascular diseases, and diabetes (Li et al., 2019). Furthermore, it has been confirmed that high glucose concentration is one of the main causes of atherosclerosis, by causing the accumulation of cholesterol in macrophages (Henry et al., 2002). Therefore, for early diagnosis of these diseases, the development of a low-cost, simple, and efficient strategy for simultaneous, accurate, and rapid detection of multiple metabolites is greatly needed for on-site disease monitoring in-home healthcare.

自支撑MXene/壳聚糖/Cu2O电极:一种高效的同时测定葡萄糖和胆固醇的无酶生物传感器

作者:胡涛1,2,张曼1,2,董慧1,2,李彤1,2,臧晓蓓3,李晓1,2,倪中华1,2
机构:1东南大学,机械工程学院,中国南京,2111892;2东南大学,江苏省微纳生物医学仪器设计与制造重点实验室,中国南京,2111893;3中国石油大学(华东),材料科学与工程学院,中国青岛,266580
目的:研制低成本、高精度的多种代谢物同时检测的生物传感器对医疗诊断具有重要意义。在本工作中,我们提出了一种基于MXene/壳聚糖(CTS)/Cu2O纳米复合材料的独立无酶电极,用于同时高精度测定葡萄糖和胆固醇。
创新点:1.利用MXene、CTS和Cu2O的协同作用,通过电位分离,实现对葡萄糖和胆固醇的无酶同时检测;2.优化检测范围,可用于检测人体血液样本。
方法:1.通过MXene、CTS和Cu2O纳米材料的协同作用形成有效的界面结,促进反应过程中的电荷转移,进而提高与待测物质的接触面积;2.分析电化学反应过程,构建电流信号与待测物浓度之间的关系,得到传感器的性能参数。
结论:1. MXene/CTS薄膜具有较高的比表面积,为离子的扩散提供了更多的通道,同时Cu2O纳米粒子可以提供丰富的金属活性边缘,促进了电荷转移,提高了反应活性。2. Cu2O纳米颗粒在胆固醇检测中发挥了重要作用,而同时作为导电基底和葡萄糖氧化剂的MXene,通过协同作用实现了在不同电位上同时无酶检测葡萄糖和胆固醇。3.在优化的电位范围内(?0.80-0.40 V),该传感器对葡萄糖和胆固醇具有良好的线性响应,灵敏度分别为60.295和215.71μA?L/(mmol?cm2),而检出限分别为52.4和49.8 μmol/L。4.通过对人血清样品的实时分析,验证了其良好的抗干扰能力和回收率(98.04%-102.94%),所以该传感器具有一定的临床应用前景。

关键词组:无酶电极;多物质同时检测;胆固醇;葡萄糖;MXene

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AhmadR, KhanM, TripathyN, et al., 2020. Hydrothermally synthesized nickel oxide nanosheets for non-enzymatic electrochemical glucose detection. Journal of the Electrochemical Society, 167(10):107504.

[2]AnasoriB, LukatskayaMR, GogotsiY, 2017. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2(2):16098.

[3]BairagiPK, VermaN, 2018. Electrochemically deposited dendritic poly (methyl orange) nanofilm on metal-carbon-polymer nanocomposite: a novel non-enzymatic electrochemical biosensor for cholesterol. Journal of Electroanalytical Chemistry, 814:134-143.

[4]BootaM, PasiniM, GaleottiF, et al., 2017. Interaction of polar and nonpolar polyfluorenes with layers of two-dimensional titanium carbide (MXene): intercalation and pseudocapacitance. Chemistry of Materials, 29(7):2731-2738.

[5]DeyRS, RajCR, 2013. Redox-functionalized graphene oxide architecture for the development of amperometric biosensing platform. ACS Applied Materials & Interfaces, 5(11):4791-4798.

[6]DongXW, ZhangYD, DingB, et al., 2018. Layer-by-layer self-assembled two-dimensional MXene/layered double hydroxide composites as cathode for alkaline hybrid batteries. Journal of Power Sources, 390:208-214.

[7]FanY, LiuJT, WangY, et al., 2017. A wireless point-of-care testing system for the detection of neuron-specific enolase with microfluidic paper-based analytical devices. Biosensors and Bioelectronics, 95:60-66.

[8]GaoJ, HuangWZ, ChenZP, et al., 2019. Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sensors and Actuators B: Chemical, 287:102-110.

[9]GrozdanovI, 1994. Electroless chemical deposition technique for Cu2O thin films. Materials Letters, 19(5-6):281-285.

[10]HenryP, ThomasF, BenetosA, et al., 2002. Impaired fasting glucose, blood pressure and cardiovascular disease mortality. Hypertension, 40(4):458-463.

[11]HuangQL, AnYR, TangLL, et al., 2011. A dual enzymatic-biosensor for simultaneous determination of glucose and cholesterol in serum and peritoneal macrophages of diabetic mice: evaluation of the diabetes-accelerated atherosclerosis risk. Analytica Chimica Acta, 707(1-2):135-141.

[12]JaimeJ, RangelG, Muñoz-BonillaA, et al., 2017. Magnetite as a platform material in the detection of glucose, ethanol and cholesterol. Sensors and Actuators B: Chemical, 238:693-701.

[13]JiR, WangLL, WangGF, et al., 2014. Synthesize thickness copper (I) sulfide nanoplates on copper rod and it’s application as nonenzymatic cholesterol sensor. Electrochimica Acta, 130:239-244.

[14]KhaliqN, RasheedMA, ChaG, et al., 2020. Development of non-enzymatic cholesterol bio-sensor based on TiO2 nanotubes decorated with Cu2O nanoparticles. Sensors and Actuators B: Chemical, 302:127200.

[15]KhazaeiM, AraiM, SasakiT, et al., 2013. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 23(17):2185-2192.

[16]LeeJH, ShoemanDW, KimSS, et al., 1997. The effect of superoxide anion in the production of seven major cholesterol oxidation products in aptoric and protic conditions. International Journal of Food Sciences and Nutrition, 48(2):151-159.

[17]LiG, LiaoJM, HuGQ, et al., 2005. Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood. Biosensors and Bioelectronics, 20(10):2140-2144.

[18]LiX, RenKB, ZhangM, et al., 2019. Cobalt functionalized MoS2/carbon nanotubes scaffold for enzyme-free glucose detection with extremely low detection limit. Sensors and Actuators B: Chemical, 293:122-128.

[19]LiZJ, QiaoKJ, ShiWC, et al., 2016. Biosynthesis of poly(glycolate-co-lactate-co-3-hydroxybutyrate) from glucose by metabolically engineered Escherichia coli. Metabolic Engineering, 35:1-8.

[20]LiangX, GarsuchA, NazarLF, 2015. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angewandte Chemie International Edition, 54(13):3907-3911.

[21]LingZ, RenCE, ZhaoMQ, et al., 2014. Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 111(47):16676-16681.

[22]LorencovaL, BertokT, DosekovaE, et al., 2017. Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochimica Acta, 235:471-479.

[23]LuX, TaoL, SongDD, et al., 2018. Bimetallic Pd@Au nanorods based ultrasensitive acetylcholinesterase biosensor for determination of organophosphate pesticides. Sensors and Actuators B: Chemical, 255:2575-2581.

[24]MashtalirO, NaguibM, MochalinVN, et al., 2013. Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4:1716.

[25]NaguibM, KurtogluM, PresserV, et al., 2011. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23(37):4248-4253.

[26]OhJK, LeeDI, ParkJM, 2009. Biopolymer-based microgels/nanogels for drug delivery applications. Progress in Polymer Science, 34(12):1261-1282.

[27]PagarePK, ToraneAP, 2016. Band gap varied cuprous oxide (Cu2O) thin films as a tool for glucose sensing. Microchimica Acta, 183(11):2983-2989.

[28]PatilSB, DheemanDS, Al-RawhaniMA, et al., 2018. An integrated portable system for single chip simultaneous measurement of multiple disease associated metabolites. Biosensors and Bioelectronics, 122:88-94.

[29]PhetsangS, JakmuneeJ, MungkornasawakulP, et al., 2019. Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly(3-aminobenzoic acid) film-modified screen-printed carbon electrode. Bioelectrochemistry, 127:125-135.

[30]PletcherD, 1984. Electrocatalysis: present and future. Journal of Applied Electrochemistry, 14(4):403-415.

[31]RajV, JohnsonT, JosephK, 2014. Cholesterol aided etching of tomatine gold nanoparticles: a non-enzymatic blood cholesterol monitor. Biosensors and Bioelectronics, 60:191-194.

[32]RengarajA, HaldoraiY, KwakCH, et al., 2015. Electrodeposition of flower-like nickel oxide on CVD-grown graphene to develop an electrochemical non-enzymatic biosensor. Journal of Materials Chemistry B, 3(30):6301-6309.

[33]ShihWC, YangMC, LinMS, 2009. Development of disposable lipid biosensor for the determination of total cholesterol. Biosensors and Bioelectronics, 24(6):1679-1684.

[34]ShumyantsevaV, DelucaG, BulkoT, et al., 2004. Cholesterol amperometric biosensor based on cytochrome P450scc. Biosensors and Bioelectronics, 19(9):971-976.

[35]SinhaA, Dhanjai, ZhaoHM, et al., 2018. MXene: an emerging material for sensing and biosensing. TrAC Trends in Analytical Chemistry, 105:424-435.

[36]SongPA, WangH, 2020. High-performance polymeric materials through hydrogen-bond cross-linking. Advanced Materials, 32(18):1901244.

[37]WangXF, KajiyamaS, IinumaH, et al., 2015. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nature Communications, 6:6544.

[38]WangY, DouH, WangJ, et al., 2016. Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. Journal of Power Sources, 327:221-228.

[39]WuQ, HeL, JiangZW, et al., 2019. CuO nanoparticles derived from metal-organic gel with excellent electrocatalytic and peroxidase-mimicking activities for glucose and cholesterol detection. Biosensors and Bioelectronics, 145:111704.

[40]YangJ, LeeH, ChoM, et al., 2012. Nonenzymatic cholesterol sensor based on spontaneous deposition of platinum nanoparticles on layer-by-layer assembled CNT thin film. Sensors and Actuators B: Chemical, 171-172:374-379.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE