Full Text:  <369>

Suppl. Mater.: 

Summary:  <201>

CLC number: 

On-line Access: 2023-08-08

Received: 2023-01-08

Revision Accepted: 2023-03-10

Crosschecked: 2023-08-08

Cited: 0

Clicked: 469

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Chen LU

https://orcid.org/0000-0001-7619-8891

Zhidan LUO

https://orcid.org/0009-0001-7855-2572

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE B

Accepted manuscript available online (unedited version)


Rapid visual detection of Vibrio parahaemolyticus by combining LAMP-CRISPR/Cas12b with heat-labile uracil-DNA glycosylase to eliminate carry-over contamination


Author(s):  Fang WU, Chen LU, Wenhao HU, Xin GUO, Jiayue CHEN, Zhidan LUO

Affiliation(s):  Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China; more

Corresponding email(s):  lzd@jou.edu.cn

Key Words:  UDG; LAMP; CRISPR/Cas12b; Vibrio parahaemolyticus; One-pot detection


Share this article to: More <<< Previous Paper|

Fang WU, Chen LU, Wenhao HU, Xin GUO, Jiayue CHEN, Zhidan LUO. Rapid visual detection of Vibrio parahaemolyticus by combining LAMP-CRISPR/Cas12b with heat-labile uracil-DNA glycosylase to eliminate carry-over contamination[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2200705

@article{title="Rapid visual detection of Vibrio parahaemolyticus by combining LAMP-CRISPR/Cas12b with heat-labile uracil-DNA glycosylase to eliminate carry-over contamination",
author="Fang WU, Chen LU, Wenhao HU, Xin GUO, Jiayue CHEN, Zhidan LUO",
journal="Journal of Zhejiang University Science B",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.B2200705"
}

%0 Journal Article
%T Rapid visual detection of Vibrio parahaemolyticus by combining LAMP-CRISPR/Cas12b with heat-labile uracil-DNA glycosylase to eliminate carry-over contamination
%A Fang WU
%A Chen LU
%A Wenhao HU
%A Xin GUO
%A Jiayue CHEN
%A Zhidan LUO
%J Journal of Zhejiang University SCIENCE B
%P 749-754
%@ 1673-1581
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.B2200705"

TY - JOUR
T1 - Rapid visual detection of Vibrio parahaemolyticus by combining LAMP-CRISPR/Cas12b with heat-labile uracil-DNA glycosylase to eliminate carry-over contamination
A1 - Fang WU
A1 - Chen LU
A1 - Wenhao HU
A1 - Xin GUO
A1 - Jiayue CHEN
A1 - Zhidan LUO
J0 - Journal of Zhejiang University Science B
SP - 749
EP - 754
%@ 1673-1581
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.B2200705"


Abstract: 
Vibrio parahaemolyticus is a major pathogen frequently found in seafood. Rapid and accurate detection of this pathogen is important for the control of bacterial foodborne diseases and to ensure food safety. In this study, we established a one-pot system that combines uracil-DNA glycosylase (UDG), loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 12b (Cas12b) for detecting V. parahaemolyticus in seafood. This detection system can effectively perform identification using a single tube and avoid the risk of carry-over contamination.

结合LAMP-CRISPR/Cas12b与热敏感尿嘧啶DNA糖苷酶实现可消除残留污染的副溶血弧菌快速可视化检测

吴芳1,2, 卢辰1,2, 胡文灏1,2, 郭馨3, 陈佳玥1,2, 罗志丹1,2
1江苏海洋大学, 江苏省海洋生物资源与环境重点实验室, 江苏省海洋药物活性分子筛选重点实验室, 中国连云港市, 222005
2江苏海洋大学, 江苏省海洋生物产业技术协同创新中心, 中国连云港市, 222005
3江苏百时美生物科技有限公司, 中国连云港市, 222005
摘要: 作为海产品中的主要致病菌,副溶血弧菌的快速准确检测对于海水健康养殖和避免副溶血弧菌相关食源性疾病的发生至关重要。本研究结合尿嘧啶DNA糖苷酶(UDG)、环介导等温扩增(LAMP)和CRISPR/Cas12b技术,建立了海产品中副溶血弧菌的一锅法检测技术。该检测系统实现了一管化检测,并可避免残留污染的风险。我们通过优化dNTP混合物中dTTP/dUTP比例,并筛选出最优sgRNA。该方法在最优条件下,对副溶血弧菌纯培养物的检出限低至1×102 CFU/mL,在虾肉样品的检出限低至1×102 CFU/g。该方法对其他微生物病原体无交叉反应,且与荧光定量PCR结果符合率为100%。

关键词组:尿嘧啶糖苷酶;环介导等温扩增;CRISPR/Cas12b;副溶血弧菌;一锅法检测

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]GaoH, ShangZ, ChanSY, et al., 2022. Recent advances in the use of the CRISPR-Cas system for the detection of infectious pathogens. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(11):881-898.

[2]HeY, WangH, ChenLM, 2015. Comparative secretomics reveals novel virulence-associated factors of Vibrio parahaemolyticus. Front Microbiol, 6:707.

[3]HsiehK, MagePL, CsordasAT, et al., 2014. Simultaneous elimination of carryover contamination and detection of DNA with uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP). Chem Commun (Camb), 50(28):3747-3749.

[4]LanesO, LeirosI, SmalåsAO, et al., 2002. Identification, cloning, and expression of uracil-DNA glycosylase from Atlantic cod (Gadus morhua): characterization and homology modeling of the cold-active catalytic domain. Extremophiles, 6(1):73-86.

[5]LiLX, LiSY, WuN, et al., 2019. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth Biol, 8(10):2228-2237.

[6]LuSH, TongXH, HanY, et al., 2022. Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a. Nat Biomed Eng, 6(3):‍286-297.

[7]LvXR, CaoWW, ZhangH, et al., 2022. CE-RAA-CRISPR assay: a rapid and sensitive method for detecting Vibrio parahaemolyticus in seafood. Foods, 11(12):1681.

[8]NemotoJ, IkedoM, KojimaT, et al., 2011. Development and evaluation of a loop-mediated isothermal amplification assay for rapid and sensitive detection of Vibrio parahaemolyticus. J Food Prot, 74(9):1462-1467.

[9]SuYC, LiuCC, 2007. Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol, 24(6):549-558.

[10]TangY, ChenH, DiaoYX, 2016. Advanced uracil DNA glycosylase-supplemented real-time reverse transcription loop-mediated isothermal amplification (UDG-rRT-LAMP) method for universal and specific detection of Tembusu virus. Sci Rep, 6:27605.

[11]TengF, GuoL, CuiTT, et al., 2019. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol, 20:132.

[12]WardLN, BejAK, 2006. Detection of Vibrio parahaemolyticus in shellfish by use of multiplexed real-time PCR with TaqMan fluorescent probes. Appl Environ Microbiol, 72(3):2031-2042.

[13]YangXH, ZhaoPP, DongY, et al., 2020. An improved recombinase polymerase amplification assay for visual detection of Vibrio parahaemolyticus with lateral flow strips. J Food Sci, 85(6):1834-1844.

[14]ZhangT, ZhaoW, ZhaoW, et al., 2021. Universally stable and precise CRISPR-LAMP detection platform for precise multiple respiratory tract virus diagnosis including mutant SARS-CoV-2 spike N501Y. Anal Chem, 93(48):16184-16193.

[15]ZhangZH, LouY, DuSP, et al., 2017. Prevalence of Vibrio parahaemolyticus in seafood products from hypermarkets in Shanghai. J Sci Food Agric, 97(2):705-710.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE