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Abstract:    Controller area networks (CANs) have been designed for multiplexing communication between electronic control 
units (ECUs) in vehicles and many high-level industrial control applications. When a CAN bus is overloaded by a large number of 
ECUs connected to it, both the waiting time and the error probability of the data transmission are increased. Thus, it is desirable to 
reduce the CAN frame length, since the duration of data transmission is proportional to the frame length. In this paper, we present 
a CAN message compression method to reduce the CAN frame length. Experimental results indicate that CAN transmission data 
can be compressed by up to 81.06% with the proposed method. By using an embedded test board, we show that 64-bit engine 
management system (EMS) CAN data compression can be performed within 0.16 ms; consequently, the proposed algorithm can 
be successfully used in automobile applications. 
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1  Introduction 
 

A controller area network (CAN) is a serial 
communication protocol which efficiently supports 
distributed real-time control with a very high level of 
security, and was first developed early in the 1980s 
(Bosch, 1991). The serial bus system has been suc-
cessfully applied in many fields due to its high relia-
bility and cost efficiency. The CAN system has gained 
popularity in embedded machine control applications 
such as home appliances, industrial machines, and 
medical equipment, which require serial communi-

cation between microcontrollers (Leen and Heffernan, 
2002; Desai et al., 2013). 

The CAN protocol is based on a bus topology, 
and only two wires are needed for communication 
over a CAN bus. The bus has a multi-master structure 
where each device on the bus can send or receive data. 
Only one device at a time can send data while all the 
others listen. If two or more devices attempt to send 
data at the same time, the one with the highest priority 
is allowed to send its data while the others return to 
receive mode (ISO, 2003). 

The majority of product innovations in the au-
tomotive industry are delivered through the increas-
ing use of electronic control units (ECUs). There can 
be more than 50 ECUs distributed in a modern pre-
mium vehicle and they account for about 40% of the 
total value of the vehicle (Ortega et al., 2006). As the 
number of ECUs or sensors connected to the CAN 
bus increases, so does the bus load. When a CAN bus 
is overloaded, it is not easy to transmit low-priority 
CAN messages due to the increased waiting time. The  
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error probability of the data transmission also  
increases. 

If the bus overload causes critical problems in a 
CAN system, the setting up of another CAN network 
is required. Alternatively, the bus overload can be 
efficiently reduced by applying a data compression 
technique to the CAN data. To reduce the bus load, 
only the differences between the current and the 
preceding CAN messages can be transmitted, based 
on the observation that CAN data (e.g., fuel or key on 
status data) do not change rapidly (Lawrenz, 1997).  

In the adaptive data reduction (ADR) algorithm, 
if the value of a delta (the difference between the 
current and the preceding CAN signals) of two con-
sequent signals exceeds the length of the assigned 
delta field, the current CAN signal is transmitted 
rather than the delta compressed version of the mes-
sage (Ramteke and Mahmud, 2005). The ADR algo-
rithm uses two message IDs to send CAN messages, 
the original message ID and the compressed message 
ID (which is smaller than the original message ID). 

The improved adaptive data reduction (IADR) 
algorithm uses a single message ID to send both 
compressed and uncompressed messages (Miucic and 
Mahmud, 2006). In this algorithm, the first bit of the 
data field is set to ‘1’ when a message is compressed, 
and set to ‘0’ when the message is not compressed. 
Using the IADR algorithm, CAN signals can be fully 
compressed, delta compressed, or uncompressed, 
depending on the delta values. 

By using data length code (DLC) in CAN data 
frame format, the enhanced data reduction (EDR) 
algorithm (Miucic et al., 2009) eliminates the diffi-
culties in the identification of compressed messages, 
such as the use of the reserved bit (Misbahuddin et al., 
2001), the use of dedicated message IDs (Ramteke 
and Mahmud, 2005), or the use of additional bits in 
the data field (Miucic and Mahmud, 2006). In addi-
tion, the EDR algorithm uses a method for managing 
signals of shorter lengths (i.e., <5 bits) by combining 
them into groups that are handled as single signals. 

Using the boundary of fifteen compression (BFC) 
algorithm, if the current value of a CAN signal has 
changed within the maximum compression range of 
±15, then the CAN signal can be compressed (Kelkar 
and Kamal, 2014). 

In the compression area selection algorithm (Wu 
et al., 2014), it is not necessary to predict the maxi-

mum value of the difference in successive CAN 
messages. In addition, the 64-bit data field is always 
assumed to be composed of eight signals, each with 
eight bits. This mechanism eliminates the need for the 
engineering standard of signal bit length. However, 
the length of the data field is additionally increased by 
up to 8 bits due to the header bits. 

