Full Text:  <907>

Summary:  <258>

CLC number: 

On-line Access: 2022-06-08

Received: 2021-12-26

Revision Accepted: 2022-03-01

Crosschecked: 2022-06-08

Cited: 0

Clicked: 1195

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Ang LI

https://orcid.org/0000-0002-1478-3072

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B

Accepted manuscript available online (unedited version)


Roles of neutrophil reactive oxygen species (ROS) generation in organ function impairment in sepsis


Author(s):  Jiaqi LU, Jingyuan LIU, Ang LI

Affiliation(s):  Intensive Care Unit, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China

Corresponding email(s):  liang@ccmu.edu.cn

Key Words:  Sepsis; Neutrophils; Oxidative stress; Reactive oxygen species (ROS); Organ dysfunction


Share this article to: More |Next Paper >>>

Jiaqi LU, Jingyuan LIU, Ang LI. Roles of neutrophil reactive oxygen species (ROS) generation in organ function impairment in sepsis[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2101075

@article{title="Roles of neutrophil reactive oxygen species (ROS) generation in organ function impairment in sepsis",
author="Jiaqi LU, Jingyuan LIU, Ang LI",
journal="Journal of Zhejiang University Science B",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.B2101075"
}

%0 Journal Article
%T Roles of neutrophil reactive oxygen species (ROS) generation in organ function impairment in sepsis
%A Jiaqi LU
%A Jingyuan LIU
%A Ang LI
%J Journal of Zhejiang University SCIENCE B
%P 437-450
%@ 1673-1581
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.B2101075"

TY - JOUR
T1 - Roles of neutrophil reactive oxygen species (ROS) generation in organ function impairment in sepsis
A1 - Jiaqi LU
A1 - Jingyuan LIU
A1 - Ang LI
J0 - Journal of Zhejiang University Science B
SP - 437
EP - 450
%@ 1673-1581
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.B2101075"


Abstract: 
Sepsis is a condition of severe organ failure caused by the maladaptive response of the host to an infection. It is a severe complication affecting critically ill patients, which can progress to severe sepsis, septic shock, and ultimately death. As a vital part of the human innate immune system, neutrophils are essential in resisting pathogen invasion, infection, and immune surveillance. Neutrophil-produced reactive oxygen species (ROS) play a pivotal role in organ dysfunction related to sepsis. In recent years, ROS have received a lot of attention as a major cause of sepsis, which can progress to severe sepsis and septic shock. This paper reviews the existing knowledge on the production mechanism of neutrophil ROS in human organ function impairment because of sepsis.

中性粒细胞活性氧生成在脓毒症器官功能损害中的作用

卢嘉琪,刘景院,李昂
首都医科大学附属北京地坛医院重症医学科,中国北京市,100015
概要:脓毒症是由宿主对感染的不良反应引起的严重器官衰竭的综合征。中性粒细胞作为人类固有免疫系统的重要组成部分,对抵抗病原体入侵、感染和免疫监视至关重要。中性粒细胞产生的活性氧(ROS)在与脓毒症相关的器官功能障碍中起关键作用。脓毒症可发展为严重脓毒症和感染性休克,因此近年来ROS作为脓毒症的一个因素受到了很多关注。本综述旨在总结中性粒细胞ROS在脓毒症器官功能损害中的适当机制,并有望为脓毒症期间破坏性器官功能障碍的发生和发展提供新的线索。

关键词组:脓毒症;中性粒细胞;氧化应激;活性氧;器官功能障碍

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AvagimyanA, PopovS, ShalnovaS, 2022. The pathophysiological basis of diabetic cardiomyopathy development. Curr Probl Cardiol, in press.

[2]BaeMH, ParkSH, ParkCJ, et al., 2016. Flow cytometric measurement of respiratory burst activity and surface expression of neutrophils for septic patient prognosis. Cytom B Clin Cytom, 90(4):368-375.

[3]BatemanRM, SharpeMD, EllisCG, 2003. Bench-to-bedside review: microvascular dysfunction in sepsis—hemodynamics, oxygen transport, and nitric oxide. Crit Care, 7(5):359.

[4]BeesleySJ, WeberG, SargeT, et al., 2018. Septic cardiomyopathy. Crit Care Med, 46(4):625-634.

[5]BougakiM, SearlesRJ, KidaK, et al., 2010. NOS3 protects against systemic inflammation and myocardial dysfunction in murine polymicrobial sepsis. Shock, 34(3):281-290.

[6]BrealeyD, BrandM, HargreavesI, et al., 2002. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet, 360(9328):219-223.

[7]BrealeyD, KaryampudiS, JacquesTS, et al., 2004. Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol, 286(3):R491-R497.

[8]BrinkmannV, ReichardU, GoosmannC, et al., 2004. Neutrophil extracellular traps kill bacteria. Science, 303(5663):1532-1535.

[9]CaiH, HarrisonDG, 2000. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res, 87(10):840-844.

[10]CaoZZ, QinHQ, HuangYH, et al., 2022. Crosstalk of pyroptosis, ferroptosis, and mitochondrial aldehyde dehydrogenase 2-related mechanisms in sepsis-induced lung injury in a mouse model. Bioengineered, 13(3):4810-4820.

[11]CatalãoCHR, Santos-JúniorNN, da CostaLHA, et al., 2017. Brain oxidative stress during experimental sepsis is attenuated by simvastatin administration. Mol Neurobiol, 54(9):7008-7018.

[12]CaudrillierA, KessenbrockK, GillissBM, et al., 2012. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest, 122(7):‍2661-2671.

[13]CaveAC, BrewerAC, NarayanapanickerA, et al., 2006. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal, 8(5-6):691-728.

[14]Cernuda-MorollónE, RidleyAJ, 2006. Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells. Circ Res, 98(6):757-767.

[15]ChelazziC, VillaG, MancinelliP, et al., 2015. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care, 19:26.

[16]ChenYH, JinS, TengX, et al., 2018. Hydrogen sulfide attenuates LPS-induced acute kidney injury by inhibiting inflammation and oxidative stress. Oxid Med Cell Longev, 2018:6717212.

[17]CoggerVC, MrossPE, HosieMJ, et al., 2001. The effect of acute oxidative stress on the ultrastructure of the perfused rat liver. Pharmacol Toxicol, 89(6):306-311.

[18]CohenJ, 2002. The immunopathogenesis of sepsis. Nature, 420(6917):885-891.

[19]DrifteG, Dunn-SiegristI, TissièresP, et al., 2013. Innate immune functions of immature neutrophils in patients with sepsis and severe systemic inflammatory response syndrome. Crit Care Med, 41(3):820-832.

[20]Dunham-SnaryKJ, HongZG, XiongPY, et al., 2016. A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus. Pflugers Arch, 468(1):43-58.

[21]EidelmanLA, PuttermanD, PuttermanC, et al., 1996. The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA, 275(6):470-473.

[22]ElyEW, ShintaniA, TrumanB, et al., 2004. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA, 291(14):1753-1762.

[23]FaniF, RegolistiG, DelsanteM, et al., 2018. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J Nephrol, 31(3):351-359.

[24]FinkMP, EvansTW, 2002. Mechanisms of organ dysfunction in critical illness: report from a Round Table Conference held in Brussels. Intensive Care Med, 28(3):369-375.

[25]FuchsTA, BrillA, DuerschmiedD, et al., 2010. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA, 107(36):15880-15885.

[26]GamalM, MoawadJ, RashedL, et al., 2018. Possible involvement of tetrahydrobiopterin in the disturbance of redox homeostasis in sepsis-induced brain dysfunction. Brain Res, 1685:19-28.

[27]GanTT, YangYL, HuF, et al., 2018. TLR3 regulated poly I:C-induced neutrophil extracellular traps and acute lung injury partly through p38 MAP kinase. Front Microbiol, 9:3174.

[28]GeQM, HuangCM, ZhuXY, et al., 2017. Differentially expressed miRNAs in sepsis-induced acute kidney injury target oxidative stress and mitochondrial dysfunction pathways. PLoS ONE, 12(3):e0173292.

[29]GerinF, SenerU, ErmanH, et al., 2016. The effects of quercetin on acute lung injury and biomarkers of inflammation and oxidative stress in the rat model of sepsis. Inflammation, 39(2):700-705.

[30]GriendlingKK, SorescuD, Ushio-FukaiM, 2000. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res, 86(5):494-501.

[31]GuerciP, ErginB, InceC, 2017. The macro- and microcirculation of the kidney. Best Pract Res Clin Anaesthesiol, 31(3):315-329.

[32]GuoRF, WardPA, 2007. Role of oxidants in lung injury during sepsis. Antioxid Redox Signal, 9(11):1991-2002.

[33]GuoSQ, ZhangY, WangZF, et al., 2017. Intraperitoneal gardiquimod protects against hepatotoxicity through inhibition of oxidative stress and inflammation in mice with sepsis. J Biochem Mol Toxicol, 31(8):e21923.

[34]HademJ, BockmeyerCL, LukaszA, et al., 2012. Angiopoietin-2 in acute liver failure. Crit Care Med, 40(5):1499-1505.

[35]HaileselassieB, SuE, PoziosI, et al., 2017. Myocardial oxidative stress correlates with left ventricular dysfunction on strain echocardiography in a rodent model of sepsis. Intensive Care Med Exp, 5:21.

[36]HongGL, ZhengD, ZhangLL, et al., 2018. Administration of nicotinamide riboside prevents oxidative stress and organ injury in sepsis. Free Radic Biol Med, 123:125-137.

[37]HordijkPL, 2006. Endothelial signalling events during leukocyte transmigration. FEBS J, 273(19):4408-4415.

[38]HouMY, WuXJ, ZhaoZY, et al., 2022. Endothelial cell-targeting, ROS-ultrasensitive drug/siRNA co-delivery nanocomplexes mitigate early-stage neutrophil recruitment for the anti-inflammatory treatment of myocardial ischemia reperfusion injury. Acta Biomater, 143:344-355.

[39]IantornoM, CampiaU, di DanieleN, et al., 2014. Obesity, inflammation and endothelial dysfunction. J Biol Regul Homeost Agents, 28(2):169-176.

[40]JaganjacM, CipakA, SchaurRJ, et al., 2016. Pathophysiology of neutrophil-mediated extracellular redox reactions. Front Biosci (Landmark Ed), 21(4):839-855.

[41]KimJ, BaeJS, 2016. Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm, 2016:6058147.

[42]KumarA, 2014. An alternate pathophysiologic paradigm of sepsis and septic shock: implications for optimizing antimicrobial therapy. Virulence, 5(1):80-97.

[43]KurepaJ, SmalleJA, 2019. Oxidative stress-induced formation of covalently linked ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit dimer in tobacco plants. BMC Res Notes, 12:112.

[44]KurianAG, SinghRK, LeeJH, et al., 2022. Surface-engineered hybrid gelatin methacryloyl with nanoceria as reactive oxygen species responsive matrixes for bone therapeutics. ACS Appl Bio Mater, 5(3):1130-1138.

[45]LambethJD, 2004. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol, 4(3):181-189.

[46]LandryDW, LevinHR, GallantEM, et al., 1997. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation, 95(5):1122-1125.

[47]LandskronG, de la FuenteM, ThuwajitP, et al., 2014. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res, 2014:149185.

[48]LarsenFS, 2019. Artificial liver support in acute and acute-on-chronic liver failure. Curr Opin Crit Care, 25(2):187-191.

[49]LeeKS, KimSR, ParkSJ, et al., 2006. Hydrogen peroxide induces vascular permeability via regulation of vascular endothelial growth factor. Am J Respir Cell Mol Biol, 35(2):190-197.

[50]LiF, LangFF, ZhangHL, et al., 2016. Role of TFEB mediated autophagy, oxidative stress, inflammation, and cell death in endotoxin induced myocardial toxicity of young and aged mice. Oxid Med Cell Longev, 2016:5380319.

[51]LiJM, ShahAM, 2004. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol, 287(5):R1014-R1030.

[52]LiQ, MaoM, QiuYL, et al., 2016. Key role of ROS in the process of 15-lipoxygenase/15-hydroxyeicosatetraenoiccid-induced pulmonary vascular remodeling in hypoxia pulmonary hypertension. PLoS ONE, 11(2):e0149164.

[53]LiQ, ZhongXF, YaoWC, et al., 2022. Inhibitor of glutamine metabolism V9302 promotes ROS-induced autophagic degradation of B7H3 to enhance antitumor immunity. J Biol Chem, 298(4):101753.

[54]LiXY, FangP, LiYF, et al., 2016. Mitochondrial reactive oxygen species mediate lysophosphatidylcholine-induced endothelial cell activation. Arterioscler Thromb Vasc Biol, 36(6):1090-1100.

[55]LiuH, WuJ, YaoJY, et al., 2017. The role of oxidative stress in decreased acetylcholinesterase activity at the neuromuscular junction of the diaphragm during sepsis. Oxid Med Cell Longev, 2017:9718615.

[56]LivaditiO, KotanidouA, PsarraA, et al., 2006. Neutrophil CD64 expression and serum IL-8: sensitive early markers of severity and outcome in sepsis. Cytokine, 36(5-6):283-290.

[57]MariampillaiK, GrangerB, AmelinD, et al., 2018. Development of a new classification system for idiopathic inflammatory myopathies based on clinical manifestations and myositis-specific autoantibodies. JAMA Neurol, 75(12):1528-1537.

[58]Marin-EstebanV, TurbicaI, DufourG, et al., 2012. Afa/Dr diffusely adhering Escherichia coli strain C1845 induces neutrophil extracellular traps that kill bacteria and damage human enterocyte-like cells. Infect Immun, 80(5):‍1891-1899.

[59]MartinL, DerwallM, Al ZoubiS, et al., 2019. The septic heart: current understanding of molecular mechanisms and clinical implications. Chest, 155(2):427-437.

[60]McCrackenJM, AllenLAH, 2014. Regulation of human neutrophil apoptosis and lifespan in health and disease. J Cell Death, 7:15-23.

[61]MillsEL, KellyB, LoganA, et al., 2016. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell, 167(2):457-470.e13.

[62]MorganMJ, LiuZG, 2011. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res, 21(1):103-115.

[63]MorrellED, KellumJA, Pastor-SolerNM, et al., 2014. Septic acute kidney injury: molecular mechanisms and the importance of stratification and targeting therapy. Crit Care, 18(5):501.

[64]OstermannM, LiuK, KashaniK, 2019. Fluid management in acute kidney injury. Chest, 156(3):594-603.

[65]PeerapornratanaS, Manrique-CaballeroCL, GómezH, et al., 2019. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int, 96(5):1083-1099.

[66]PerlM, Lomas-NeiraJ, ChungCS, et al., 2008. Epithelial cell apoptosis and neutrophil recruitment in acute lung injury—a unifying hypothesis? What we have learned from small interfering RNAs. Mol Med, 14(7-8):465-475.

[67]PostEH, KellumJA, BellomoR, et al., 2017. Renal perfusion in sepsis: from macro- to microcirculation. Kidney Int, 91(1):45-60.

[68]ReaIM, GibsonDS, McGilliganV, et al., 2018. Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol, 9:586.

[69]RuddKE, JohnsonSC, AgesaKM, et al., 2020. Global, regional, and national sepsis incidence and mortality, 1990‍‒‍2017: analysis for the global burden of disease study. Lancet, 395(10219):200-211.

[70]SaffarzadehM, JuenemannC, QueisserMA, et al., 2012. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS ONE, 7(2):e32366.

[71]SakaguchiS, FurusawaS, 2006. Oxidative stress and septic shock: metabolic aspects of oxygen-derived free radicals generated in the liver during endotoxemia. FEMS Immunol Med Microbiol, 47(2):167-177.

[72]SingerM, 2014. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence, 5(1):66-72.

[73]SingerM, DeutschmanCS, SeymourCW, et al., 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 315(8):801-810.

[74]SmithIO, LiuXH, SmithLA, et al., 2009. Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 1(2):226-236.

[75]StarczewskaMH, MonW, ShirleyP, 2017. Anaesthesia in patients with liver disease. Curr Opin Anaesthesiol, 30(3):392-398.

[76]SureshK, ShimodaLA, 2017. Endothelial cell reactive oxygen species and Ca2+ signaling in pulmonary hypertension. In: Wang YX (Ed.), Pulmonary Vasculature Redox Signaling in Health and Disease. Springer, Cham, p.299-314.

[77]TanCY, AzizM, WangP, 2021. The vitals of nets. J Leukoc Biol, 110(4):797-808.

[78]TangGM, YangHY, ChenJ, et al., 2017. Metformin ameliorates sepsis-induced brain injury by inhibiting apoptosis, oxidative stress and neuroinflammation via the PI3K/Akt signaling pathway. Oncotarget, 8(58):97977-97989.

[79]ThieblemontN, WrightHL, EdwardsSW, et al., 2016. Human neutrophils in auto-immunity. Semin Immunol, 28(2):159-173.

[80]VaisbichMH, Pache de Faria GuimaraesL, ShimizuMHM, et al., 2011. Oxidative stress in cystinosis patients. Nephron Extra, 1(1):73-77.

[81]WangJC, BennettM, 2012. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res, 111(2):245-259.

[82]WangYX, ZangQS, LiuZJ, et al., 2011. Regulation of VEGF-induced endothelial cell migration by mitochondrial reactive oxygen species. Am J Physiol Cell Physiol, 301(3):C695-C704.

[83]WangZ, HolthoffJH, SeelyKA, et al., 2012. Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. Am J Pathol, 180(2):505-516.

[84]WilsonCL, JurkD, FullardN, et al., 2015. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun, 6:6818.

[85]WinterbournCC, KettleAJ, HamptonMB, 2016. Reactive oxygen species and neutrophil function. Annu Rev Biochem, 85:765-792.

[86]YanJ, LiS, LiSL, 2014. The role of the liver in sepsis. Int Rev Immunol, 33(6):498-510.

[87]YinR, WangH, LiC, et al., 2022. Induction of apoptosis and autosis in cardiomyocytes by the combination of homocysteine and copper via NOX-mediated p62 expression. Cell Death Discov, 8:75.

[88]YuJJ, AuwerxJ, 2010. Protein deacetylation by SIRT1: an emerging key post-translational modification in metabolic regulation. Pharmacol Res, 62(1):35-41.

[89]Zanotti-CavazzoniSL, HollenbergSM, 2009. Cardiac dysfunction in severe sepsis and septic shock. Curr Opin Crit Care, 15(5):392-397.

[90]ZarbatoGF, de Souza GoldimMP, GiustinaAD, et al., 2018. Dimethyl fumarate limits neuroinflammation and oxidative stress and improves cognitive impairment after polymicrobial sepsis. Neurotox Res, 34(3):418-430.

[91]ZengM, HeWM, LiLJ, et al., 2015. Ghrelin attenuates sepsis-associated acute lung injury oxidative stress in rats. Inflammation, 38(2):683-690.

[92]ZengMY, MiraldaI, ArmstrongCL, et al., 2019. The roles of NADPH oxidase in modulating neutrophil effector responses. Mol Oral Microbiol, 34(2):27-38.

[93]ZhangXL, YuL, XuHX, 2016. Lysosome calcium in ROS regulation of autophagy. Autophagy, 12(10):1954-1955.

[94]ZhangZY, ZhangH, ChenR, et al., 2018. Oral supplementation with ursolic acid ameliorates sepsis-induced acute kidney injury in a mouse model by inhibiting oxidative stress and inflammatory responses. Mol Med Rep, 17(5):7142-7148.

[95]ZhengJL, YuanSS, WuCW, et al., 2016. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio). Aquat Toxicol, 180:36-44.

[96]ZhongWH, QianKJ, XiongJB, et al., 2016. Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via PI3K/AKT and NF‍-‍κB related signaling. Biomed Pharmacother, 83:302-313.

[97]ZhuLS, LuoD, LiuY, 2020. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci, 12:6.

[98]ZhuW, LuQ, WanL, et al., 2016. Sodium tanshinone II A sulfonate ameliorates microcirculatory disturbance of small intestine by attenuating the production of reactie oxygen species in rats with sepsis. Chin J Integr Med, 22(10):745-751.

[99]ZorovDB, JuhaszovaM, SollottSJ, 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev, 94(3):909-950.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE