Full Text:  <731>

Summary:  <242>

CLC number: 

On-line Access: 2022-07-06

Received: 2021-12-08

Revision Accepted: 2022-05-03

Crosschecked: 2022-07-06

Cited: 0

Clicked: 793

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiaobo HU

https://orcid.org/0000-0001-7613-680X

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B

Accepted manuscript available online (unedited version)


PFKL, a novel regulatory node for NOX2-dependent oxidative burst and NETosis


Author(s):  Zhaohui CAO, Di HUANG, Cifei TANG, Min ZENG, Xiaobo HU

Affiliation(s):  Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang 421001, China; more

Corresponding email(s):  huxiaobo@foxmail.com

Key Words:  PFKL;NETosis;Neutrophil;NOX


Share this article to: More <<< Previous Paper|Next Paper >>>

Zhaohui CAO, Di HUANG, Cifei TANG, Min ZENG, Xiaobo HU. PFKL, a novel regulatory node for NOX2-dependent oxidative burst and NETosis[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2101029

@article{title="PFKL, a novel regulatory node for NOX2-dependent oxidative burst and NETosis",
author="Zhaohui CAO, Di HUANG, Cifei TANG, Min ZENG, Xiaobo HU",
journal="Journal of Zhejiang University Science B",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.B2101029"
}

%0 Journal Article
%T PFKL, a novel regulatory node for NOX2-dependent oxidative burst and NETosis
%A Zhaohui CAO
%A Di HUANG
%A Cifei TANG
%A Min ZENG
%A Xiaobo HU
%J Journal of Zhejiang University SCIENCE B
%P 607-612
%@ 1673-1581
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.B2101029"

TY - JOUR
T1 - PFKL, a novel regulatory node for NOX2-dependent oxidative burst and NETosis
A1 - Zhaohui CAO
A1 - Di HUANG
A1 - Cifei TANG
A1 - Min ZENG
A1 - Xiaobo HU
J0 - Journal of Zhejiang University Science B
SP - 607
EP - 612
%@ 1673-1581
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.B2101029"


Abstract: 
Neutrophils are predominant leukocytes in the circulation, which are essential for killing invading pathogens via the activation of effector responses and the production of reactive oxygen species (ROS), also named as "oxidative burst." When infected, activated neutrophils fight bacteria, fungi, and viruses through oxidative burst, phagocytosis, degranulation, and the production of neutrophil extracellular traps (NETs) in a neutrophil death process named as "NETosis" (Mutua and Gershwin, 2021). NETs, consisting of DNA fibers decorated with modified histones and numerous antimicrobial proteins from cytoplasmic granules and the nucleus, can either be beneficial or detrimental (Mutua and Gershwin, 2021). Several pathways can lead to this death process. In response to various stimuli, NETosis traps and clears pathogens, facilitating phagocytosis by other neutrophils and phagocytes. However, excessive NETosis often results in disease due to increasing the pro-inflammatory response and perpetuating the inflammatory condition (Hellebrekers et al., 2018; Hidalgo et al., 2019; Klopf et al., 2021). Accordingly, inhibiting aberrant NETosis may alleviate the severity of various autoimmune and inflammatory diseases.

磷酸果糖激酶L调节NADPH氧化酶-2依赖的氧化爆发和中性粒细胞的炎性死亡

曹朝晖1,2,黄狄1,2,唐慈妃1,2,曾敏1,2,胡小波1,2
1南华大学衡阳医学院生物化学与分子生物学教研室,中国衡阳市,421001
2南华大学衡阳医学院湖南省教育厅生态环境与重大疾病防治重点实验室,中国衡阳市,421001
概要:中性粒细胞胞外诱捕网(NETs),由活化的中性粒细胞释放的组蛋白和抗菌蛋白修饰的网状DNA纤维组成。中性粒细胞产生NETs,实现宿主防御作用,这一过程被称为中性粒细胞炎性死亡(NETosis)。NETosis是一把双刃剑,在应对各种外界刺激时,NETosis介导免疫反应,捕获和清除病原体,促进中性粒细胞和吞噬细胞的吞噬作用。然而,过度的NETosis增加炎症反应,持续炎症状态。因此,抑制异常NETosis的发生可以降低各种自身免疫性疾病和炎症性疾病的严重程度。磷酸果糖激酶L(PFKL)通过选择性激活中性粒细胞中的糖酵解通路,减少还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)产生,继而减少活性氧(ROS)的产生,抑制NETosis,为一些炎性疾病治疗提供新思路。

关键词组:磷酸果糖激酶L(PFKL);中性粒细胞炎性死亡(NETosis);中性粒细胞;NADPH氧化酶(NOX)

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AltenhöferS, RadermacherKA, KleikersPWM, et al., 2015. Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid Redox Signal, 23(5):406-427.

[2]AmaraN, CooperMP, VoronkovaMA, et al., 2021. Selective activation of PFKL suppresses the phagocytic oxidative burst. Cell, 184(17):4480-4494.e15.

[3]BarbieriSS, CavalcaV, EliginiS, et al., 2004. Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependent mechanisms. Free Radic Biol Med, 37(2):156-165.

[4]BonaventuraA, LiberaleL, CarboneF, et al., 2018. The pathophysiological role of neutrophil extracellular traps in inflammatory diseases. Thromb Haemost, 118(1):6-27.

[5]BrandesRP, WeissmannN, SchröderK, 2014. Nox family NADPH oxidases: molecular mechanisms of activation. Free Radic Biol Med, 76:208-226.

[6]ChenWQ, WangQ, KeYN, et al., 2018. Neutrophil function in an inflammatory milieu of rheumatoid arthritis. J Immunol Res, 2018:8549329.

[7]Delgado-RizoV, Martínez-GuzmánMA, Iñiguez-GutierrezL, et al., 2017. Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol, 8:81.

[8]DoudaDN, KhanMA, GrasemannH, et al., 2015. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci USA, 112(9):2817-2822.

[9]FanLM, LiuFF, DuJJ, et al., 2022. Inhibition of endothelial Nox2 activation by LMH001 protects mice from angiotensin II-induced vascular oxidative stress, hypertension and aortic aneurysm. Redox Biol, 51:102269.

[10]FernandesPM, KinkeadJ, McNaeI, et al., 2020. Biochemical and transcript level differences between the three human phosphofructokinases show optimisation of each isoform for specific metabolic niches. Biochem J, 477(22):4425-4441.

[11]GhergurovichJM, García-CañaverasJC, WangJ, et al., 2020. A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway. Nat Chem Biol, 16(7):731-739.

[12]GrahamDB, BeckerCE, DoanA, et al., 2015. Functional genomics identifies negative regulatory nodes controlling phagocyte oxidative burst. Nat Commun, 6:7838.

[13]GuptaAK, GiaglisS, HaslerP, et al., 2014. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. PLoS ONE, 9(5):e97088.

[14]HellebrekersP, VrisekoopN, KoendermanL, 2018. Neutrophil phenotypes in health and disease. Eur J Clin Invest, 48(S2):e12943.

[15]HeumüllerS, WindS, Barbosa-SicardE, et al., 2008. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension, 51(2):211-217.

[16]HidalgoAI, CarrettaMD, AlarcónP, et al., 2019. Pro-inflammatory mediators and neutrophils are increased in synovial fluid from heifers with acute ruminal acidosis. BMC Vet Res, 15:225.

[17]KambasK, MarkiewskiMM, PneumatikosIA, et al., 2008. C5a and TNF-α up-regulate the expression of tissue factor in intra-alveolar neutrophils of patients with the acute respiratory distress syndrome. J Immunol, 180(11):7368-7375.

[18]KlopfJ, BrostjanC, EilenbergW, et al., 2021. Neutrophil extracellular traps and their implications in cardiovascular and inflammatory disease. Int J Mol Sci, 22(2):559.

[19]LeungHHL, PerdomoJ, AhmadiZ, et al., 2021. Inhibition of NADPH oxidase blocks NETosis and reduces thrombosis in heparin-induced thrombocytopenia. Blood Adv, 5(23):5439-5451.

[20]LiY, Cifuentes-PaganoE, DeVallanceER, et al., 2019. NADPH oxidase 2 inhibitors CPP11G and CPP11H attenuate endothelial cell inflammation & vessel dysfunction and restore mouse hind-limb flow. Redox Biol, 22:101143.

[21]LiuFC, YuHP, ChenPJ, et al., 2019. A novel NOX2 inhibitor attenuates human neutrophil oxidative stress and ameliorates inflammatory arthritis in mice. Redox Biol, 26:101273.

[22]MatosinhosRC, BezerraJP, BarrosCH, et al., 2022. Coffea arabica extracts and their chemical constituents in a murine model of gouty arthritis: how they modulate pain and inflammation. J Ethnopharmacol, 284:114778.

[23]MatuteJD, AriasAA, WrightNAM, et al., 2009. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40phox and selective defects in neutrophil NADPH oxidase activity. Blood, 114(15):3309-3315.

[24]MaueröderC, MahajanA, PaulusS, et al., 2016. Ménage-à-Trois: the ratio of bicarbonate to CO2 and the pH regulate the capacity of neutrophils to form NETs. Front Immunol, 7:583.

[25]MutuaVM, GershwinLJ, 2021. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clin Rev Allergy Immunol, 61(2):194-211.

[26]NadeemA, Al-HarbiNO, AhmadSF, et al., 2018. Glucose-6-phosphate dehydrogenase inhibition attenuates acute lung injury through reduction in NADPH oxidase-derived reactive oxygen species. Clin Exp Immunol, 191(3):279-287.

[27]NagelS, HadleyG, PflegerK, et al., 2012. Suppression of the inflammatory response by diphenyleneiodonium after transient focal cerebral ischemia. J Neurochem, 123(S2):98-107.

[28]PapayannopoulosV, MetzlerKD, HakkimA, et al., 2010. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol, 191(3):677-691.

[29]PieterseE, RotherN, YanginlarC, et al., 2016. Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps. Front Immunol, 7:484.

[30]RomeroA, NovoaB, FiguerasA, 2020. Extracellular traps (ETosis) can be activated through NADPH-dependent and -independent mechanisms in bivalve mollusks. Dev Comp Immunol, 106:103585.

[31]ShishikuraK, HoriuchiT, SakataN, et al., 2016. Prostaglandin E2 inhibits neutrophil extracellular trap formation through production of cyclic AMP. Br J Pharmacol, 173(2):319-331.

[32]SollbergerG, ChoidasA, BurnGL, et al., 2018. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci Immunol, 3(26):eaar6689.

[33]StuehrDJ, FasehunOA, KwonNS, et al., 1991. Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. FASEB J, 5(1):98-103.

[34]YippBG, KubesP, 2013. NETosis: how vital is it? Blood, 122(16):2784-2794.

[35]YousefiS, MihalacheC, KozlowskiE, et al., 2009. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ, 16(11):‍1438-1444.

[36]ZuoY, YalavarthiS, ShiH, et al., 2020. Neutrophil extracellular traps in COVID-19. JCI Insight, 5(11):e138999.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE