
Wu et al. / Front Inform Technol Electron Eng 2015 16(1):70-78 70

Efficient controller area network data compression for

automobile applications*#

Yu-jing WU, Jin-Gyun CHUNG‡
(Division of Electronics & Information Engineering, Chonbuk National University, Jeonju 561-756, Korea)

E-mail: yjwu@jbnu.ac.kr; jgchung@jbnu.ac.kr

Received Apr. 15, 2014; Revision accepted Nov. 4, 2014; Crosschecked Dec. 17, 2014

Abstract: Controller area networks (CANs) have been designed for multiplexing communication between electronic control
units (ECUs) in vehicles and many high-level industrial control applications. When a CAN bus is overloaded by a large number of
ECUs connected to it, both the waiting time and the error probability of the data transmission are increased. Thus, it is desirable to
reduce the CAN frame length, since the duration of data transmission is proportional to the frame length. In this paper, we present
a CAN message compression method to reduce the CAN frame length. Experimental results indicate that CAN transmission data
can be compressed by up to 81.06% with the proposed method. By using an embedded test board, we show that 64-bit engine
management system (EMS) CAN data compression can be performed within 0.16 ms; consequently, the proposed algorithm can
be successfully used in automobile applications.

Key words: Controller area network (CAN), Electronic control units (ECUs), Data compression, Signal rearrangement
doi:10.1631/FITEE.1400136 Document code: A CLC number: TP274

1 Introduction

A controller area network (CAN) is a serial
communication protocol which efficiently supports
distributed real-time control with a very high level of
security, and was first developed early in the 1980s
(Bosch, 1991). The serial bus system has been suc-
cessfully applied in many fields due to its high relia-
bility and cost efficiency. The CAN system has gained
popularity in embedded machine control applications
such as home appliances, industrial machines, and
medical equipment, which require serial communi-

cation between microcontrollers (Leen and Heffernan,
2002; Desai et al., 2013).

The CAN protocol is based on a bus topology,
and only two wires are needed for communication
over a CAN bus. The bus has a multi-master structure
where each device on the bus can send or receive data.
Only one device at a time can send data while all the
others listen. If two or more devices attempt to send
data at the same time, the one with the highest priority
is allowed to send its data while the others return to
receive mode (ISO, 2003).

The majority of product innovations in the au-
tomotive industry are delivered through the increas-
ing use of electronic control units (ECUs). There can
be more than 50 ECUs distributed in a modern pre-
mium vehicle and they account for about 40% of the
total value of the vehicle (Ortega et al., 2006). As the
number of ECUs or sensors connected to the CAN
bus increases, so does the bus load. When a CAN bus
is overloaded, it is not easy to transmit low-priority
CAN messages due to the increased waiting time. The

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding author

* Project supported by the Information Technology R&D Program of
MOTIE/KEIT (No. 10044092) and Research Funds of Chonbuk
National University in 2013
A preliminary version was presented at the IEEE International
Symposium on Circuits and Systems, June 1–5, 2014, Australia

 ORCID: Yu-jing WU, http://orcid.org/0000-0002-9339-0866;
Jin-Gyun CHUNG, http://orcid.org/0000-0002-7127-4944
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2015

Guo Yunlong
CrossMark

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1400136&domain=pdf&date_stamp=2015-04-19

Wu et al. / Front Inform Technol Electron Eng 2015 16(1):70-78

71

error probability of the data transmission also
increases.

If the bus overload causes critical problems in a
CAN system, the setting up of another CAN network
is required. Alternatively, the bus overload can be
efficiently reduced by applying a data compression
technique to the CAN data. To reduce the bus load,
only the differences between the current and the
preceding CAN messages can be transmitted, based
on the observation that CAN data (e.g., fuel or key on
status data) do not change rapidly (Lawrenz, 1997).

In the adaptive data reduction (ADR) algorithm,
if the value of a delta (the difference between the
current and the preceding CAN signals) of two con-
sequent signals exceeds the length of the assigned
delta field, the current CAN signal is transmitted
rather than the delta compressed version of the mes-
sage (Ramteke and Mahmud, 2005). The ADR algo-
rithm uses two message IDs to send CAN messages,
the original message ID and the compressed message
ID (which is smaller than the original message ID).

The improved adaptive data reduction (IADR)
algorithm uses a single message ID to send both
compressed and uncompressed messages (Miucic and
Mahmud, 2006). In this algorithm, the first bit of the
data field is set to ‘1’ when a message is compressed,
and set to ‘0’ when the message is not compressed.
Using the IADR algorithm, CAN signals can be fully
compressed, delta compressed, or uncompressed,
depending on the delta values.

By using data length code (DLC) in CAN data
frame format, the enhanced data reduction (EDR)
algorithm (Miucic et al., 2009) eliminates the diffi-
culties in the identification of compressed messages,
such as the use of the reserved bit (Misbahuddin et al.,
2001), the use of dedicated message IDs (Ramteke
and Mahmud, 2005), or the use of additional bits in
the data field (Miucic and Mahmud, 2006). In addi-
tion, the EDR algorithm uses a method for managing
signals of shorter lengths (i.e., <5 bits) by combining
them into groups that are handled as single signals.

Using the boundary of fifteen compression (BFC)
algorithm, if the current value of a CAN signal has
changed within the maximum compression range of
±15, then the CAN signal can be compressed (Kelkar
and Kamal, 2014).

In the compression area selection algorithm (Wu
et al., 2014), it is not necessary to predict the maxi-

mum value of the difference in successive CAN
messages. In addition, the 64-bit data field is always
assumed to be composed of eight signals, each with
eight bits. This mechanism eliminates the need for the
engineering standard of signal bit length. However,
the length of the data field is additionally increased by
up to 8 bits due to the header bits.

In this paper, a signal rearrangement algorithm
(SRA) is proposed to obtain more compression effi-
ciency by using signal characteristics. CAN signals
are rearranged within the data field of a CAN frame
based on simulation results of the actual CAN signals,
such that the length of the reduced data field is
minimized. In addition, as opposed to the compres-
sion area selection method, the 64-bit data field is
assumed to be composed of three signals with 24, 24,
and 16 bits, respectively. Thus, the number of header
bits is limited to up to three bits, regardless of the
number of signals in the data field of a CAN frame.

2 Existing CAN message compression
methods

In this section, after the CAN data frame format
is briefly introduced, three existing CAN message
compression methods are reviewed.

2.1 CAN frame format

A CAN is a serial communication protocol
suited for networking sensors, actuators, and other
nodes in real-time systems. There are two versions of
the CAN protocol: CAN 2.0A (standard CAN) with
11-bit identifiers, and CAN 2.0B (extended CAN)
with 29-bit identifiers. For in-vehicle communica-
tions, only CAN 2.0A is used since it provides a suf-
ficient number of identifiers (ISO, 2003). Fig. 1
shows the format of the CAN 2.0A data frame.

 Fig. 1 Format of the CAN 2.0A data frame

Wu et al. / Front Inform Technol Electron Eng 2015 16(1):70-78 72

A data frame begins with a start-of-frame (SOF)
bit which is followed by an 11-bit identifier. The
identifier and the remote-transmission-request (RTR)
bit form the arbitration field. The CAN data field can
contain up to eight bytes of data. The actual size of the
data field is denoted by the DLC in the control field.
CAN systems use non-return-to-zero (NRZ) bit rep-
resentation with a bit stuffing length of five. The
overall size of a CAN frame is, at most, 135 bits,
including all of the protocol overheads such as the
stuff bits. A CAN data field can be represented as a
2D memory map (Table 1).

2.2 Enhanced data reduction algorithm

By using the DLC in CAN data frame format, the
EDR algorithm eliminates difficulties in the identifi-
cation of compressed messages. The EDR algorithm
uses a method for managing signals of shorter lengths
(i.e., <5 bits) by combining them into groups that are
handled as single signals.

In the EDR algorithm, the encoded message can
have two types of signals. Any CAN signal with a bit
length of more than five bits is the SDN (signal, delta,
no-change) type. An SDN signal allows a signal to be
represented in its entirety, as a delta change, or as no
change. Any CAN signal with a bit length of fewer
than five bits is the SN (signal, no-change) type. An
SN signal allows a signal to be represented in its en-
tirety or as no change.

In the EDR algorithm, the first byte in a com-
pressed CAN message is the data compression code
(DCC). The position of each bit in the DCC corre-
sponds to the data byte position of the originally in-
tended uncompressed message. A DCC bit with a
value of ‘0’ indicates that the corresponding signal is
uncompressed, and a DCC bit with a value of ‘1’

indicates that the corresponding signal has been delta
compressed or fully compressed. The reduction type
(RT) bit indicates the delta compressed type (RT=0)
or fully compressed type (RT=1).

Table 2 shows an example of a CAN signal. Fig. 2
shows SDN and SN type groupings of the signals in
Table 2. Note that this message has three SDN type
signals and two SN type signals. Fig. 3 shows the
compressed message obtained by the EDR algorithm.
In this example, a 5-bit DCC and two RT bits are used.
The EDR algorithm can achieve a data compression
rate of 16.7%, since five bytes (35 bits) are required
instead of the original six bytes (48 bits).

2.3 Boundary of fifteen compression algorithm

If the current value of a CAN signal has changed
within the maximum compression range of ±15, then

Table 1 Memory map of a 64-bit CAN data field

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 0 7 6 5 4 3 2 1 0

Byte 1 15 14 13 12 11 10 9 8

Byte 2 23 22 21 20 19 18 17 16

Byte 3 31 30 29 28 27 26 25 24

Byte 4 39 38 37 36 35 34 33 32

Byte 5 47 46 45 44 43 42 41 40

Byte 6 55 54 53 52 51 50 49 48

Byte 7 63 62 61 60 59 58 57 56

Table 2 CAN signal example

Parameter
Bit length

(bit)
Previous

value
Current
value

Difference
in value

Vehicle speed 16 21 35 14
Coolant temp 8 16 15 −1
Engine RPM 8 30 30 0
Fan RPM 4 3 6 3
Oil sensor 4 5 3 −2
Engine state 3 2 2 0
Gear state 3 1 1 0
Park state 2 1 1 0

Coolant temp: coolant temperature

Fig. 3 Compressed message of the signal in Table 2 ob-
tained by the EDR algorithm

Fig. 2 SDN and SN type groupings of the signals in Table 2

Wu et al. / Front Inform Technol Electron Eng 2015 16(1):70-78

73

the CAN signal can be compressed using the BFC
algorithm.

CAN signals of five or fewer bits are included in
the class of non-boundary of fifteen (NBF) signals.
CAN signals of six or more bits are included in the
class of boundary of fifteen (BF) signals. Each NBF
signal is allocated one bit called the bit parameter
compression (BPC) bit. A BPC bit of ‘0’ indicates that
the corresponding NBF signal is in the uncompressed
form. A BPC bit of ‘1’ indicates that the NBF signal is
fully compressed.

The BFC algorithm allocates parameter com-
pression (PC) bits to every BF signal. PC bits can
indicate one of four different compression scenarios
(Table 3). Assume that we try to send the signals in
Table 2. Vehicle speed, coolant temperature, and en-
gine RPM are BF signals and the others are NBF
signals. Based on the difference values {14, −1, 0, 3,
−2, 0, 0, 0}, PC and BPC bits are determined as
shown in Table 4. Fig. 4 shows the compressed data of
the example in Table 2 obtained using the BFC
algorithm.

In this example, the BFC algorithm can achieve
a data compression rate of 33.3%, since four bytes
(27 bits) are required instead of the original six bytes
(48 bits).

2.4 Compression area selection algorithm

In the compression area selection method, there
is no need to predict the maximum value of the dif-
ference in successive CAN messages. In addition, the
64-bit data field is always assumed to be composed of
eight signals, each with eight bits. This mechanism
eliminates the need for the engineering standard of
signal bit length.

After computing the difference values of signals
between the current and preceding frames, each dif-
ference value is represented using nine bits. The
magnitude of the difference is expressed using the
most significant eight bits (bit 8 to bit 1) and the sign
is denoted by the least significant bit (bit 0). If the
difference is 0, the corresponding header bit is set to 0.
Otherwise, the header bit is set to 1.

The header bits are placed at the last column
beginning from the first row in a 2D map. Then
starting from the next row, the non-zero difference
values are placed from bit 8 to bit 1. Beginning from
the leftmost column, a column is deleted if every
element in the column is zero. The region from the
column with the first non-zero element to the last
column is selected as the data compression area.

Assume that we try to send eight signals {A, B,
C, D, E, F, G, H}, each with eight bits. Also, assume
that the difference values between the current frame
and the previous frame are {0, 0, 2, 0, 0, −17, 0, 0}.
Then ‘00100100’ is sent as a header value with the
actual difference values {2, −17}.

Table 5 shows the compression area selection
map corresponding to this example. The selected bits
(shaded) are rearranged according to the order given
in Table 6. Compared with eight bytes of the original
data before compression, the compressed data can be
represented using only three bytes. Thus, in this ex-
ample, the data compression rate is 62.5%.

Fig. 4 Compressed data of the example in Table 2 ob-
tained using the BFC algorithm

Table 3 Parameter compression bits in different scenarios

PC bits Compression scenario

00 BF signal not compressed (sent completely)

01 BF signal fully compressed (not sent at all)

10 BF signal compressed (current value>previous value)

11 BF signal compressed (current value<previous value)

Table 4 Application of the BFC algorithm to the signals
in Table 2

Parameter
Difference

in value
PC

(binary)
BPC

(binary)
Signal
type

Vehicle speed 14 10 ‒ BF

Coolant temp −1 11 ‒ BF

Engine RPM 0 01 ‒ NBF

Fan RPM 3 ‒ 0 NBF

Oil sensor −2 ‒ 0 NBF

Engine state 0 ‒ 1 NBF

Gear state 0 ‒ 1 NBF

Park state 0 ‒ 1 NBF

Coolant temp: coolant temperature

Wu et al. / Front Inform Technol Electron Eng 2015 16(1):70-78 74

3 The proposed CAN message compression
scheme

In existing CAN data compression methods, the
compression efficiency depends on the accuracy of
the predicted maximum difference values (e.g., ±15 in
the BFC algorithm). However, it is not easy to predict
the maximum difference values of CAN signals ac-
curately. In fact, compression efficiencies are im-
proved if the maximum difference values can be ad-
justed depending upon system operating conditions.

In addition, if the data field of a CAN frame is
composed of many different signals, the use of a DCC
can impose a severe overhead. As an example, con-
sider the EMS1 (engine management system 1) CAN
signal in Table 7. In this case, if the BFC algorithm is
used, 15 bits are required for the PC and BPC bits.

In the compression area selection algorithm, it is
not necessary to predict the maximum value of the
difference in successive CAN messages. However,
the length of the data field is increased by up to eight
bits due to the header bits.

In our proposed method, to overcome these
problems, the 64-bit data field is assumed to be
composed of three signals with 24, 24, and 16 bits,
respectively. In addition, CAN signals are rearranged

within the data field of a CAN frame based on the
simulation of the actual CAN signals, such that the
length of the reduced data field is minimized. Using
the EMS1 CAN signals in Table 7, the signal rear-
rangement algorithm can be summarized as follows:

1. The rate of change of each signal in a CAN
data field (e.g., Table 7) is estimated by computing the
difference values between successive data fields us-
ing actual CAN data. Regardless of the original signal
assignment, a data field is assumed to be composed of
three signals. Since the number of data bits in Table 7
is 48, each of the three signals has a data length of
16 bits. Slowly changing signals are placed in the
most significant parts and frequently changing CAN
signals in the least significant parts of a 2D map
(Table 8).

2. For each signal, compute the difference values
of signals between the current and the preceding
frames. Each difference value is then represented
using a modified sign-magnitude number. That is, as
opposed to the conventional sign-magnitude number,
the sign is denoted by the least significant bit. The
length of each modified sign-magnitude number is
one larger than the length of each signal.

Table 5 Compression area selection map

Signal Bits 8–6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Header

H0 0

H1 0

H2 1

H3 0

H4 0

H5 1

H6 0

H7 0

C diff. value 000 0 0 0 1 0 0

F diff. value 000 1 0 0 0 1 1

C/F diff. value: difference in value for signal C/F

Table 6 Memory map for the data in Table 5

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 0 H7[0] H6[0] H5[0] H4[0] H3[0] H2[0] H1[0] H0[0]

Byte 1 F[3] C[3] F[2] C[2] F[1] C[1] F[0] C[0]

Byte 2 0 0 0 0 F[5] C[5] F[4] C[4]

Table 7 EMS1 CAN signal (ID: 316)

Signal Signal description
Bit

length
Bit

address

SWIGK Key on status 1 0

FNENG Engine speed signal error status 1 1

ACKTCS Traction control system status 1 2

PUCSTAT Fuel shut-off status 1 3

TQCORS Torque adjustment status 2 4

RLYAC Torque adjustment status 1 6

FSUBTQI MEF (mass air flow) error status 1 7

CT Current toque value 8 8

RPM Engine speed value 16 16

IET Engine torque indication 8 32

VS Vehicle speed value 8 40

Table 8 EMS1 CAN signal rearrangement

Signal*
Bit address

Bits 15–8 Bits 7–0

1 CT[7:0] SWIGK[0]–FSUBTQI[0]

2 IET[7:0] RPM[7:0]

3 RPM[7:0] VS[7:0]
* 16 bits

Wu et al. / Front Inform Technol Electron Eng 2015 16(1):70-78

75

3. Since the number of the CAN signals in a data
field is three, three header bits are used. If the dif-
ference values of a signal are all zeroes, the corre-
sponding header bit is set to 0. Otherwise, it is set to 1.

4. The header bits are placed at the last column
beginning from the first row in a 2D map (compres-
sion area selection map). Then starting from the next
row, the non-zero difference values are placed.

5. Beginning from the leftmost column, a col-
umn is deleted if every element in the column is zero.
The region from the column with the first non-zero
element to the last column is selected as the com-
pression area.

As an example, assume that we try to send EMS1
CAN signals. First, Table 8 is obtained by calculating
the rate of change of actual CAN signals. Then based
on the simulation result, the CAN signals to be
transmitted are rearranged according to Table 8.

Assume that the three signal values in the pre-
vious frame are {31 745, 11 832, 15 360} and that
these values in the current frame are {31 740, 11 849,
15 360}. The difference values are {−5, 17, 0}. Thus,
the header bits are ‘110’ (Table 9).

Table 10 shows the compression area selection
map. The selected bits (shaded) are rearranged ac-
cording to the order given in Table 11. If all three
header bits are zero, there is no need to send any data.
In this case, the DLC is set to zero. Compared with six
bytes of the original data before compression, the
compressed data can be represented using only two
bytes (Table 11). Thus, in this example, we can
achieve a data compression rate of 66.6%.

In the proposed algorithm, if the received DLC
value is the same as the predetermined DLC value, the
received frame contains the original (non-compressed)
data. Otherwise, for a decreased DLC value, the re-
ceiving unit is notified that the received CAN frame
contains compressed data. Thus, in the proposed al-
gorithm, the use of two message IDs is avoided
(Miucic et al., 2009).

Note that the size of the memory map is deter-

mined by the size of the data compression area. Thus,
it is not necessary to determine the size of the memory
map in advance. In other words, it is not necessary to
predict the maximum difference values. Consequently,
we can avoid the inefficient data compression caused
by inaccurate prediction of the maximum difference
values. Figs. 5 and 6 show flowcharts of the proposed

Table 9 Example of difference values

Signal
Number of

previous frames
Number of cur-

rent frames
Difference

Header
bit

1 31 745 31 740 −5 1

2 11 832 11 849 17 1

3 15 360 15 360 0 0

Table 10 Compression area selection map

Signal Bits 8–6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Header
H0 1
H1 1
H2 0

Signal 1 (S1) 000 0 0 1 0 1 1
Signal 2 (S2) 000 1 0 0 0 1 0

Table 11 Memory map for the data in Table 10

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Byte 0 S1[2] S2[1] S1[1] S2[0] S1[0] H2[0] H1[0] H0[0]
Byte 1 0 S2[5] S1[5] S2[4] S1[4] S2[3] S1[3] S1[2]

Fig. 5 Flow chart of the proposed compression algorithm

Fig. 6 Flow chart of the proposed recovery algorithm

Wu et al. / Front Inform Technol Electron Eng 2015 16(1):70-78 76

CAN data compression and recovery methods,
respectively.

4 Performance analysis

In this section, the performance of the proposed
method is compared with those of the EDR, BFC, and
compression area selection algorithms. The CAN
signals used for the simulation were EMS1 (Table 7),
EMS2 (Table 12), EMS4 (Table 13), and TCU1
(transmission control unit 1) (Table 14) signals.

The simulation signals were obtained from ac-
tual driving of a test vehicle. Fig. 7 shows the original
data and recovery data of EMS1 CAN RPM signal.

Comparisons of the compression efficiencies of
the CAN signals obtained under normal and sudden
stop/acceleration driving conditions are illustrated in
Tables 15 and 16, respectively. It is observed that we
can obtain an additional compression efficiency of
0–22% with the proposed method, compared with
other CAN data compression methods.

Fig. 8 shows the comparison of ID 43F CAN
data compression efficiencies under normal driving.
In most cases, six bytes of CAN data are compressed
to one byte using the proposed method. However,
with other algorithms, in most cases six bytes of CAN
data are compressed to one or two bytes.

Table 12 EMS2 CAN signal (ID: 329)

Signal Signal description
Bit

length
Bit

address

MULINFO Multiplexed information 6 0

MULCODE Identification of information 2 6

TEMPENG Engine coolant temperature 8 8

MAFFAC Mass air flow correction factor 8 16

VBOFF ECU adaptive values 1 24
ACKES Acknowledgement, engine

stopped
1 25

CONF Configuration of MIL HFMM 3 26

Free Free 1 29
ACCACT Auto cruise control in

activation
1 30

EXHGAS Request for exhaust gas pattern 1 31
BRAKE Indication of brake switch

ON/OFF
2 32

ENGCHR Engine characteristic (kind of
fuel)

4 34

Free Free 2 38

TPS Throttle angle 8 40

Table 13 EMS4 CAN signal (ID: 545)

Signal Signal description
Bit

length
Bit

address

Free Free 1 0

LMIL Lamp ‘check engine for OBD’ 1 1

IMSTAT Status ‘immobilizer’ 1 2

AMPCAN Atmospheric pressure 5 3

FCO Fuel consumption 16 8

VB Battery voltage 8 24

TQIACORJ Actual engine torque 16 32

Table 14 TCU1 CAN signal (ID: 43F)

Signal Signal description
Bit

length
Bit

address

TARGC Target of gear change 3 0

SWIGS Gear change active 1 3

FOBD OBD-relevant error in TCU 1 4

TCUSTAT Status TCU 1 5

SWICC Converter lockup clutch 2 6

GSELDISP Gear selector display 4 8

FTCU TCU fault 2 12

TCUTYPE Control unit type 2 14

TCUOBD OBD status, transmission control 4 16
ISASQ21 Downshift from the 2nd to 1st

gear active
1 20

Free Free 3 21

TQITCU Torque intervention of TCU 8 24

TEMPAT A/T fluid temperature 8 32

NTC Torque converter turbine speed 8 40

Fig. 7 Actual CAN signals
(a) Original data; (b) Recovery data

Number of occurrences (×104)

E
ng

in
e

sp
ee

d
(×

10
3
 r

/m
in

)
E

ng
in

e
sp

ee
d

(×
10

3
 r

/m
in

)

Wu et al. / Front Inform Technol Electron Eng 2015 16(1):70-78

77

Fig. 9 shows the hardware implementation of the

CAN compression algorithm using a Cortex M3
embedded board. Fig. 10 shows the test environments,

including the CAN Pro analyzer. By using a Cortex
M3 embedded test board, 64-bit EMS CAN data
compression can be performed within 0.16 ms; con-
sequently, the proposed algorithm is suitable for au-
tomobile applications since EMS CAN signals are
usually transmitted every 10 ms in automobiles.

5 Conclusions

In this paper, a CAN message compression

method is presented. As opposed to EDR, BFC, and
compression area selection algorithms, with the pro-
posed method, it is not necessary to predict the
maximum difference values in successive CAN
messages. In addition, the number of header bits is
limited to up to three, regardless of the number of

Table 15 Comparison of the compression efficiencies under normal driving conditions

Compression method
Number of transmitted data

ID: 316 ID: 329 ID: 43F ID: 545

EDR 1 370 496 (54.62%) 1 069 776 (64.58%) 1 233 504 (66.62%) 1 527 824 (49.41%)

BFC 1 321 760 (56.24%) 1 012 376 (66.48%) 1 269 048 (65.66%) 1 789 864 (40.74%)

Compression area selection 900 376 (70.19%) 582 240 (80.72%) 865 280 (76.58%) 1 184 336 (60.79%)

Proposed 705 016 (76.66%) 571 944 (81.06%) 654 504 (82.29%) 1 138 864 (62.29%)

Total numbers of transmitted data are 3 020 160 (ID: 316), 3 020 112 (ID: 329), 3 695 280 (ID: 43F), and 3 020 112 (ID: 545), respectively. The
values in the brackets represent the compression efficiencies with respect to the corresponding total number of transmitted data

Table 16 Comparison of the compression efficiencies under sudden stop/acceleration

Compression method
Number of transmitted data

ID: 316 ID: 329 ID: 43F ID: 545

EDR 96 464 (50.60%) 72 016 (63.09%) 66 792 (65.78%) 76 688 (60.71%)

BFC 92 040 (52.86%) 65 808 (66.27%) 79 536 (59.25%) 79 152 (59.44%)

Compression area selection 67 688 (65.34%) 40 936 (79.02%) 59 648 (69.44%) 51 296 (73.72%)

Proposed 53 176 (72.77%) 39 992 (79.50%) 46 216 (76.32%) 45 120 (76.88%)

Total numbers of transmitted data are 195 264 (ID: 316), 195 120 (ID: 329), 195 168 (ID: 43F), and 195 168 (ID: 545), respectively. The
values in the brackets represent the compression efficiencies with respect to the corresponding total number of transmitted data

Fig. 9 Cortex M3 embedded test board

Fig. 10 Test environments

Fig. 8 Comparison of ID 43F CAN data compression
efficiencies under normal driving

Wu et al. / Front Inform Technol Electron Eng 2015 16(1):70-78 78

signals in the data field of a CAN frame. Through
simulations using actual CAN data, we have shown
that the CAN transmission data are further reduced by
up to 22% with the proposed method, compared with
conventional methods.

With an embedded test board, CAN data com-
pression can be performed within 0.16 ms and, con-
sequently, the proposed algorithm is suitable for use
in automobile applications.

References
Bosch, 1991. CAN Specification Version 2.0. Stuttgart,

Germany.
Desai, M., Shetty, R., Padte, V., et al., 2013. Controller area

network for intelligent vehicular systems. Proc. Int. Conf.
on Advances in Technology and Engineering, p.1-6.
[doi:10.1109/ICAdTE.2013.6524757]

ISO (International Organization for Standardization), 2003.
Road Vehicles—Controller Area Network (CAN)—Part 1:
Data Link Layer and Physical Signalling, ISO 11898-1:
2003.

Kelkar, S., Kamal, R., 2014. Boundary of fifteen compression
algorithm for controller area network based automotive
applications. Proc. Int. Conf. on Circuits, Systems,
Communication and Information Technology Applica-
tions, p.162-167. [doi:10.1109/CSCITA.2014.6839253]

Lawrenz, W., 1997. CAN System Engineering: from Theory to
Practical Applications. Springer, New York.

Leen, G., Heffernan, D., 2002. Expanding automotive elec-
tronic systems. Computer, 35(1):88-93. [doi:10.1109/2.
976923]

Misbahuddin, S., Mahmud, S.M., Al-Holou, N., 2001. De-
velopment and performance analysis of a data-reduction
algorithm for automotive multiplexing. IEEE Trans. Veh.
Technol., 50(1):162-169. [doi:10.1109/25.917911]

Miucic, R., Mahmud, S., 2006. An improved adaptive data
reduction protocol for in-vehicle networks. SAE Tech.
Paper, 2006-01-1327. [doi:10.4271/2006-01-1327]

Miucic, R., Mahmud, S.M., Popovic, Z., 2009. An enhanced
data-reduction algorithm for event-triggered networks.
IEEE Trans. Veh. Technol., 58(6):2663-2678. [doi:10.
1109/TVT.2008.2011361]

Ortega, E., Heurung, T., Swanson, R., 2006. System design
from wires to warranty. Automot. Electron. Mag.,
p.14-18.

Ramteke, P., Mahmud, S., 2005. An adaptive data-reduction
protocol for the future in-vehicle networks. SAE Tech.
Paper, 2005-01-1540. [doi:10.4271/2005-01-1540]

Wu, Y.J., Chung, J.G., Sunwoo, M.H., 2014. Design and im-
plementation of CAN data compression algorithm. Proc.
IEEE Int. Symp. on Circuits and Systems, p.582-585.
[doi:10.1109/ISCAS.2014.6865202]

