Full Text:  <404>

Suppl. Mater.: 

Summary:  <152>

CLC number: 

On-line Access: 2023-06-13

Received: 2022-09-05

Revision Accepted: 2023-01-20

Crosschecked: 2023-07-21

Cited: 0

Clicked: 698

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jian-an Wang

https://orcid.org/0000-0002-4583-3204

Xianbao LIU

https://orcid.org/0000-0003-1556-9198

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B

Accepted manuscript available online (unedited version)


Cerebral ischemic injury after transcatheter aortic valve replacement in patients with pure aortic regurgitation


Author(s):  Xianbao LIU, Hanyi DAI, Jiaqi FAN, Dao ZHOU, Gangjie ZHU, Abuduwufuer YIDILISI, Jun CHEN, Yeming XU, Lihan WANG, Jian'an WANG

Affiliation(s):  Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; more

Corresponding email(s):  wangjianan111@zju.edu.cn

Key Words:  Cerebral ischemic injury; Transcatheter aortic valve replacement; Pure aortic regurgitation; Transfemoral; Transapical


Share this article to: More <<< Previous Paper|Next Paper >>>

Xianbao LIU, Hanyi DAI, Jiaqi FAN, Dao ZHOU, Gangjie ZHU, Abuduwufuer YIDILISI, Jun CHEN, Yeming XU, Lihan WANG, Jian'an WANG. Cerebral ischemic injury after transcatheter aortic valve replacement in patients with pure aortic regurgitation[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2200444

@article{title="Cerebral ischemic injury after transcatheter aortic valve replacement in patients with pure aortic regurgitation",
author="Xianbao LIU, Hanyi DAI, Jiaqi FAN, Dao ZHOU, Gangjie ZHU, Abuduwufuer YIDILISI, Jun CHEN, Yeming XU, Lihan WANG, Jian'an WANG",
journal="Journal of Zhejiang University Science B",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.B2200444"
}

%0 Journal Article
%T Cerebral ischemic injury after transcatheter aortic valve replacement in patients with pure aortic regurgitation
%A Xianbao LIU
%A Hanyi DAI
%A Jiaqi FAN
%A Dao ZHOU
%A Gangjie ZHU
%A Abuduwufuer YIDILISI
%A Jun CHEN
%A Yeming XU
%A Lihan WANG
%A Jian'an WANG
%J Journal of Zhejiang University SCIENCE B
%P 530-538
%@ 1673-1581
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.B2200444"

TY - JOUR
T1 - Cerebral ischemic injury after transcatheter aortic valve replacement in patients with pure aortic regurgitation
A1 - Xianbao LIU
A1 - Hanyi DAI
A1 - Jiaqi FAN
A1 - Dao ZHOU
A1 - Gangjie ZHU
A1 - Abuduwufuer YIDILISI
A1 - Jun CHEN
A1 - Yeming XU
A1 - Lihan WANG
A1 - Jian'an WANG
J0 - Journal of Zhejiang University Science B
SP - 530
EP - 538
%@ 1673-1581
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.B2200444"


Abstract: 
Considering the surgical risk stratification for patients with severe calcific aortic stenosis (AS), transcatheter aortic valve replacement (TAVR) is a reliable alternative to surgical aortic valve replacement (SAVR) (Fan et al., 2020, 2021; Lee et al., 2021). Despite the favorable clinical benefits of TAVR, stroke remains a dreaded perioperative complication (Auffret et al., 2016; Kapadia et al., 2016; Kleiman et al., 2016; Huded et al., 2019). Ischemic overt stroke, identified in 1.4% to 4.3% of patients in TAVR clinical practice, has been associated with prolonged disability and increased mortality (Auffret et al., 2016; Kapadia et al., 2016; Levi et al., 2022). The prevalence of hyperintensity cerebral ischemic lesions detected by diffusion-weighted magnetic resonance imaging (DW-MRI) was reported to be about 80%, which is associated with impaired neurocognitive function and vascular dementia (Vermeer et al., 2003; Barber et al., 2008; Kahlert et al., 2010).

经导管主动脉瓣置换术治疗单纯主动脉瓣反流患者术后脑损伤

刘先宝1,2,戴晗怡1,2,范嘉祺1,周道1,2,朱钢杰1,2,Abuduwufuer YIDILISI1,2,陈俊1,2,许烨铭1,2,王力涵1,王建安1,2
1浙江大学医学院第二附属医院心内科, 中国杭州市,310009
2浙江大学医学院附属医学院内科学, 中国杭州市,310058
摘要:
目的:本研究旨在比较重度主动脉瓣狭窄(AS)和单纯主动脉瓣反流(AR)患者接受经导管主动脉瓣置换术(TAVR)后发生脑损伤的风险。
方法:回顾性分析287例AS和65例单纯AR接受TAVR的患者。患者在TAVR术前和术后3天进行头颅磁共振检查。
结果:本研究中57.7%为男性;单纯AR患者年龄较小(71岁vs.74岁;P=0.001),美国心胸外科医师协会评分较低(2.39 vs. 3.89;P<0.001);3.1%的患者在出院前发生了症状性脑卒中;单纯AR组脑损伤病灶发生率(83.1% vs. 85.0%;P=0.695),病灶数(3.0 (1.5~7.5) vs. 3.0 (1.0~8.0);P=0.928)和总体积(130.0 mm3 vs. 190.0 mm3P=0.585)与AS组相比差异无统计学意义;此外,单纯AR组中的经股动脉入路和经心尖入路相比,无论是病灶数(3.0 (2.0~7.0) vs. 3.5 (1.0~8.3);P=0.923)还是总体积(120.0 mm3 vs. 135.0 mm3P=0.837)均相似。多元广义泊松回归模型证实吸烟史、慢性肾脏病4期或5期、左室流出道钙化是单纯AR患者TAVR术后脑损伤病灶数的独立预测因素。
结论:AS组与单纯AR组相比,TAVR术后新发脑损伤病灶的发生率、数量及总体积差异均无统计学意义。

关键词组:脑损伤;经导管主动脉瓣置换术;单纯主动脉瓣反流;经股动脉入路;经心尖入路

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AlharbiAA, KhanMZ, OsmanM, et al., 2020. Transcatheter aortic valve replacement vs surgical replacement in patients with pure aortic insufficiency. Mayo Clin Proc, 95(12):2655-2664.

[2]AmbroseJA, BaruaRS, 2004. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol, 43(10):1731-1737.

[3]AstarciP, GlineurD, KeferJ, et al., 2011. Magnetic resonance imaging evaluation of cerebral embolization during percutaneous aortic valve implantation: comparison of transfemoral and trans-apical approaches using edwards sapiens valve. Eur J Cardiothorac Surg, 40(2):475-479.

[4]AthappanG, GajulapalliRD, SengodanP, et al., 2014. Influence of transcatheter aortic valve replacement strategy and valve design on stroke after transcatheter aortic valve replacement: a meta-analysis and systematic review of literature. J Am Coll Cardiol, 63(20):2101-2110.

[5]AuffretV, RegueiroA, del TrigoM, et al., 2016. Predictors of early cerebrovascular events in patients with aortic stenosis undergoing transcatheter aortic valve replacement. J Am Coll Cardiol, 68(7):673-684.

[6]BarberPA, HachS, TippettLJ, et al., 2008. Cerebral ischemic lesions on diffusion-weighted imaging are associated with neurocognitive decline after cardiac surgery. Stroke, 39(5):1427-1433.

[7]BosmansJ, BleizifferS, GerckensU, et al., 2015. The incidence and predictors of early- and mid-term clinically relevant neurological events after transcatheter aortic valve replacement in real-world patients. J Am Coll Cardiol, 66(3):209-217.

[8]DaneaultB, KirtaneAJ, KodaliSK, et al., 2011. Stroke associated with surgical and transcatheter treatment of aortic stenosis: a comprehensive review. J Am Coll Cardiol, 58(21):2143-2150.

[9]DueringM, RighartR, CsanadiE, et al., 2012. Incident subcortical infarcts induce focal thinning in connected cortical regions. Neurology, 79(20):2025-2028.

[10]FairbairnTA, MatherAN, BijsterveldP, et al., 2012. Diffusion-weighted MRI determined cerebral embolic infarction following transcatheter aortic valve implantation: assessment of predictive risk factors and the relationship to subsequent health status. Heart, 98(1):18-23.

[11]FanJQ, FangX, LiuCH, et al., 2020. Brain injury after transcatheter replacement of bicuspid versus tricuspid aortic valves. J Am Coll Cardiol, 76(22):2579-2590.

[12]FanJQ, YuCJ, RenKD, et al., 2021. Kidney function change after transcatheter aortic valve replacement in patients with diabetes and/or hypertension. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(3):241-247.

[13]GhanemA, MüllerA, NähleCP, et al., 2010. Risk and fate of cerebral embolism after transfemoral aortic valve implantation: a prospective pilot study with diffusion-weighted magnetic resonance imaging. J Am Coll Cardiol, 55(14):1427-1432.

[14]GuoRK, XieMH, YimWY, et al., 2021. Dose approach matter? A meta-analysis of outcomes following transfemoral versus transapical transcatheter aortic valve replacement. BMC Cardiovasc Disord, 21:358.

[15]HénonH, DurieuI, GuerouaouD, et al., 2001. Poststroke dementia: incidence and relationship to prestroke cognitive decline. Neurology, 57(7):1216-1222.

[16]HenseyM, MurdochDJ, SathananthanJ, et al., 2019. First-in-human experience of a new-generation transfemoral transcatheter aortic valve for the treatment of severe aortic regurgitation: the J-Valve transfemoral system. EuroIntervention, 14(15):e1553-e1555.

[17]HiraRS, VemulapalliS, LiZK, et al., 2017. Trends and outcomes of off-label use of transcatheter aortic valve replacement: insights from the NCDR STS/ACC TVT registry. JAMA Cardiol, 2(8):846-854.

[18]HudedCP, TuzcuEM, KrishnaswamyA, et al., 2019. Association between transcatheter aortic valve replacement and early postprocedural stroke. JAMA, 321(23):2306-2315.

[19]IsogaiT, SaadAM, AhujaKR, et al., 2021. Short-term outcomes of transcatheter aortic valve replacement for pure native aortic regurgitation in the United States. Catheter Cardiovasc Interv, 97(3):477-485.

[20]IungB, BaronG, ButchartEG, et al., 2003. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur Heart J, 24(13):1231-1243.

[21]KahlertP, KnippSC, SchlamannM, et al., 2010. Silent and apparent cerebral ischemia after percutaneous transfemoral aortic valve implantation: a diffusion-weighted magnetic resonance imaging study. Circulation, 121(7):870-878.

[22]KahlertP, Al-RashidF, DöttgerP, et al., 2012. Cerebral embolization during transcatheter aortic valve implantation: a transcranial Doppler study. Circulation, 126(10):1245-1255.

[23]KajioK, MizutaniK, HaraM, et al., 2019. Self-expandable transcatheter aortic valve replacement is associated with frequent periprocedural stroke detected by diffusion-weighted magnetic resonance imaging. J Cardiol, 74(1):27-33.

[24]KapadiaS, AgarwalS, MillerDC, et al., 2016. Insights into timing, risk factors, and outcomes of stroke and transient ischemic attack after transcatheter aortic valve replacement in the PARTNER trial (placement of aortic transcatheter valves). Circ Cardiovasc Interv, 9(9):e002981.

[25]KapadiaSR, KodaliS, MakkarR, et al., 2017. Protection against cerebral embolism during transcatheter aortic valve replacement. J Am Coll Cardiol, 69(4):367-377.

[26]KleimanNS, MainiBJ, ReardonMJ, et al., 2016. Neurological events following transcatheter aortic valve replacement and their predictors: a report from the CoreValve trials. Circ Cardiovasc Interv, 9(9):e003551.

[27]KliperE, BashatDB, BornsteinNM, et al., 2013. Cognitive decline after stroke: relation to inflammatory biomarkers and hippocampal volume. Stroke, 44(5):1433-1435.

