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Abstract:    Protein complexes are the basic units of macro-molecular organizations and help us to understand the cell’s 
mechanism. The development of the yeast two-hybrid, tandem affinity purification, and mass spectrometry high-throughput 
proteomic techniques supplies a large amount of protein-protein interaction data, which make it possible to predict overlapping 
complexes through computational methods. Research shows that overlapping complexes can contribute to identifying essential 
proteins, which are necessary for the organism to survive and reproduce, and for life’s activities. Scholars pay more attention to the 
evaluation of protein complexes. However, few of them focus on predicted overlaps. In this paper, an evaluation criterion called 
overlap maximum matching ratio (OMMR) is proposed to analyze the similarity between the identified overlaps and the 
benchmark overlap modules. Comparison of essential proteins and gene ontology (GO) analysis are also used to assess the quality 
of overlaps. We perform a comprehensive comparison of serveral overlapping complexes prediction approaches, using three yeast 
protein-protein interaction (PPI) networks. We focus on the analysis of overlaps identified by these algorithms. Experimental 
results indicate the important of overlaps and reveal the relationship between overlaps and identification of essential proteins.  
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1  Introduction 
  
Functional modules or protein complexes are the 

basic units of macro-molecular organizations and 
perform all kinds of fundamental biological functions 
in cells. Recently, the focus of bioinformatics has 
transferred from sequence to protein interactions. The 
identification of functional modules or protein com-
plexes is a hot topic in the post-genomic era. 

Methods for protein complexes identification 

can be classified into two types: experimental method 
and computational method. A lot of computational 
approaches for identifying functional modules or 
complexes from protein-protein interaction (PPI) 
networks have been developed. The development of 
the yeast two-hybrid, tandem affinity purification, 
and mass spectrometry has supplied a large amount of 
protein-protein interaction data and provided funda-
mental and abundant data for computional approaches 
to the inference of protein complexes. 

Generally, a PPI network can be modeled as a 
graph. Thus, identifying protein complexes is trans-
lated into detecting a dense subgraph containing 
many connections in a graph. Several approaches 
based on graph theory have been developed to iden-
tify protein complexes from PPI networks, such as 
molecular complex detection (MCODE) (Bader and 
Hogue, 2003), the Markov cluster algorithm (MCL) 
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(Enright et al., 2002), and the clique percolation 
method (CPM) (Palla et al., 2005). Adamcsek et al. 
(2006) developed a software component for uncov-
ering overlapping complexes from PPI networks. 
Clustering based on the maximal clique algorithm 
(CMC) has constructed a weighted PPI network and 
predicted complexes from the constructed network 
(Liu et al., 2009). Speed and performance in the 
clustering algorithm (SPICi) is a variant of CMC, but 
it can achieve a faster running speed (Jiang and Singh, 
2010). Based on a repeated random walk (RRW), 
Macropol et al. (2009) proposed an efficient algo-
rithm for discovering protein complexes. This new 
algorithm is biologically sensitive and uses weights of 
given edges to find overlapping complexes. Recently, 
clustering with overlapping neighborhood expansion 
(ClusterONE) has been developed to detect poten-
tially overlapping protein complexes from PPI net-
works (Nepusz et al., 2012). A new protein com-
plexes identification method was proposed based on 
graph entropy and clique seeds (Chen et al., 2013). To 
address the limitation of MCL, Shih and Parthasara-
thy (2012) proposed the regularized MCL (R-MCL), 
allowing for highly overlapped clusters. Inspired by 
the bacteria foraging optimization mechanism (BFO) 
and an intuitionistic fuzzy set, Lei et al. (2013) pro-
posed an improved clustering method to detect over-
lapping modules in PPI networks. 

These existing approaches fail to take into ac-
count inherent organization. Research (Dezső et al., 
2003; Gavin et al., 2006) has shown that a complex 
consists of a core component and some attachment 
proteins. Based on the core-attachment concept, some 
algorithms have been proposed by Wu et al. (2009) 
and Leung et al. (2009). Taking into account the un-
certainty of interactions in the PPI network, Ni et al. 
(2013) constructed a probabilistic protein-protein 
interaction (Pro-PPI) network, in which the reliability 
of each interaction is represented as a probability 
using the topology of the PPI network. After con-
structing the Pro-PPI network, a new method named 
WN-PC (weighted network based method for pre-
dicting protein complexes) was proposed to identify 
overlapping protein complexes from the Pro-PPI 
network. 

Generally, approaches based on graph clustering 
are not ideal due to the predicted non-overlapping 
modules, while proteins may have a variety of func-

tions. So, a protein may appear in more than one 
protein complex. In other words, there are some 
overlaps between the identified protein complexes. 
Protein complexes and their overlaps are helpful for 
the detection of essential proteins (Hart et al., 2007) 
and others. Hart et al. (2007) have pointed out that 
essentiality is a product of the protein complex rather 
than the individual protein. Han et al. (2004) sug-
gested that there are two sorts of essential proteins 
(hubs) in the yeast PPIN, such as party hubs and date 
hubs. Date hubs are just like mediators and adaptors, 
while party hubs appear within distinct modules. 
Inspired by these studies, we have succeeded in pre-
dicting essential proteins based on overlapping es-
sential modules in previous research (Zhao et al., 
2014). Results indicate that proteins in these overlaps 
tend to be date hubs, which play more important roles 
than party hubs. So, it is necessary to identify over-
lapping essential protein modules and evaluate the 
quantity of overlaps. Essential modules are made up 
of some densely connected and function-shared pro-
teins, which contain a large number of essential pro-
teins. Effective evaluation of overlapping complexes 
and their overlaps could improve the precision of 
identification of essential proteins. Overlaps sup-
porting these algorithms (ClusterONE excluded) 
ignore the assessment of the identified overlapping 
module pairs. Even for ClusterONE, only overlap size 
distribution between generated complexes pairs is 
shown. Further study of evaluating the quality of 
overlaps between cluster pairs is lacking.  

As mentioned above, overlapping protein com-
plexes and their overlaps play an important role in 
identifying essential proteins. To make a compre-
hensive comparison about module overlaps identified 
by various overlapping algorithms, a measure called 
the overlap maximum matching ratio (OMMR) is 
introduced. OMMR is used to match the benchmark 
overlaps and the identified overlaps. We also use the 
predicted protein complexes and overlaps identified 
by various algorithms for the identification of essen-
tial proteins. We apply compared methods in yeast 
PPI networks downloaded from several different high 
throughput datasets and perform a comprehensive 
comparison of the state-of-the-art approaches, such as 
WN-PC (Ni et al., 2013), ClusterONE (Nepusz et al., 
2012), COACH (Wu et al., 2009), RRW (Macropol et 
al., 2009), and CMC (Liu et al., 2009). Experimental 
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results indicate the importance of overlaps and reveal 
the relationship between overlaps and essential pro-
tein identification. 

 
 

2  Results and discussion 

2.1  Experimental data 

The PPI networks used for computational anal-
ysis come from bakers’ yeast. We have applied five 
overlapping protein complex detection algorithms, 
namely WN-PC, ClusterONE, COACH, RRW, and 
CMC on two yeast PPI networks, including Gavin 
data (Gavin et al., 2006) and Krogan data (Krogan et 
al., 2006). BioGRID data (Stark et al., 2006), a highly 
clustered network, was also used to test the effec-
tiveness of OMMR. For all these selected algorithms, 
the optimal parameters were set as recommended by 
respective authors. The aggregation coefficient 
threshold and sample degree threshold of WN-PC 
were 0.3 and 0.1, respectively. For ClusterONE, the 
minimum size was set as 3 and the overlap threshold 
0.8. For COACH, the threshold to filter redundant 
complex cores was 0.225. As for CMC, the minimum 
size of the clusters generated was 4 and the threshold 
used to remove or merge highly overlapped clusters 
0.5. For RRW, the maximum cluster size was 11, the 
minimum cluster size 5, and the overlap threshold 0.2. 

We will first present in detail the results on 
Gavin data, and the results using Krogan will also be 
briefly presented to demonstrate the effectiveness of 
OMMR. The Gavin dataset is made up of 1855 pro-
teins, and there are 7669 interactions among the pro-
teins. The Korgan dataset consists of 3672 proteins 
and 14 317 interactions. The BioGRID dataset con-
sists of 5616 proteins and 52 833 interactions. We 
have removed the self-interactions and repeated in-
teractions from the PPI networks.  

To evaluate and analyze the overlapping com-
plexes predicted by these methods, CYC2008 (Pu et 
al., 2009) was used as a benchmark set, which con-
sists of 408 protein complexes. A reference set of 
essential proteins used in our experiments was col-
lected from the following databases: MIPS (Mewes et 
al., 2006), SGD (Cherry et al., 1998), DEG (Zhang 
and Lin, 2009), and SGDP, which consists of 1285 
essential proteins. 

2.2  Overlap maximum matching ratio 

This study focuses on the evaluation of overlaps 
of predicted protein complexes, while it is firstly 
necessary to assess the quality of complexes produced 
by these methods mentioned above. Several evalua-
tion measures, including precision, recall, F-measure, 
and the coverage rate, are adopted to analyze the 
overlapping complexes. To assess the quality of the 
produced overlapping complexes, we match the gen-
erated protein complexes with the benchmark sets. 
The overlap score (OS) of a predicted complex A and 
a benchmark complex B is defined as follows (Wu et 
al., 2009): 

 

2| |
OS( , ) ,

| | | |





A B

A B
A B

                    (1) 

 
where |·| denotes the number of elements in the set. 

A predicted complex is considered to match the 
benchmark complex if their OS value is no less than a 
threshold, which typically was set at 0.2 (Bader and 
Hogue, 2003; Wu et al., 2009). Precision and recall 
are the general measures to evaluate the quality of 
protein complexes prediction methods. Precision is 
the proportion of detected modules that are matched, 
while recall is the proportion of benchmark sets that 
are matched. F-measure is the harmonic mean of 
precision and recall. Mathematically, the three 
measures are defined as follows: 

 
TP TP

Precision = , Recall = ,
TP FP TP FN 

     (2) 

measure

2 Precision Recall
F = ,

Precision + Recall

 
              (3) 

 
where TP (short for true positive) is the number of 
detected complexes matched by benchmark sets, FP 
(short for false positive) is the number of detected 
complexes that are not matched by benchmark sets, 
and FN (short for false negative) is the number of 
benchmark sets that are not matched by detected 
complexes.  

On the other hand, the coverage rate is intro-
duced to measure how many proteins in the bench-
mark sets can be covered by the detected complexes. 
Given a benchmark set BM and a predicted complex 
set PM, Tij is the common number of proteins between 
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the ith benchmark module and the jth predicted 
module. The coverage rate (CR) is then defined as 

 
|BM| |BM|

1 |P M|
1 1

CR max ,
  

  ij i
j

i i

T N                   (4) 

 
where Ni is the number of proteins within the ith 
benchmark complex.  

Table 1 lists the basic information of prediction 
results for each method when the threshold of OS was 
set as 0.2. WN-PC detects 485 protein complexes 
which contain at least three proteins. The average and 
maximum sizes of those predicted modules are 11.2 
and 39, respectively. Among the 485 protein com-
plexes predicted by WN-PC, 284 modules match at 
least a benchmark set (MPF, matched predicted func-
tional modules), and 157 benchmark sets are matched 
by at least a predicted one (MBS, matched benchmark 
set). 

 
 
 
 
 
 
 
 
 
 
Table 2 shows the overall comparison, including 

F-measure and CR. The F-measure of WN-PC is 0.56, 
which is 47.37%, 19.15%, 64.70%, and 47.37% 
higher than that of ClusterONE, COACH, RRW, and 
CMC, respectively. 

 
 
 
 
 
 
 
 
 
 
From Tables 1 and 2, we can see that WN-PC 

outperforms the other methods for predicted com-
plexes. Next, we will analyze overlaps of these com-
plexes in detail. 

Although some redundancy may be of biological 
importance, complexes overlapping to a very high 
extent in comparison to their expected density and 
size should be discarded. So, we perform some pre-
processing operations for these predicted complexes 
by various algorithms. When quantifying the extent of 
overlap between each pair of complexes, a complex 
with a small expected density or size is discarded 
when the overlap score of the pair is above the 
threshold. In this paper, the overlap threshold is typ-
ically set as 0.8 (Nepusz et al., 2012), where the 
overlap score of two complexes A and B is obtained 
according to Eq. (1). 

We propose an evaluation criterion called 
OMMR to assess the quality of overlaps detected by 
various overlapping functional module prediction 
algorithms. 

Given a benchmark modules set BM, SBM= 
{sbm1, sbm2, ..., sbmn} is a subset of BM, in which 
each module matches at least one protein by predicted 
protein complexes. PM is a predicted protein com-
plexes set, and  

 




1 2
1 |PM| 1 |PM|

1 |PM|

SPM max OS(sbm , pm ), max OS(sbm , pm ),

, max OS(sbm , pm )
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
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is a subset of PM. The OMMR can be defined as 
 

|SBM| |SBM|

1 1

1
OMMR spm spm .

| SBM SBM |  

 
   i j

i i

  (5) 

 

In Eq. (5), SBM×SBM is the overlaps set among 
SBM, and |spmispmj| is the number of matched 
proteins in the overlap between sbmi and sbmj. Table 3 
lists the overlaps predicted by various algorithms. 

In Tables 1 and 3, we can see that WN-PC pre-
dicts 485 functional modules and matches 157 
benchmark modules. Among these 157 benchmark 
modules, there are 185 overlaps, 106 of which have 
been matched by WN-PC and average precision is 
0.899. According to Eq. (5), the OMMR of WN-PC is 
0.547, which is 86.05%, 19.43%, 782.26%, and 
120.56% higher than that of ClusterONE, COACH, 
RRW, and CMC, respectively. 

To make a comprehensive comparison, we ana-
lyze the average precision and OMMR of overlaps 

Table 1  Information of prediction results  

Algorithm |PM| 
Average 

size 
Maximum 

size 
MBS MPF

WN-PC 485 11.2 39 157 284

ClusterONE 294 6.9 40 154 130

COACH 361 8.3 36 159 185

RRW 152 6.5 11 92 110

CMC 165 7.9 37 130 104

 

Table 2  Comparison of F-measure and coverage rate

Algorithm Precision Recall F-measure CR 

WN-PC 0.59 0.53 0.56 0.52

ClusterONE 0.44 0.34 0.38 0.42

COACH 0.51 0.43 0.47 0.43

RRW 0.61 0.24 0.34 0.35

CMC 0.63 0.27 0.38 0.40
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predicted by various algorithms according to their 
sizes, respectively (Figs. 1 and 2). The maximum size 
of overlaps in the benchmark set was 17. From Fig. 1 
we can see that WN-PC, ClusterONE, and COACH 
archive higher average precision than the other 
methods. 

From Fig. 2 we can see that WN-PC and 
COACH can still obtain high OMMRs, even if the 
number of predicted overlaps used in matching de-
creases sharply. For example, when the number of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

proteins in overlaps equaled 1, COACH matched 47 
benchmark overlaps and the OMMR was 0.117. For 
WN-PC, when the size of overlaps was 3, only 
18.87% of benchmark overlaps were matched, while 
the OMMR was 0.112. So, we believe that even when 
their overlaps are few in terms of the number of pro-
teins, the OMMR is very likely to be high for WN-PC 
and COACH. 

2.3  Comparison of essential proteins in overlaps 

To reveal the relationship between essential 
proteins and overlaps of protein complexes and 
demonstrate the effectiveness of OMMR, we analyze 
the essentiality of proteins in protein complexes and 
overlaps predicted by these methods. Among all the 
1855 proteins in the Gavin PPI network, 714 proteins 
are essential. Table 4 shows a comparison of the 
number of essential proteins in protein complexes and 
overlaps predicted by various algorithms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
From Table 4 we can see that WN-PC, Clus-

terONE, and COACH have identified more essential 
proteins than the other methods, and WN-PC predicts 
the largest number of essential proteins in overlaps. 
We also calculate the percentage of essential proteins 
in overlaps among total proteins and total predicted 
essential proteins by various algorithms (Table 5). 

As shown in Table 5, WN-PC has the highest 
frequencies of essential proteins in predicted protein 
complexes among the five methods. The top three in 
terms of the performance of identifying essential 
proteins are WN-PC, COACH, and ClusterONE, 
respectively. The results accord with Tables 1–3, and 
verify the effectiveness of OMMR. The results also 
indicate that overlaps in protein complexes play im-
portant roles in identifying essential proteins. 

Table 4  Numbers of essential proteins in protein com-
plexes and overlaps predicted by various algorithms 

Algorithm Npc Nepc Npo Nepo 

WN-PC 1364 591 850 399 

ClusterONE 1624 652 351 166 

COACH 1393 598 648 321 

RRW 908 422 79 39 

CMC 1095 515 184 110 

Npc: number of proteins in complexes; Nepc: number of essential 
proteins in complexes; Npo: number of proteins in overlaps; Nepo: 
number of essential proteins in overlaps 

Table 3  Comparison of overlaps predicted by various 
algorithms  

Algorithm Number of  
matched overlaps 

Average  
precision 

OMMR

WN-PC 106 0.899 0.547 

ClusterONE 69 0.802 0.294 

COACH 101 0.802 0.458 

RRW 23 0.333 0.062 

CMC 60 0.768 0.248 

Fig. 1  Comparison of average precision according to the 
size of overlaps 
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Fig. 2  Comparison of OMMR according to the size of 
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2.4  Visualization and statistics of overlaps 

To obtain an overall view of overlaps by various 
algorithms, visualization and centrality statistics of 
predicted overlaps are given in this section. Fig. 3 
shows the visualization of overlaps predicted by 
WN-PC, COACH, ClusterONE, and CMC. RRW 
correctly matched only one overlap, which is far 
fewer than those of other algorithms. For this reason, 
RRW is not included in this section. 

Fig. 3 illustrates that overlaps predicted by 
WN-PC and COACH have more interactions among 
themselves. The essentiality of proteins in the net-
work depends on many factors, so we made statistics 
for degree centrality (DC) and betweenness centrality 
(BC) of proteins in overlaps predicted by various 
methods, to provide some more information for fur-
ther essential proteins study. Tables 6 and 7 list sta-
tistics for DC and BC, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.5  Gene ontology analysis of overlaps 

To further validate the overlaps detected by 
various methods, we employ functional enrichment of 
GO terms to investigate the biological significance of 
overlaps of predicted complexes. To determine 
whether any gene ontology (GO) terms annotate a 
specified list of genes at a frequency greater than what 
would be expected by chance, GO::TermFinder cal-
culates a P-value using hyper geometric distribution 
(Boyle et al., 2004). 

A low P-value of a predicted overlap indicates 
that those proteins in the overlap do not occur merely 
by accident, so the overlap achieves high statistical 
significance. Generally an overlap is considered to be 
significant with P-value<0.01 (Hu et al., 2005).  

Maraziotis et al. (2007) pointed out that the 
proportion of significant modules over all detected 
ones can be used to assess overall performance of 
various methods. In addition, the P-score is used as an 
effective evaluation measure, defined as 

 

score value value
1

1
P lg(P ) (P ),



   i i

n

i

T
n

      (6) 

 

where T is set to 0.01 as mentioned above. Fig. 4 
shows the P-score of predicted overlaps by various 
algorithms. It is observed that WN-PC and COACH 
obtain higher P-scores than the other methods. The 
result is also consistent with the comparison result of 
OMMR and essential proteins, which verifies the 
effectiveness of OMMR. 

Table 6  Statistics of DC by various algorithms 

Algorithm 
Percentage (%) 

[1, 5] [6, 10] [11, 20] >20 

WN-PC 11.04 34.72 39.88 14.36 

ClusterONE 35.85 24.91 23.77 15.47 

COACH 3.67 24.04 48.62 23.67 

CMC 0 15.22 47.10 37.68 

Table 7  Statistics of BC by various algorithms 

Algorithm 
Percentage (%) 

[0, 1000] (1000, 5000] (5000, 10000] >10000

WN-PC 27.85 24.29 13.13 34.73

ClusterONE 29.81 24.91 18.49 26.79

COACH 24.59 26.06 13.94 35.41

CMC 13.04 18.84 18.84 49.28

Table 5  Percentages of essential proteins in overlaps 
among total proteins and predicted essential proteins by 
various algorithms 

Algorithm P* (%) P** (%) 

WN-PC 29.25 (399/1364) 67.51 (399/591) 

ClusterONE 10.22 (166/1624) 25.46 (166/652) 

COACH 23.04 (321/1393) 53.68 (321/598) 

RRW 4.30 (39/908) 9.24 (39/422) 

CMC 10.05 (110/1095) 21.36 (110/515) 

P*: percentage of essential proteins among total proteins; P**: per-
centage of essential proteins among predicted essential proteins

(a) (b)

(c) (d)

Fig. 3  Visualization of overlaps by various algorithms 
(a) WN-PC; (b) COACH; (c) ClusterONE; (d) CMC 
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2.6  MIPS gold standard 

In this section, we will analyze the results using 
the reference set derived from MIPS (Mewes et al., 
2006) instead of CYC2008. This benchmark set con-
sists of 428 complexes. We test all the algorithms 
mentioned above on Gavin 2006 data. Table 8 con-
tains the detailed results, where the MIPS set was 
used as a gold standard. 

There are a greater number of overlaps in MIPS 
than CYC2008. In Table 8, it is obvious that three 
methods with the best performance are WN-PC, 
COACH, and ClusterONE, when MIPS instead of 
CYC2008 was adopted as a gold standard. 

2.7  Results using Krogan and BioGRID data 

To further investigate the quality of overlaps 
predicted by various methods, we also run these al-
gorithms on Krogan data and BioGRID data. The 
matching results of each algorithm on Krogan data 
and BioGRID are shown in Table 9. The RRW 
method cannot run on the BioGRID network because 
of memory exception. 

 
 
 
 
 
 
 
 
 
 
 
Comparing Table 9 with Tables 3 and 8, we can 

see that algorithms achieve a higher performance 
using Krogan and BioGRID data than Gavin data, due 
to their reliabilities. Results for Krogan and BioGRID 

data are also consistent with results for Gavin data. 
The top three for the performance using Krogan and 
BioGRID data are WN-PC, COACH, and Clus-
terONE, which accords with the result for Gavin and 
verifies the effectiveness of OMMR. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  Conclusions 
 

Protein complexes are the basic units of macro- 
molecular organizations and help us to understand the 
cell’s mechanism. Recent developments in experi-
ments supply a large amount of protein-protein in-
teraction data, which provides a stepping stone for 
finding protein complexes. Some overlapping protein 
complexes prediction methods have been developed. 
Our previous research shows that overlapping protein 
complexes, especially their overlaps, play important 
roles in identifying essential proteins. In this paper, 
we propose a measure called OMMR to evaluate 
overlaps of essential modules. The experimental  
results indicate the importance of overlaps and reveal 
the relationship between overlaps and identification 
of essential proteins. 

Table 9  OMMR of various algorithms using Krogan and 
BioGRID data 

Algorithm 
Number of 

matched overlaps 
Average  
precision 

OMMR

WN-PCa,1 118 0.933 0.719

ClusterONEa,1 79 0.907 0.506

COACHa,1 106 0.917 0.619

RRWa,1 57 0.762 0.161

CMCa,1 52 0.769 0.462

WN-PCa,2 677 0.811 0.509

ClusterONEa,2 312 0.606 0.214

COACHa,2 631 0.724 0.418

RRWa,2 237 0.244 0.052

CMCa,2 370 0.562 0.181

WN-PCb,1 210 0.975 0.946

ClusterONEb,1 46 0.872 0.451

COACHb,1 201 0.966 0.892

CMCb,1 172 0.910 0.675

WN-PCb,2 870 0.908 0.782

ClusterONEb,2 345 0.569 0.209

COACHb,2 827 0.820 0.632

CMCb,2 682 0.643 0.355
a Using Krogan data; b using BioGRID data. 1 Using 
benchmark set CYC2008; 2 using benchmark set MIPS 

 

Table 8  OMMR of overlaps predicted by various algo-
rithms using the MIPS gold standard 

Algorithm 
Number of 

matched overlaps 
Average 
precision 

OMMR

WN-PC 617 0.747 0.442 

ClusterONE 357 0.506 0.144 

COACH 528 0.674 0.367 

RRW 188 0.305 0.038 

CMC 321 0.487 0.127 

 

Fig. 4  P-scores of predicted overlaps by various algorithms

WN-PC

ClusterO
NE

COACH
RRW 

CMC
0

2

4

6

8

10

12

 

P
-s

co
re

Algorithm



Zhang et al. / Front Inform Technol Electron Eng   2015 16(4):293-300 
 

300

References 
Adamcsek, B., Palla, G., Farkas, I.J., et al., 2006. CFinder: 

locating cliques and overlapping modules in biological 
networks. Bioinformatics, 22(8):1021-1023. [doi:10.1093/ 
bioinformatics/btl039] 

Bader, G.D., Hogue, C.W.V., 2003. An automated method for 
finding molecular complexes in large protein interaction 
networks. BMC Bioinform., 4:2.1-2.27. [doi:10.1186/ 
1471-2105-4-2] 

Boyle, E.I., Weng, S., Gollub, J., et al., 2004. GO::Term- 
Finder—open source software for accessing gene ontol-
ogy information and finding significantly enriched Gene 
Ontology terms associated with a list of genes. Bioinfor-
matics, 20(18):3710-3715. [doi:10.1093/bioinformatics/ 
bth456] 

Chen, B., Shi, J., Zhang, S., et al., 2013. Identifying protein 
complexes in protein-protein interaction networks by 
using clique seeds and graph entropy. Proteomics, 13(2): 
269-277. [doi:10.1002/pmic.201200336] 

Cherry, J.M., Adler, C., Ball, C., et al., 1998. SGD: Saccha-
romyces Genome Database. Nucl. Acids Res., 26(1): 
73-79. [doi:10.1093/nar/26.1.73] 

Dezső, Z., Oltvai, Z.N., Barabási, A.L., 2003. Bioinformatics 
analysis of experimentally determined protein complexes 
in the yeast Saccharomyces cerevisiae. Genome Res., 
13:2450-2454. [doi:10.1101/gr.1073603] 

Enright, A.J., van Dongen, S., Ouzounis, C.A., 2002. An 
efficient algorithm for large-scale detection of protein 
families. Nucl. Acids Res., 30(7):1575-1584. [doi:10. 
1093/nar/30.7.1575] 

Gavin, A.C., Aloy, P., Grandi, P., et al., 2006. Proteome sur-
vey reveals modularity of the yeast cell machinery. Na-
ture, 440:631-636. [doi:10.1038/nature04532] 

Han, J.D., Bertin, N., Hao, T., et al., 2004. Evidence for dy-
namically organized modularity in the yeast protein– 
protein interaction network. Nature, 430:88-93. [doi:10. 
1038/nature02555] 

Hart, G.T., Lee, I., Marcotte, E.M., 2007. A high-accuracy 
consensus map of yeast protein complexes reveals mod-
ular nature of gene essentiality. BMC Bioinform., 
8:236.1-236.11. [doi:10.1186/1471-2105-8-236] 

Hu, H., Yan, X., Huang, Y., et al., 2005. Mining coherent 
dense subgraphs across massive biological networks for 
functional discovery. Bioinformatics, 21(suppl 1):i213- 
i221. [doi:10.1093/bioinformatics/bti1049] 

Jiang, P., Singh, M., 2010. SPICi: a fast clustering algorithm 
for large biological networks. Bioinformatics, 26(8): 
1105-1111. [doi:10.1093/bioinformatics/btq078] 

Krogan, N., Cagney, G., Yu, H., et al., 2006. Global landscape 
of protein complexes in the yeast Saccharomyces cere-
visiae. Nature, 440:637-643. [doi:10.1038/nature04670] 

Lei, X., Wu, S., Ge, L., et al., 2013. Clustering and overlapping 
modules detection in PPI network based on IBFO. Pro-
teomics, 13(2):278-290. [doi:10.1002/pmic.201200309] 

 
 

Leung, H.C.M., Xiang, Q., Yiu, S.M., et al., 2009. Predicting 
protein complexes from PPI data: a core-attachment ap-
proach. J. Comput. Biol., 16(2):133-144. [doi:10.1089/ 
cmb.2008.01TT] 

Liu, G., Wong, L., Chua, H.N., 2009. Complex discovery from 
weighted PPI networks. Bioinformatics, 25(15):1891- 
1897. [doi:10.1093/bioinformatics/btp311] 

Macropol, K., Can, T., Singh, A.K., 2009. RRW: repeated 
random walks on genome-scale protein networks for local 
cluster discovery. BMC Bioinform., 10:283.1-283.10. 
[doi:10.1186/1471-2105-10-283] 

Maraziotis, I.A., Dimitrakopoulou, K., Bezerianos, A., 2007. 
Growing functional modules from a seed protein via in-
tegration of protein interaction and gene expression data. 
BMC Bioinform., 8:408.1-408.15. [doi:10.1186/1471- 
2105-8-408] 

Mewes, H.W., Frishman, D., Mayer, K.F.X., et al., 2006. 
MIPS: analysis and annotation of proteins from whole 
genomes in 2005. Nucl. Acids Res., 34(suppl 1):D169- 
D172. [doi:10.1093/nar/gkj148] 

Nepusz, T., Yu, H., Paccanaro, A., 2012. Detecting overlap-
ping protein complexes in protein-protein interaction 
networks. Nat. Methods, 9(5):471-472. [doi:10.1038/ 
nmeth.1938] 

Ni, W.Y., Xiong, H.J., Zhao, B.H., et al., 2013. Predicting 
overlapping protein complexes in weighted interactome 
networks. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 
14(10):756-765. [doi:10.1631/jzus.C13b0097] 

Palla, G., Derényi, I., Farkas, I., et al., 2005. Uncovering the 
overlapping community structure of complex networks in 
nature and society. Nature, 435:814-818. [doi:10.1038/ 
nature03607] 

Pu, S., Wong, J., Turner, B., et al., 2009. Up-to-date catalogues 
of yeast protein complexes. Nucl. Acids Res., 37(3): 
825-831. [doi:10.1093/nar/gkn1005] 

Shih, Y.K., Parthasarathy, S., 2012. Identifying functional 
modules in interaction networks through overlapping 
Markov clustering. Bioinformatics, 28(18):i473-i479. 
[doi:10.1093/bioinformatics/bts370] 

Stark, C., Breitkreutz, B.J., Reguly, T., et al., 2006. BioGRID: 
a general repository for interaction datasets. Nucl. Acids 
Res., 34(suppl 1):D535-D539. [doi:10.1093/nar/gkj109] 

Wu, M., Li, X., Kwoh, C.K., et al., 2009. A core-attachment 
based method to detect protein complexes in PPI net-
works. BMC Bioinform., 10:169.1-169.16. [doi:10.1186/ 
1471-2105-10-169] 

Zhang, R., Lin, Y., 2009. DEG 5.0, a database of essential 
genes in both prokaryotes and eukaryotes. Nucl. Acids 
Res., 37(suppl 1):D455-D458. [doi:10.1093/nar/gkn858] 

Zhao, B., Wang, J., Li, M., et al., 2014. Prediction of essential 
proteins based on overlapping essential modules. IEEE 
Trans. NanoBiosci., 13(4):415-424. [doi:10.1109/TNB. 
2014.2337912] 