In this paper, a signal rearrangement algorithm 
(SRA) is proposed to obtain more compression effi-
ciency by using signal characteristics. CAN signals 
are rearranged within the data field of a CAN frame 
based on simulation results of the actual CAN signals, 
such that the length of the reduced data field is 
minimized. In addition, as opposed to the compres-
sion area selection method, the 64-bit data field is 
assumed to be composed of three signals with 24, 24, 
and 16 bits, respectively. Thus, the number of header 
bits is limited to up to three bits, regardless of the 
number of signals in the data field of a CAN frame. 
 
 
2 Existing CAN message compression 
methods 
 

In this section, after the CAN data frame format 
is briefly introduced, three existing CAN message 
compression methods are reviewed. 

2.1  CAN frame format 

A CAN is a serial communication protocol 
suited for networking sensors, actuators, and other 
nodes in real-time systems. There are two versions of 
the CAN protocol: CAN 2.0A (standard CAN) with 
11-bit identifiers, and CAN 2.0B (extended CAN) 
with 29-bit identifiers. For in-vehicle communica-
tions, only CAN 2.0A is used since it provides a suf-
ficient number of identifiers (ISO, 2003). Fig. 1 
shows the format of the CAN 2.0A data frame. 

 
 
 
 
 
 
 
 
 
 Fig. 1  Format of the CAN 2.0A data frame
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A data frame begins with a start-of-frame (SOF) 
bit which is followed by an 11-bit identifier. The 
identifier and the remote-transmission-request (RTR) 
bit form the arbitration field. The CAN data field can 
contain up to eight bytes of data. The actual size of the 
data field is denoted by the DLC in the control field. 
CAN systems use non-return-to-zero (NRZ) bit rep-
resentation with a bit stuffing length of five. The 
overall size of a CAN frame is, at most, 135 bits, 
including all of the protocol overheads such as the 
stuff bits. A CAN data field can be represented as a 
2D memory map (Table 1). 

 
 
 
 
 
 
 
 
 
 
 
 

2.2  Enhanced data reduction algorithm  

By using the DLC in CAN data frame format, the 
EDR algorithm eliminates difficulties in the identifi-
cation of compressed messages. The EDR algorithm 
uses a method for managing signals of shorter lengths 
(i.e., <5 bits) by combining them into groups that are 
handled as single signals. 

In the EDR algorithm, the encoded message can 
have two types of signals. Any CAN signal with a bit 
length of more than five bits is the SDN (signal, delta, 
no-change) type. An SDN signal allows a signal to be 
represented in its entirety, as a delta change, or as no 
change. Any CAN signal with a bit length of fewer 
than five bits is the SN (signal, no-change) type. An 
SN signal allows a signal to be represented in its en-
tirety or as no change.  

In the EDR algorithm, the first byte in a com-
pressed CAN message is the data compression code 
(DCC). The position of each bit in the DCC corre-
sponds to the data byte position of the originally in-
tended uncompressed message. A DCC bit with a 
value of ‘0’ indicates that the corresponding signal is 
uncompressed, and a DCC bit with a value of ‘1’ 

indicates that the corresponding signal has been delta 
compressed or fully compressed. The reduction type 
(RT) bit indicates the delta compressed type (RT=0) 
or fully compressed type (RT=1). 

Table 2 shows an example of a CAN signal. Fig. 2 
shows SDN and SN type groupings of the signals in 
Table 2. Note that this message has three SDN type 
signals and two SN type signals. Fig. 3 shows the 
compressed message obtained by the EDR algorithm. 
In this example, a 5-bit DCC and two RT bits are used. 
The EDR algorithm can achieve a data compression 
rate of 16.7%, since five bytes (35 bits) are required 
instead of the original six bytes (48 bits). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3  Boundary of fifteen compression algorithm 

If the current value of a CAN signal has changed 
within the maximum compression range of ±15, then 

Table 1  Memory map of a 64-bit CAN data field 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 0 7 6 5 4 3 2 1 0 

Byte 1 15 14 13 12 11 10 9 8 

Byte 2 23 22 21 20 19 18 17 16

Byte 3 31 30 29 28 27 26 25 24

Byte 4 39 38 37 36 35 34 33 32

Byte 5 47 46 45 44 43 42 41 40

Byte 6 55 54 53 52 51 50 49 48

Byte 7 63 62 61 60 59 58 57 56

 

Table 2  CAN signal example 

Parameter 
Bit length 

(bit) 
Previous 

value 
Current 
value 

Difference 
in value

Vehicle speed 16 21 35 14 
Coolant temp 8 16 15 −1 
Engine RPM 8 30 30 0 
Fan RPM 4 3 6 3 
Oil sensor 4 5 3 −2 
Engine state 3 2 2 0 
Gear state 3 1 1 0 
Park state 2 1 1 0 

Coolant temp: coolant temperature 

Fig. 3  Compressed message of the signal in Table 2 ob-
tained by the EDR algorithm 

Fig. 2  SDN and SN type groupings of the signals in Table 2
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the CAN signal can be compressed using the BFC 
algorithm. 

CAN signals of five or fewer bits are included in 
the class of non-boundary of fifteen (NBF) signals. 
CAN signals of six or more bits are included in the 
class of boundary of fifteen (BF) signals. Each NBF 
signal is allocated one bit called the bit parameter 
compression (BPC) bit. A BPC bit of ‘0’ indicates that 
the corresponding NBF signal is in the uncompressed 
form. A BPC bit of ‘1’ indicates that the NBF signal is 
fully compressed.  

The BFC algorithm allocates parameter com-
pression (PC) bits to every BF signal. PC bits can 
indicate one of four different compression scenarios 
(Table 3). Assume that we try to send the signals in 
Table 2. Vehicle speed, coolant temperature, and en-
gine RPM are BF signals and the others are NBF 
signals. Based on the difference values {14, −1, 0, 3, 
−2, 0, 0, 0}, PC and BPC bits are determined as 
shown in Table 4. Fig. 4 shows the compressed data of 
the example in Table 2 obtained using the BFC  
algorithm. 

In this example, the BFC algorithm can achieve 
a data compression rate of 33.3%, since four bytes  
(27 bits) are required instead of the original six bytes  
(48 bits). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

2.4  Compression area selection algorithm 

In the compression area selection method, there 
is no need to predict the maximum value of the dif-
ference in successive CAN messages. In addition, the 
64-bit data field is always assumed to be composed of 
eight signals, each with eight bits. This mechanism 
eliminates the need for the engineering standard of 
signal bit length. 

After computing the difference values of signals 
between the current and preceding frames, each dif-
ference value is represented using nine bits. The 
magnitude of the difference is expressed using the 
most significant eight bits (bit 8 to bit 1) and the sign 
is denoted by the least significant bit (bit 0). If the 
difference is 0, the corresponding header bit is set to 0. 
Otherwise, the header bit is set to 1.  

The header bits are placed at the last column 
beginning from the first row in a 2D map. Then 
starting from the next row, the non-zero difference 
values are placed from bit 8 to bit 1. Beginning from 
the leftmost column, a column is deleted if every 
element in the column is zero. The region from the 
column with the first non-zero element to the last 
column is selected as the data compression area.  

Assume that we try to send eight signals {A, B, 
C, D, E, F, G, H}, each with eight bits. Also, assume 
that the difference values between the current frame 
and the previous frame are {0, 0, 2, 0, 0, −17, 0, 0}. 
Then ‘00100100’ is sent as a header value with the 
actual difference values {2, −17}.  

Table 5 shows the compression area selection 
map corresponding to this example. The selected bits 
(shaded) are rearranged according to the order given 
in Table 6. Compared with eight bytes of the original 
data before compression, the compressed data can be 
represented using only three bytes. Thus, in this ex-
ample, the data compression rate is 62.5%. 
 

Fig. 4  Compressed data of the example in Table 2 ob-
tained using the BFC algorithm 

Table 3  Parameter compression bits in different scenarios

PC bits Compression scenario 

00 BF signal not compressed (sent completely) 

01 BF signal fully compressed (not sent at all) 

10 BF signal compressed (current value>previous value)

11 BF signal compressed (current value<previous value)

 

Table 4  Application of the BFC algorithm to the signals
in Table 2 

Parameter 
Difference 

in value 
PC  

(binary) 
BPC 

(binary) 
Signal 
type 

Vehicle speed 14 10 ‒ BF 

Coolant temp −1 11 ‒ BF 

Engine RPM 0 01 ‒ NBF 

Fan RPM 3 ‒ 0 NBF 

Oil sensor −2 ‒ 0 NBF 

Engine state 0 ‒ 1 NBF 

Gear state 0 ‒ 1 NBF 

Park state 0 ‒ 1 NBF 

Coolant temp: coolant temperature 
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3  The proposed CAN message compression 
scheme 
 

In existing CAN data compression methods, the 
compression efficiency depends on the accuracy of 
the predicted maximum difference values (e.g., ±15 in 
the BFC algorithm). However, it is not easy to predict 
the maximum difference values of CAN signals ac-
curately. In fact, compression efficiencies are im-
proved if the maximum difference values can be ad-
justed depending upon system operating conditions. 

In addition, if the data field of a CAN frame is 
composed of many different signals, the use of a DCC 
can impose a severe overhead. As an example, con-
sider the EMS1 (engine management system 1) CAN 
signal in Table 7. In this case, if the BFC algorithm is 
used, 15 bits are required for the PC and BPC bits. 

In the compression area selection algorithm, it is 
not necessary to predict the maximum value of the 
difference in successive CAN messages. However, 
the length of the data field is increased by up to eight 
bits due to the header bits.  

In our proposed method, to overcome these 
problems, the 64-bit data field is assumed to be 
composed of three signals with 24, 24, and 16 bits, 
respectively. In addition, CAN signals are rearranged  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
within the data field of a CAN frame based on the 
simulation of the actual CAN signals, such that the 
length of the reduced data field is minimized. Using 
the EMS1 CAN signals in Table 7, the signal rear-
rangement algorithm can be summarized as follows: 

1. The rate of change of each signal in a CAN 
data field (e.g., Table 7) is estimated by computing the 
difference values between successive data fields us-
ing actual CAN data. Regardless of the original signal 
assignment, a data field is assumed to be composed of 
three signals. Since the number of data bits in Table 7 
is 48, each of the three signals has a data length of  
16 bits. Slowly changing signals are placed in the 
most significant parts and frequently changing CAN 
signals in the least significant parts of a 2D map  
(Table 8).  

2. For each signal, compute the difference values 
of signals between the current and the preceding 
frames. Each difference value is then represented 
using a modified sign-magnitude number. That is, as 
opposed to the conventional sign-magnitude number, 
the sign is denoted by the least significant bit. The 
length of each modified sign-magnitude number is 
one larger than the length of each signal. 

 
 
 
 
 
 
 
 
 

Table 5  Compression area selection map 

Signal Bits 8–6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Header 

H0       0 

H1       0 

H2       1 

H3       0 

H4       0 

H5       1 

H6       0 

H7       0 

C diff. value 000 0 0 0 1 0 0 

F diff. value 000 1 0 0 0 1 1 

C/F diff. value: difference in value for signal C/F 

Table 6  Memory map for the data in Table 5 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 0 H7[0] H6[0] H5[0] H4[0] H3[0] H2[0] H1[0] H0[0]

Byte 1 F[3] C[3] F[2] C[2] F[1] C[1] F[0] C[0]

Byte 2 0 0 0 0 F[5] C[5] F[4] C[4]

 

Table 7  EMS1 CAN signal (ID: 316) 

Signal Signal description 
Bit 

length
Bit 

address

SWIGK Key on status 1 0 

FNENG Engine speed signal error status 1 1 

ACKTCS Traction control system status 1 2 

PUCSTAT Fuel shut-off status 1 3 

TQCORS Torque adjustment status 2 4 

RLYAC Torque adjustment status 1 6 

FSUBTQI MEF (mass air flow) error status 1 7 

CT Current toque value 8 8 

RPM Engine speed value 16 16 

IET Engine torque indication 8 32 

VS Vehicle speed value 8 40 

Table 8  EMS1 CAN signal rearrangement 

Signal* 
Bit address 

Bits 15–8 Bits 7–0 

1 CT[7:0] SWIGK[0]–FSUBTQI[0]

2 IET[7:0] RPM[7:0] 

3 RPM[7:0] VS[7:0] 
* 16 bits 
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3. Since the number of the CAN signals in a data 
field is three, three header bits are used. If the dif-
ference values of a signal are all zeroes, the corre-
sponding header bit is set to 0. Otherwise, it is set to 1. 

4. The header bits are placed at the last column 
beginning from the first row in a 2D map (compres-
sion area selection map). Then starting from the next 
row, the non-zero difference values are placed.  

5. Beginning from the leftmost column, a col-
umn is deleted if every element in the column is zero. 
The region from the column with the first non-zero 
element to the last column is selected as the com-
pression area. 

As an example, assume that we try to send EMS1 
CAN signals. First, Table 8 is obtained by calculating 
the rate of change of actual CAN signals. Then based 
on the simulation result, the CAN signals to be 
transmitted are rearranged according to Table 8.  

Assume that the three signal values in the pre-
vious frame are {31 745, 11 832, 15 360} and that 
these values in the current frame are {31 740, 11 849, 
15 360}. The difference values are {−5, 17, 0}. Thus, 
the header bits are ‘110’ (Table 9). 
 
 
 
 
 
 
 
 

Table 10 shows the compression area selection 
map. The selected bits (shaded) are rearranged ac-
cording to the order given in Table 11. If all three 
header bits are zero, there is no need to send any data. 
In this case, the DLC is set to zero. Compared with six 
bytes of the original data before compression, the 
compressed data can be represented using only two 
bytes (Table 11). Thus, in this example, we can 
achieve a data compression rate of 66.6%. 

In the proposed algorithm, if the received DLC 
value is the same as the predetermined DLC value, the 
received frame contains the original (non-compressed) 
data. Otherwise, for a decreased DLC value, the re-
ceiving unit is notified that the received CAN frame 
contains compressed data. Thus, in the proposed al-
gorithm, the use of two message IDs is avoided 
(Miucic et al., 2009). 

 
 
 
 
 
 
 
 
 
 
 
 
 
Note that the size of the memory map is deter-

mined by the size of the data compression area. Thus, 
it is not necessary to determine the size of the memory 
map in advance. In other words, it is not necessary to 
predict the maximum difference values. Consequently, 
we can avoid the inefficient data compression caused 
by inaccurate prediction of the maximum difference 
values. Figs. 5 and 6 show flowcharts of the proposed  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 9  Example of difference values 

Signal 
Number of 

previous frames 
Number of cur-

rent frames 
Difference

Header 
bit 

1 31 745 31 740 −5 1 

2 11 832 11 849 17 1 

3 15 360 15 360 0 0 

Table 10  Compression area selection map 

Signal Bits 8–6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Header
H0       1
H1       1
H2       0

Signal 1 (S1) 000 0 0 1 0 1 1
Signal 2 (S2) 000 1 0 0 0 1 0

Table 11  Memory map for the data in Table 10 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Byte 0 S1[2] S2[1] S1[1] S2[0] S1[0] H2[0] H1[0] H0[0]
Byte 1 0 S2[5] S1[5] S2[4] S1[4] S2[3] S1[3] S1[2]

Fig. 5  Flow chart of the proposed compression algorithm

Fig. 6  Flow chart of the proposed recovery algorithm
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CAN data compression and recovery methods,  
respectively. 
 
 
4  Performance analysis 
 

In this section, the performance of the proposed 
method is compared with those of the EDR, BFC, and 
compression area selection algorithms. The CAN 
signals used for the simulation were EMS1 (Table 7), 
EMS2 (Table 12), EMS4 (Table 13), and TCU1 
(transmission control unit 1) (Table 14) signals.  

The simulation signals were obtained from ac-
tual driving of a test vehicle. Fig. 7 shows the original 
data and recovery data of EMS1 CAN RPM signal.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 

Comparisons of the compression efficiencies of 
the CAN signals obtained under normal and sudden 
stop/acceleration driving conditions are illustrated in 
Tables 15 and 16, respectively. It is observed that we 
can obtain an additional compression efficiency of 
0–22% with the proposed method, compared with 
other CAN data compression methods. 

Fig. 8 shows the comparison of ID 43F CAN 
data compression efficiencies under normal driving. 
In most cases, six bytes of CAN data are compressed 
to one byte using the proposed method. However, 
with other algorithms, in most cases six bytes of CAN 
data are compressed to one or two bytes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 12  EMS2 CAN signal (ID: 329) 

Signal Signal description 
Bit 

length
Bit 

address

MULINFO Multiplexed information 6 0 

MULCODE Identification of information 2 6 

TEMPENG Engine coolant temperature 8 8 

MAFFAC Mass air flow correction factor 8 16 

VBOFF ECU adaptive values 1 24 
ACKES Acknowledgement, engine 

stopped 
1 25 
  

CONF Configuration of MIL HFMM 3 26 

Free Free 1 29 
ACCACT Auto cruise control in  

activation 
1 30 
  

EXHGAS Request for exhaust gas pattern 1 31 
BRAKE Indication of brake switch 

ON/OFF 
2 32 
  

ENGCHR Engine characteristic (kind of 
fuel) 

4 34 
  

Free Free 2 38 

TPS Throttle angle 8 40 

Table 13  EMS4 CAN signal (ID: 545) 

Signal Signal description 
Bit 

length
Bit 

address

Free Free 1 0 

LMIL Lamp ‘check engine for OBD’ 1 1 

IMSTAT Status ‘immobilizer’ 1 2 

AMPCAN Atmospheric pressure 5 3 

FCO Fuel consumption 16 8 

VB Battery voltage 8 24 

TQIACORJ Actual engine torque 16 32 

Table 14  TCU1 CAN signal (ID: 43F) 

Signal  Signal description 
Bit 

length
Bit 

address

TARGC Target of gear change 3 0 

SWIGS Gear change active 1 3 

FOBD OBD-relevant error in TCU 1 4 

TCUSTAT Status TCU 1 5 

SWICC Converter lockup clutch 2 6 

GSELDISP Gear selector display 4 8 

FTCU TCU fault 2 12 

TCUTYPE Control unit type 2 14 

TCUOBD OBD status, transmission control 4 16 
ISASQ21 Downshift from the 2nd to 1st 

gear active 
1 20 
  

Free Free 3 21 

TQITCU Torque intervention of TCU 8 24 

TEMPAT A/T fluid temperature 8 32 

NTC Torque converter turbine speed 8 40 

 

Fig. 7  Actual CAN signals 
(a) Original data; (b) Recovery data 
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Fig. 9 shows the hardware implementation of the 

CAN compression algorithm using a Cortex M3 
embedded board. Fig. 10 shows the test environments,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
including the CAN Pro analyzer. By using a Cortex 
M3 embedded test board, 64-bit EMS CAN data 
compression can be performed within 0.16 ms; con-
sequently, the proposed algorithm is suitable for au-
tomobile applications since EMS CAN signals are 
usually transmitted every 10 ms in automobiles. 
 
 
5  Conclusions 

 
In this paper, a CAN message compression 

method is presented. As opposed to EDR, BFC, and 
compression area selection algorithms, with the pro-
posed method, it is not necessary to predict the 
maximum difference values in successive CAN 
messages. In addition, the number of header bits is 
limited to up to three, regardless of the number of 

Table 15  Comparison of the compression efficiencies under normal driving conditions 

Compression method 
Number of transmitted data 

ID: 316 ID: 329 ID: 43F ID: 545 

EDR 1 370 496 (54.62%) 1 069 776 (64.58%) 1 233 504 (66.62%) 1 527 824 (49.41%)

BFC 1 321 760 (56.24%) 1 012 376 (66.48%) 1 269 048 (65.66%) 1 789 864 (40.74%)

Compression area selection 900 376 (70.19%) 582 240 (80.72%) 865 280 (76.58%) 1 184 336 (60.79%)

Proposed 705 016 (76.66%) 571 944 (81.06%) 654 504 (82.29%) 1 138 864 (62.29%)

Total numbers of transmitted data are 3 020 160 (ID: 316), 3 020 112 (ID: 329), 3 695 280 (ID: 43F), and 3 020 112 (ID: 545), respectively. The 
values in the brackets represent the compression efficiencies with respect to the corresponding total number of transmitted data 

Table 16  Comparison of the compression efficiencies under sudden stop/acceleration 

Compression method 
Number of transmitted data 

ID: 316 ID: 329 ID: 43F ID: 545 

EDR 96 464 (50.60%) 72 016 (63.09%) 66 792 (65.78%) 76 688 (60.71%) 

BFC 92 040 (52.86%) 65 808 (66.27%) 79 536 (59.25%) 79 152 (59.44%) 

Compression area selection 67 688 (65.34%) 40 936 (79.02%) 59 648 (69.44%) 51 296 (73.72%) 

Proposed 53 176 (72.77%) 39 992 (79.50%) 46 216 (76.32%) 45 120 (76.88%) 

Total numbers of transmitted data are 195 264 (ID: 316), 195 120 (ID: 329), 195 168 (ID: 43F), and 195 168 (ID: 545), respectively. The 
values in the brackets represent the compression efficiencies with respect to the corresponding total number of transmitted data 

Fig. 9  Cortex M3 embedded test board

Fig. 10  Test environments 

Fig. 8  Comparison of ID 43F CAN data compression 
efficiencies under normal driving 
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signals in the data field of a CAN frame. Through 
simulations using actual CAN data, we have shown 
that the CAN transmission data are further reduced by 
up to 22% with the proposed method, compared with 
conventional methods. 

With an embedded test board, CAN data com-
pression can be performed within 0.16 ms and, con-
sequently, the proposed algorithm is suitable for use 
in automobile applications. 
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