[28]LeeCH, InoharaT, HayashidaK, et al., 2021. Transcatheter aortic valve replacement in Asia: present status and future perspectives. JACC Asia, 1(3):279-293.

[29]LeviA, LinderM, SeiffertM, et al., 2022. Management and outcome of acute ischemic stroke complicating transcatheter aortic valve replacement. JACC Cardiovasc Interv, 15(18):1808-1819.

[30]MaurerG, 2006. Aortic regurgitation. Heart, 92(7):994-1000.

[31]MillerDC, BlackstoneEH, MackMJ, et al., 2012. Transcatheter (TAVR) versus surgical (AVR) aortic valve replacement: occurrence, hazard, risk factors, and consequences of neurologic events in the PARTNER trial. J Thorac Cardiovasc Surg, 143(4):832-843.e13.

[32]OmranH, SchmidtH, HackenbrochM, et al., 2003. Silent and apparent cerebral embolism after retrograde catheterisation of the aortic valve in valvular stenosis: a prospective, randomised study. Lancet, 361(9365):1241-1246.

[33]OttoCM, NishimuraRA, BonowRO, et al., 2021. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol, 77(4):450-500.

[34]PollariF, HitzlW, VogtF, et al., 2020. Aortic valve calcification as a risk factor for major complications and reduced survival after transcatheter replacement. J Cardiovasc Comput Tomogr, 14(4):307-313.

[35]RoyDA, SchaeferU, GuettaV, et al., 2013. Transcatheter aortic valve implantation for pure severe native aortic valve regurgitation. J Am Coll Cardiol, 61(15):1577-1584.

[36]SamimM, HendrikseJ, van der WorpHB, et al., 2015. Silent ischemic brain lesions after transcatheter aortic valve replacement: lesion distribution and predictors. Clin Res Cardiol, 104(5):430-438.

[37]SawayaFJ, DeutschMA, SeiffertM, et al., 2017. Safety and efficacy of transcatheter aortic valve replacement in the treatment of pure aortic regurgitation in native valves and failing surgical bioprostheses: results from an international registry study. JACC Cardiovasc Interv, 10(10):1048-1056.

[38]SchäferU, SchirmerJ, NiklasS, et al., 2017. First-in-human implantation of a novel transfemoral selfexpanding transcatheter heart valve to treat pure aortic regurgitation. EuroIntervention, 13(11):1296-1299.

[39]SeiffertM, DiemertP, KoschykD, et al., 2013. Transapical implantation of a second-generation transcatheter heart valve in patients with noncalcified aortic regurgitation. JACC Cardiovasc Interv, 6(6):590-597.

[40]ShiJ, WeiL, ChenYC, et al., 2021. Transcatheter aortic valve implantation with J-Valve: 2-year outcomes from a multicenter study. Ann Thorac Surg, 111(5):1530-1536.

[41]StachonP, KaierK, HeidtT, et al., 2020. Nationwide outcomes of aortic valve replacement for pure aortic regurgitation in Germany 2008‒2015. Catheter Cardiovasc Interv, 95(4):810-816.

[42]TestaL, LatibA, RossiML, et al., 2014. Corevalve implantation for severe aortic regurgitation: a multicentre registry. EuroIntervention, 10(6):739-745.

[43]van MieghemNM, el FaquirN, RahhabZ, et al., 2015. Incidence and predictors of debris embolizing to the brain during transcatheter aortic valve implantation. JACC Cardiovasc Interv, 8(5):718-724.

[44]VermeerSE, PrinsND, den HeijerT, et al., 2003. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med, 348(13):1215-1222.

[45]WernlyB, EderS, NavareseEP, et al., 2019. Transcatheter aortic valve replacement for pure aortic valve regurgitation: “on-label” versus “off-label” use of TAVR devices. Clin Res Cardiol, 108(8):921-930.

[46]YoonSH, SchmidtT, BleizifferS, et al., 2017. Transcatheter aortic valve replacement in pure native aortic valve regurgitation. J Am Coll Cardiol, 70(22):2752-2763.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE