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Abstract: This paper investigates the H∞ trajectory tracking control for a class of nonlinear systems with time-
varying delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique.
A unified model consisting of a linear delayed dynamic system and a bounded static nonlinear operator is introduced,
which covers most of the nonlinear systems with bounded nonlinear terms, such as the one-link robotic manipulator,
chaotic systems, complex networks, the continuous stirred tank reactor (CSTR), and the standard genetic regulatory
network (SGRN). First, the definition of the tracking control is given. Second, the H∞ performance analysis of the
closed-loop system including this unified model, reference model, and state feedback controller is presented. Then
criteria on the tracking controller design are derived in terms of LMIs such that the output of the closed-loop system
tracks the given reference signal in the H∞ sense. The reference model adopted here is modified to be more flexible.
A scaling factor is introduced to deal with the disturbance such that the control precision is improved. Finally, a
CSTR system is provided to demonstrate the effectiveness of the established control laws.
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1 Introduction

The past two decades have witnessed great in-
terest in the control of nonlinear systems, including
H∞ fuzzy control (Peng et al., 2011; Li and Wang,
2012; Hsiao, 2013; Zhu et al., 2014), neural network
control (Lee et al., 2013; Nodland et al., 2013; Yang
et al., 2013), and robust adaptive control (Jin et al.,
2012; Yang et al., 2012). Since its large-scale ap-
plication in practical engineering processes, tracking
controller design has been widely applied to indus-
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trial fields such as robotic trajectory tracking con-
trol, missile control, aircraft tracking control, sailing
ship supply tracking, radar signal tracking for mov-
ing bodies, and high precision machining. However,
most of the existing literature concentrates on the
stabilization problems, except for some works (Zhang
and Yu, 2010; Jin et al., 2012; Liu and Chiang, 2012;
Zhang H et al., 2013a; 2013b). Jin et al. (2012)
adopted the adaptive control method to design the
tracking controller. In Zhang and Yu (2010), with
the reference model introduced and reference input
incorporated into the augmented disturbance, track-
ing control design conditions were derived for a class
of linear neutral systems. Liu and Chiang (2012) in-
vestigated the output tracking problem in the case
of an immeasurable system state using the Takagi-
Sugeno (T-S) fuzzy model and virtual desired refer-
ence model. In Zhang H et al. (2013a), the authors
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adopted the technique in predictive control and inte-
gral control to design the step tracking controller for
networked systems, while an observer-based method
was introduced later (Zhang H et al., 2013b) to deal
with the case where not all states are available in
practice.

However, it is not easy to achieve the desired
performance of the real physical controlled system.
For one thing, the nonlinearity and uncertainty make
it difficult or even infeasible to design controllers to
guarantee the stabilization of the closed-loop sys-
tem especially for those time-delayed or even time-
varying delayed systems. For another, time delays
always exist in real engineering such as physical and
chemical systems and telecommunication neural net-
works due to the finite speed of information tran-
sition (Chen et al., 2007; Chen and Zheng, 2015).
Together with external noises or disturbances, time
delays are considered a source of poor control per-
formances or even instabilities, due to which con-
trol of such systems has received much attention.
For the past few years, some researchers investigated
the tracking control problem of the above-mentioned
systems using the technique of parallel distributed
compensation (PDC) based on the T-S fuzzy model
(Zhang and Yu, 2010; Liu and Chiang, 2012; Zhang
H et al., 2013a; 2013b). However, since different non-
linear systems usually have different modeling meth-
ods, the PDC technique cannot provide a unified way
to design the controller. As far as we know, there are
no unified methods to deal with the control problems
for different nonlinear systems.

Inspired by the discrete-time unified model (Liu
et al., 2014), we adopt a continuous-time unified
model (CTUM), which is the interconnection of a
linear delayed dynamic system and a bounded static
nonlinear operator to investigate the H∞ tracking
control problem. The CTUM covers a lot of nonlin-
ear systems such as the continuous stirred tank reac-
tor (CSTR) (Cao and Frank, 2000; Liu and Chiang,
2012), chaotic systems (Guan and Chen, 2003; Yao
et al., 2011; Ahn, 2013; Liu et al., 2013; Yang, 2013;
Zhang G et al., 2013), neural network control systems
(Suykens et al., 1996; Lee et al., 2013), and Lur’s sys-
tems (Feng et al., 2013), on condition that the sector
conditions are satisfied. We transform these differ-
ent nonlinear systems into a unified model, and then
design H∞ tracking controllers in a unified way such
that the output of the closed-loop system tracks the

desired reference signal asymptotically and the in-
fluence of external disturbance on tracking precision
is reduced to a lower level. The contributions of
this paper include: (1) dealing with the stability and
tracking control problems in a unified framework; (2)
relaxing the need for the real reference input in con-
ventional tracking control by introducing the model
reference input; (3) improving tracking control pre-
cision by introducing a scaling factor to augmented
disturbance.

Notations: l2[0,∞) is the space of square inte-
grable vectors. R

n denotes the n-dimensional Eu-
clidean space, and R

n×m is the set of all n×m real
matrices. I denotes the identity matrix of appro-
priate order. ∗ denotes the symmetric parts. diag()
stands for a block-diagonal matrix. The notation
X > Y , where X and Y are matrices of the same
dimensions, means that the matrix X−Y is positive
definite. C(Rp;Rq) denotes the space of all continu-
ous functions mapping R

p → R
q.

2 Preliminaries and problem formula-
tion

Referring to the discrete-time model (Liu et al.,
2014), we adopt the following CTUM with inputs,
outputs, and disturbances:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) +Adx(t− τ(t)) +Bpφ(ξ(t))

+Buu(t) +Bww(t),

ξ(t) = Cqx(t) +Cqdx(t− τ(t)) +Dpφ(ξ(t))

+Duu(t) +Dww(t),

y(t) = Cyx(t) +Dyuu(t) +Dyww(t),

(1)
where x(t) ∈ R

n is the system state, u(t) ∈ R
m is

the control input, y(t) ∈ R
l is the measured out-

put, w(t) ∈ R
s is the process noise which belongs

to l2[0,∞), A ∈ R
n×n, Ad ∈ R

n×n, Bp ∈ R
n×L,

Bw ∈ R
n×s, Bu ∈ R

n×m, Cq ∈ R
L×n, Cqd ∈ R

L×n,
Dp ∈ R

L×L, Dw ∈ R
L×s, Du ∈ R

L×m, Cy ∈ R
l×n,

Dyu ∈ R
l×m, and Dyw ∈ R

l×s are known matrices,
ξ(t) ∈ R

L is the input of the nonlinear continuous
function φ(ξ(t)) ∈ C(RL;RL) satisfying φ(0) = 0, L
is the number of nonlinear functions, τ(t) ∈ R is the
time-varying delay which is subject to 0 ≤ τ(t) ≤ d,
τ̇(t) ≤ μ ≤ ∞, ∀t ≥ 0, �(t) is a given continu-
ous function over [−d, 0], and the initial condition is
described by x(t) = �(t), ∀t ∈ [−d, 0].

We assume that the nonlinear function in Eq. (1)
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satisfies the following conditions:

0 ≤ φi(α)/α ≤ hi, ∀α ∈ R, α 	= 0, (2)

where hi > 0, i = 1, 2, . . . , L.

The reference model is given as follows:

{
ẋr(t) = Arxr(t) +Brr(t),

yr(t) = Crxr(t),
(3)

where xr ∈ R
r is the reference state, yr ∈ R

l is the
reference output, r(t) ∈ R

p is the energy bounded
reference input, Ar ∈ R

r×r (Hurwitz), Br ∈ R
r×p,

and Cr ∈ R
l×r are constant matrices.

Remark 1 Compared with the reference model in
Zhang and Yu (2010) and Liu and Chiang (2012),
the model adopted here is more flexible due to the
introduction of Br since the reference models used in
Zhang and Yu (2010) and Liu and Chiang (2012) are
special cases where Br = 1 in Zhang and Yu (2010)
and Br = [0 1]T in Liu and Chiang (2012).

Based on the system state and reference state,
we design the following state feedback controller:

u(t) = K1x(t) +K2xr(t), (4)

where K1 ∈ R
m×n and K2 ∈ R

m×r are the feedback
gains. The closed-loop system including Eqs. (1),
(3), and (4) is shown in Fig. 1.

Define the augmented state and augmented dis-
turbance as follows:

x̃(t) = [xT(t) xT
r (t)]

T,

v(t) = [wT(t) rT(t)/k]T.

Model reference (3)

State feedback
controller (4)

Controlled system (1)

r(t) yr(t)

y(t)

x(t)u(t)

xr(t)

Fig. 1 Diagram of the closed-loop system

Then we can obtain the following augmented system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃x(t) = Ãx̃(t) + Ãdx̃(t− τ(t)) + B̃pφ(ξ(t))

+ B̃wv(t),

ξ(t) = C̃qx̃(t) + C̃qdx̃(t− τ(t)) +Dpφ(ξ(t))

+ D̃wv(t),

e(t) = yr(t)− y(t) = C̃yx̃(t) + D̃ywv(t),

(5)
where

Ã =

[
A+BuK1 BuK2

0 Ar

]

, Ãd =

[
Ad 0

0 0

]

,

B̃p =

[
Bp

0

]

, B̃w =

[
Bw 0

0 kBr

]

,

C̃q =
[
Cq +DuK1 DuK2

]
,

C̃qd =
[
Cqd 0

]
, D̃w =

[
Dw 0

]
,

C̃y =
[−Cy −DyuK1 Cr −DyuK2

]
,

D̃yw =
[−Dyw 0

]
,

in which k is called the scaling factor taking values
from the set of all positive integers.
Definition 1 (Liu and Chiang, 2012) Given a real
number γ and a symmetric positive definite matrix
T , system (5) is said to be stable with γ-disturbance
attenuation if the following conditions are satisfied:

1. With zero process disturbance and zero ref-
erence input (i.e., v(t) = 0), system (5) is asymptot-
ically stable;

2. With zero initial conditions, the following
index holds:

J =

∫ ∞

0

[eT(t)Te(t) − γ2vT(t)v(t)]dt ≤ 0 (6)

for any w(t) ∈ l2[0, ∞), r(t), and all admissible de-
lays τ(t). The feedback controller (4) is said to be an
H∞ tracking controller with disturbance attenuation
rate γ. This parameter γ is called the upper bound
of the L2 gain for system (5). If we find a minimal
positive γ which satisfies the above two conditions,
controller (4) is an optimal H∞ tracking controller.
Since r(t) is taken as a part of augmented distur-
bance, γ also represents the tracking error.
Remark 2 To enhance the tracking control pre-
cision, we introduce the positive scalar k into aug-
mented disturbance. From Definition 1, we can see
that applying k is equivalent to reducing the param-
eter γ by k times, which means the tracking error
can be reduced by k times. Furthermore, k can be
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selected flexibly according to the specific control re-
quirement.
Lemma 1 (Park et al., 2011) For functions
fi(t) ∈ C(RL;RL), i = 1, 2, . . . , N , the correspond-
ing reciprocal convex combination satisfies

(1)
∑

i

1

αi
fi(t) ≥

∑

i

fi(t) +
∑

i�=j

gi,j(t)

∀gi,j(t) ∈ C(RL;RL), gi,j(t) = gj,i(t),

(2)

[
fi(t) gi,j(t)

∗ fj(t)

]

≥ 0,

provided that the following conditions are satisfied:
1. Functions fi(t), fj(t) ∈ C(RL;RL), i, j =

1, 2, . . . , N have positive values over an open subset
of RL;

2. The reciprocal convex combination of these
functions is a function of the form 1/α1 + 1/α2 +

. . .+ 1/αN with αi > 0,
∑N

i=1 αi = 1.

3 H∞ tracking controller design for the
unified model

First, we analyze the H∞ performance of the
closed-loop system (5) and derive the following
theorem:
Theorem 1 Given d ≥ 0, μ ≥ 0, and γ > 0, if
there exist symmetric positive definite matrices P ,
Q1, Q2, R, a diagonal positive definite matrix Σ,
and a symmetric matrix S that satisfy the following
linear matrix inequalities (LMIs):

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

M11 M12 M13 M14 M15

∗ M22 M23 M24 M25

∗ ∗ M33 0 0

∗ ∗ ∗ M44 M45

∗ ∗ ∗ ∗ M55

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0, (7)

[
R S

∗ R

]

> 0, (8)

where

M11 = PÃ+ ÃTP +Q1 +Q2 −R

+ C̃T
y T C̃y + d2ÃTRÃ,

M12 = PÃd +R− S + d2ÃTRÃd,

M13 = S, M14 = PB̃p + C̃T
q ΣH + d2ÃTRB̃p,

M15 = C̃T
y TD̃yw + PB̃w + d2ÃTRB̃w ,

M22 = −(1− μ)Q2 − 2R+ 2S + d2ÃT
dRÃd,

M23 = R − S, M24 = C̃T
qdΣH + d2ÃT

dRB̃p,

M25 = d2ÃT
dRB̃w , M33 = −Q1 −R,

M44 = DT
p ΣH +HΣDp − 2Σ + d2B̃T

p RB̃p,

M45 = d2B̃T
p RB̃w +HΣD̃w,

M55 = −γ2I + D̃T
ywTD̃yw + d2B̃T

wRB̃w ,

H = diag(h1, h2, . . . , hL),

then system (5) with v(t) = 0 is globally asymptot-
ically stable, and the L2 gain of system (5) is less
than or equal to γ.
Proof Consider system (5) with v(t) = 0, i.e.,
{

˙̃x(t) = Ãx̃(t) + Ãdx̃(t− τ(t)) + B̃pφ(ξ(t)),

ξ(t) = C̃qx̃(t) + C̃qdx̃(t− τ(t)) +Dpφ(ξ(t)).

(9)
Since x̃(t) = 0 and ξ(t) = 0 are solutions to

Eq. (9), there exists at least one equilibrium point
at the origin, i.e., x̃eq(t) = 0, ξeq(t) = 0. For sys-
tem (9), we adopt the following Lyapunov function:

V (t) = V1(t) + V2(t) + V3(t) + V4(t) (10)

with
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V1(t) = x̃T(t)Px̃(t),

V2(t) =
∫ t

t−d
x̃T(s)Q1x̃(s)ds,

V3(t) =
∫ t

t−τ(t) x̃
T(s)Q2x̃(s)ds,

V4(t) = d
∫ 0

−d

∫ t

t+θ
˙̃x
T
(s)R ˙̃x(s)dsdθ,

where P = PT > 0, Q1 = QT
1 > 0, Q2 = QT

2 > 0,
R = RT > 0. Thus, for any x̃(t) 	= 0, V (t) > 0 and
V (t) = 0 if and only if x̃(t) = 0.

The sector conditions in inequality (2) can be
written as follows:

φ2
i (ξi(t))− hiφi(ξi(t))ξi(t) ≤ 0, (11)

which is equivalent to

2εiφ
2
i (ξi(t))− 2εihiφi(ξi(t))ξi(t) ≤ 0, (12)

where εi > 0, i = 1, 2, . . . , L.
Applying Lemma 1, where

f1(t) =[x̃(t− τ(t)) − x̃(t−d)]T

·R[x̃(t− τ(t)) − x̃(t− d)],

f2(t) =[x̃(t)− x̃(t− τ(t))]T

·R[x̃(t)− x̃(t− τ(t))],

g1,2(t) =g2,1(t) = [x̃(t− τ(t)) − x̃(t− d)]T

· S[x̃(t)− x̃(t− τ(t))],
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we can obtain the following inequality:

− d

∫ t

t−d

˙̃x
T
(s)R ˙̃x(s)ds

=−d

∫ t−τ(t)

t−d

˙̃x
T
(s)R ˙̃x(s)ds−d

∫ t

t−τ(t)

˙̃x
T
(s)R ˙̃x(s)ds

≤− d

d− τ(t)
[x̃(t− τ(t)) − x̃(t− d)]T R [x̃(t− τ(t))−

x̃(t− d)]− d

τ(t)
[x̃(t)− x̃(t− τ(t))]

T
R [x̃(t)−

x̃(t− τ(t))]

≤−
[

x̃(t)− x̃(t− τ(t))

x̃(t− τ(t)) − x̃(t− d)

]T [
R S

∗ R

]

·
[

x̃(t)− x̃(t− τ(t))

x̃(t− τ(t)) − x̃(t− d)

]

. (13)

The derivative of V (t) along the solution to sys-
tem (9) is as follows:

V̇ (t)

≤2x̃T(t)P ˙̃x(t) + x̃T(t)(Q1 +Q2)x̃(t)− x̃T(t− d)

·Q1x̃(t− d)− (1 − μ)x̃T(t− τ(t))Q2x̃(t− τ(t))

+ d2 ˙̃x
T
(t)R ˙̃x(t)− d

∫ t

t−d

˙̃x
T
(s)R ˙̃x(s)ds

≤2x̃T(t)P ˙̃x(t) + x̃T(t)(Q1 +Q2)x̃(t)− x̃T(t− d)

·Q1x̃(t− d)− (1 − μ)x̃T(t− τ(t))Q2x̃(t− τ(t))

+ d2 ˙̃x
T
(t)R ˙̃x(t)− [x̃(t)− x̃(t− τ(t))]

T
R [x̃(t)

−x̃(t− τ(t))] − [x̃(t− τ(t)) − x̃(t− d)]
T
R

· [x̃(t− τ(t)) − x̃(t− d)]− 2 [x̃(t)− x̃(t− τ(t))]T

· S [x̃(t− τ(t)) − x̃(t− d)]− 2φT(ξ(t))Σφ(ξ(t))

+ 2φT(ξ(t))ΣHξ(t)

=ΨTM̃Ψ , (14)

where Σ = diag(ε1, ε2, . . . , εL) > 0, Ψ =
[
x̃T(t)

x̃T(t− τ(t)) x̃T(t− d) φT(ξ(t))
]T,

M̃ =

⎡

⎢
⎢
⎢
⎣

M̃11 M12 M13 M14

∗ M22 M23 M24

∗ ∗ M33 0

∗ ∗ ∗ M44

⎤

⎥
⎥
⎥
⎦

with M̃11 = PÃ+ÃTP +Q1+Q2−R+d2ÃTRÃ.
By virtue of the Schur complement (Boyd et al.,
1994), M < 0 is equivalent to inequality (15) (at the
top of the next page). M̃ is the principal minor of
the left side of inequality (15). We have M̃ < 0, i.e.,

V̇ (t) < 0. So, system (5) with v(t) = 0 is globally
asymptotically stable. With zero initial conditions,
J in Eq. (6) for system (5) is equivalent to

J =

∫ ∞

0

[
eT(t)Te(t) − γ2vT(t)v(t) + V̇ (t)

]
dt

− V (x̃(∞)) + V (x̃(0))

≤
∫ ∞

0

[
eT(t)Te(t) − γ2vT(t)v(t) + V̇ (t)

]
dt

=

∫ ∞

0

{
ΨTGΨ + 2x̃T(t)PB̃wv(t) + 2φT(ξ(t))ΣH

·D̃wv(t) +
[
C̃yx̃(t) + D̃ywv(t)

]T
T

·
[
C̃yx̃(t) + D̃ywv(t)

]
− γ2vT(t)v(t)

}
dt

=

∫ ∞

0

ΥTMΥdt, (16)

where

Υ =[x̃T(t) x̃T(t− τ(t)) x̃T(t− d) φT(ξ(t)) vT(t)]T.

Since M < 0 by Theorem 1, we have J < 0 for
any Υ 	= 0. Due to Definition 1, the L2 gain of
system (5) is less than or equal to γ. Thus, the proof
is completed.

We can rewrite Ã, C̃q, and C̃y in Eq. (7) as
Ã = Ā+B̄uK, C̃q = C̄q+DuK, C̃y = C̄y−DyuK,
where

K = [K1 K2], Ā =

[
A 0

0 Ar

]

, B̄u =

[
Bu

0

]

,

C̄q = [Cq 0], C̄y = [−Cy Cr].

Theorem 2 Given d ≥ 0, μ ≥ 0, and γ > 0, if
there exist symmetric positive definite matrices X,
Y1, Y2, Y3, Y4, a diagonal positive definite matrix
V , and a matrix W that satisfy Eq. (17) (see the
next page) and the following LMIs:

[
Y3 Y4

∗ Y3

]

> 0, (18)

then system (5) with v(t) = 0 is globally asymptot-
ically stable, and the L2 gain of system (5) is less
than or equal to γ. Furthermore, the feedback gain
of controller (4) is

K = WX−1. (19)

Proof Pre- and post-multiplying the left and
right sides of inequality (15) (see the next page)
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ1 PÃd +R− S S PB̃p + C̃T
q ΣH PB̃w dÃTR C̃T

y T

∗ −(1− μ)Q2 − 2R+ 2S R− S C̃T
qdΣH 0 dÃT

dR 0

∗ ∗ −Q1 −R 0 0 0 0

∗ ∗ ∗ Ξ2 HΣD̃w dB̃T
p R 0

∗ ∗ ∗ ∗ −γ2I dB̃T
wR D̃T

ywT

∗ ∗ ∗ ∗ ∗ −R 0

∗ ∗ ∗ ∗ ∗ ∗ −T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (15)

Ξ1 = PÃ+ ÃTP +Q1 +Q2 −R, Ξ2 = −2Σ +DT
p ΣH +HΣDp.

N1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ3 ÃdX + Y3 − Y4 Y4 Ξ4 B̃w Ξ6 Ξ7

∗ −(1− μ)Y2 − 2Y3 + 2Y4 Y3 − Y4 XC̃T
qdH 0 dXÃT

d 0

∗ ∗ −Y1 − Y3 0 0 0 0

∗ ∗ ∗ Ξ5 HD̃w dV B̃T
p 0

∗ ∗ ∗ ∗ −γ2I dB̃T
w D̃T

ywT

∗ ∗ ∗ ∗ ∗ −X −XT + Y3 0

∗ ∗ ∗ ∗ ∗ ∗ −T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

(17)
Ξ3 = (ĀX + B̄uW )T + ĀX + B̄uW + Y1 + Y2 − Y3, Ξ4 = B̃pV +XC̄T

q H +WTDT
uH ,

Ξ5 = −2V + V DT
p H +HDpV , Ξ6 = dXĀT + dWTB̄T

u , Ξ7 = XC̄T
y T −WTDT

yuT .

by diag(P−1,P−1,P−1,Σ−1,R−1, I, I) respec-
tively and defining

⎧
⎨

⎩

P−1 = X, Σ−1 = V , W = KX,

Y1 = P−1Q1P
−1, Y2 = P−1Q2P

−1,

Y3 = P−1RP−1, Y4 = P−1SP−1,

(20)

we have Eq. (21) (at the top of the next page). Due
to the fact that

(R−1 −X)TR(R−1 −X) ≥ 0, (22)

we have

−R−1 ≤ XTRX−X−XT = Y3−X−XT. (23)

Then based on inequality (21) and Eq. (23), we
obtain

N1 ≤ N1. (24)

Since N1 < 0, we have N1 < 0; i.e., M < 0 holds.
Similarly, pre- and post-multiplying the left and

right sides of inequality (8) by diag(P−1,P−1), we
have inequality (18). In turn, we derive inequality (8)
once inequality (18) holds. Theorem 2 not only guar-
antees the stability of the controlled system but also

determines the tracking controller gain. Thus, the
proof is completed.
Remark 3 If Ad = Cqd = 0 or τ(t) = 0, sys-
tem (1) is a non-delayed system as follows:

⎧
⎪⎨

⎪⎩

ẋ(t) = Ax(t) +Bpφ(ξ(t)) +Buu(t) +Bww(t),

ξ(t) = Cqx(t) +Dpφ(ξ(t)) +Duu(t) +Dww(t),

y(t) = Cyx(t) +Dyuu(t) +Dyww(t).

(25)
Theorem 2 is still valid for the design of feedback

controller (4) and the following corollary gives the
algorithm in detail:
Corollary 1 Given d ≥ 0, μ ≥ 0, and γ > 0, if
there exist a symmetric positive definite matrix X,
a diagonal positive definite matrix V , and a matrix
W that satisfy Eq. (26) (see the next page), then the
closed-loop system including Eqs. (25), (3), and (4)
with v(t) = 0 is globally asymptotically stable, and
the L2 gain of this closed-loop system is less than or
equal to γ. Furthermore, the feedback gain can still
be obtained from K = WX−1.
Remark 4 Apart from varying-time delayed sys-
tems, Theorem 2 is also applicable to constant-time
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N1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ξ3 ÃdX + Y3 − Y4 Y4 Ξ4 B̃w Ξ6 Ξ7

∗ −(1− μ)Y2 − 2Y3 + 2Y4 Y3 − Y4 XC̃T
qdH 0 dXÃT

d 0

∗ ∗ −Y1 − Y3 0 0 0 0

∗ ∗ ∗ Ξ5 HD̃w dV B̃T
p 0

∗ ∗ ∗ ∗ −γ2I dB̃T
w D̃T

ywT

∗ ∗ ∗ ∗ ∗ −R−1 0

∗ ∗ ∗ ∗ ∗ ∗ −T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0. (21)

N2 =

⎡

⎢
⎢
⎢
⎣

(AX +BuW )T +AX +BuW Ξ4 B̃w Ξ7

∗ Ξ5 HD̃w 0

∗ ∗ −γ2I D̃T
ywT

∗ ∗ ∗ −T

⎤

⎥
⎥
⎥
⎦
< 0. (26)

delayed systems just by setting μ = 0 with τ(t) = d.
Remark 5 The optimal H∞ tracking controller
of the form Eq. (4) can be obtained by solving the
eigenvalue problem (EVP) as follows:

Delayed:
minimize γ (27)

s.t. inequalities (17) and (18); (28)

Non-delayed:
minimize γ (29)

s.t. inequality (26). (30)

4 Numerical example

In this section, the continuous stirred tank re-
actor system is provided to demonstrate the effec-
tiveness of the design methods proposed in Section
3. Since our method is based on the unified model, it
is first necessary to transform the controlled system
into the unified model.

Consider the following varying-time delayed
continuous stirred tank reactor (Cao and Frank,
2000; Liu and Chiang, 2012):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = − 1

λ
x1(t) + (

1

λ
− 1)x1(t− τ(t))

+Daf(x1, x2) + w(t),

ẋ2(t) = −(
1

λ
+ β)x2(t) + (

1

λ
− 1)x2(t− τ(t))

+mDaf(x1, x2) + βu(t) + w(t),

y = x2(t),

(31)

where f(x1, x2) = (1 − x1(t))exp
(

x2(t)

1 + x2(t)/γ0

)

,

the process noise w(t) is chosen as a uniformly ran-
dom noise, the state 0 ≤ x1(t) ≤ 1 corresponds to
the conversion rate of the reaction, and x2(t) ≥ 0 is
the dimensionless temperature. The parameters are
γ0 = 20, m = 8, Da = 0.072, β = 0.3, λ = 0.8. We
take τ(t) = 0.1+ 0.1 sin t, and thus d = 0.2, μ = 0.1.

Referring to Liu and Chiang (2012), we set 0.1 ≤
x2(t) ≤ 6. Then we have 0 ≤ f(x1(t), x2(t))/x2(t) ≤
16, i.e., H = 16. Before applying Theorem 2 to
develop the controller, we convert system (31) into
the unified model (1), where

A =

[− 1
λ 0

0 − 1
λ − β

]

, Ad =

[
1
λ − 1 0

0 1
λ − 1

]

,

Bp =
[
Da mDa

]T
, Bu =

[
0

β

]

, Bw =

[
1

1

]

,

Cq =
[
0 1

]
, Cqd = 01×2, Dp = 01×2,

Du = 01×1, Dw = 01×1, Cy =
[
0 1

]
,

Dyu = Dyw = 01×1,

φ(ξ(t))=(1 − x1(t))exp
(

ξ(t)

1 + ξ(t)/γ0

)

, ξ(t)=x2(t).

The reference model is given as follows:
{
ẋr(t) = Arxr(t) +Brr(t),

yr(t) = Crxr(t),
(32)

where

Ar =

[
0 1

−4 −2

]

, Br =

[
0

1

]

, Cr =
[
4 0

]
.
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In this example, we choose the following two
kinds of reference inputs to verify the effectiveness of
the established control laws:

r(t) = sin(0.5t) + 3, (33)

r(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, 0 ≤ t < 8,

2, 8 ≤ t < 16,

3, 16 ≤ t < 24,

4, 24 ≤ t < 32,

2, otherwise.

(34)

Note that γ and T here are equal to 1/ρ and
R in Liu and Chiang (2012), respectively. To show
the advantages of our method over that adopted in
Liu and Chiang (2012), we take γ = 1/ρ = 0.826,
T = diag(0.01, 0.01), and w(t) as a uniformly ran-
dom noise with amplitude 0.01. Then according to
Theorem 2, we obtain the feedback gains with the
two reference inputs (Eqs. (33) and (34)) in the cases
of k = 8 and k = 15, respectively, as follows:

k=8:

K1 = [−142.4924 − 157.075],

K2 = [581.1610 17.8439];

k=15:

K1 = [−157.3569 − 171.7296],

K2 = [641.8698 18.0441].

The simulation results with the reference input
taken as Eq. (33) are depicted in Figs. 2 and 3. Fig. 2
demonstrates the system output and reference input
described by Eq. (33), while the tracking errors in the
cases of k = 8 and k = 15 are shown in Fig. 3. From
Figs. 2 and 3, we can see that the tracking control
performance is well achieved in the H∞ sense.

Similarly, when the reference input is selected
as the multi-step signal, the system output and ref-
erence input described by Eq. (34) are depicted in
Fig. 4, while Fig. 5 displays the tracking errors when
k = 8 and k = 15. The results in Figs. 4 and 5 vali-
date the developed tracking controller in the form of
Eq. (4). With the increase of k, the tracking error
can be even smaller such that the tracking controller
still exists. The value of k can be selected flexibly
according to the desired performance. In Liu and
Chiang (2012), however, the improvement for the
tracking precision was not considered.
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Fig. 2 The output of system (31) and the reference
input (33) when k = 8
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Fig. 3 Tracking errors in the cases of k = 8 and
k = 15, respectively, with reference input (33)
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Fig. 4 The output of system (31) and the reference
input (34) when k = 8

Furthermore, Liu and Chiang (2012) claimed
to replace the time-varying delay with a suitable
value approximately determined by trial-and-error.
Though it is acceptable in practice, it is better in
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Fig. 5 Tracking errors in the cases of k = 8 and
k = 15, respectively, with reference input (34)

our opinion to use the time-varying delay directly as
is presented in our work. Compared with Liu and
Chiang (2012), no extra uncertainties are introduced
when we model the controlled system. Also, the
method of trial-and-error in Liu and Chiang (2012)
is time-consuming and will increase the workload of
controller design. In this sense, the proposed method
in our work is more convenient.

5 Conclusions

In this paper, the tracking control problem for
a class of continuous varying-time delayed nonlin-
ear systems is investigated via a unified model which
consists of a linear delayed dynamic system and a
static nonlinear operator. Based on this model, a
state feedback controller is designed, which guaran-
tees that the closed-loop system is stable and that
the output of the system tracks the model refer-
ence trajectory in the H∞ sense even in the case of
unknown time-varying delays. The reference model
used here is more flexible than previous ones. The
scaling factor, a positive integer, is introduced to re-
duce the tracking error. Finally, a CSTR system
is provided to demonstrate the effectiveness of the
developed tracking control method.

References
Ahn, C.K., 2013. Takagi-Sugeno fuzzy receding horizon

H∞ chaotic synchronization and its application to the
Lorenz system. Nonl. Anal. Hybr. Syst., 9(1):1-8.
[doi:10.1016/j.nahs.2013.01.002]

Boyd, S., Ghaoui, L., Feron, E., et al., 1994. Linear Matrix
Inequalities in System and Control Theory. SIAM,
Philadelphia, USA.

Cao, Y.Y., Frank, P.M., 2000. Analysis and synthesis of non-
linear time-delay systems via fuzzy control approach.
IEEE Trans. Fuzzy Syst., 8(2):200-211. [doi:10.1109/
91.842153]

Chen, Y., Zheng, W., 2015. L2-L∞ filtering for stochastic
Markovian jump delay systems with nonlinear pertur-
bations. Signal Process., 109:154-164. [doi:10.1016/
j.sigpro.2014.11.006]

Chen, Y., Xue, A., Ge, M., et al., 2007. On exponential sta-
bility for systems with state delays. J. Zhejiang Univ.-
Sci. A, 8(8):1296-1303. [doi:10.1631/jzus.2007.A1296]

Feng, J., Tang, Z., Zhao, Y., et al., 2013. Cluster synchro-
nisation of non-linearly coupled Lur’e networks with
identical and non-identical nodes and an asymmetrical
coupling matrix. IET Contr. Theory Appl., 7(18):2117-
2127. [doi:10.1049/iet-cta.2013.0233]

Guan, X., Chen, C., 2003. Adaptive fuzzy control for
chaotic systems with H∞ tracking performance. Fuzzy
Sets Syst., 139(1):81-93. [doi:10.1016/S0165-0114(02)
00573-0]

Hsiao, F., 2013. Robust H∞ fuzzy control of dithered chaotic
systems. Neurocomputing, 99:509-520. [doi:10.1016/
j.neucom.2012.08.003]

Jin, X., Yang, G., Li, P., 2012. Robust adaptive tracking
control of distributed delay systems with actuator and
communication failures. Asian J. Contr., 14(5):1282-
1298. [doi:10.1002/asjc.389]

Lee, T., Park, J., Kwon, O., et al., 2013. Stochastic sampled-
data control for state estimation of time-varying de-
layed neural networks. Neur. Netw., 46:99-108.
[doi:10.1016/j.neunet.2013.05.001]

Li, L., Wang, W., 2012. Fuzzy modeling and H∞ control
for general 2D nonlinear systems. Fuzzy Sets Syst.,
207:1-26. [doi:10.1016/j.fss.2012.04.002]

Liu, M., Zhang, S., Fan, Z., et al., 2013. Exponential
H∞ synchronization and state estimation for chaotic
systems via a unified model. IEEE Trans. Neur. Netw.
Learn. Syst., 24(7):1124-1126. [doi:10.1109/TNNLS.
2013.2251000]

Liu, M., Zhang, S., Chen, H., et al., 2014. H∞ output
tracking control of discrete-time nonlinear systems via
standard neural network models. IEEE Trans. Neur.
Netw. Learn. Syst., 25(10):1928-1935. [doi:10.1109/
TNNLS.2013.2295846]

Liu, P., Chiang, T., 2012. H∞ output tracking fuzzy con-
trol for nonlinear systems with time-varying delays.
Appl. Soft Comput., 12(9):2963-2972. [doi:10.1016/
j.asoc.2012.04.025]

Nodland, D., Zargarzadeh, H., Jagannathan, S., 2013. Neu-
ral network-based optimal adaptive output feedback
control of a helicopter UAV. IEEE Trans. Neur.
Netw. Learn. Syst., 24(7):1061-1073. [doi:10.1109/
TNNLS.2013.2251747]

Park, P., Co, J., Jeong, C., 2011. Reciprocally convex ap-
proach to stability of systems with time-varying delays.
Automatica, 47(1):235-238. [doi:10.1016/j.automatica.
2010.10.014]

Peng, C., Han, Q., Yue, D., et al., 2011. Sampled-data
robust H∞ control for T-S fuzzy systems with time
delay and uncertainties. Fuzzy Sets Syst., 179(1):20-
23. [doi:10.1016/j.fss.2011.05.001]

http://dx.doi.org/10.1016/j.nahs.2013.01.002
http://dx.doi.org/10.1109/91.842153
http://dx.doi.org/10.1109/91.842153
http://dx.doi.org/10.1016/j.sigpro.2014.11.006
http://dx.doi.org/10.1016/j.sigpro.2014.11.006
http://dx.doi.org/10.1631/jzus.2007.A1296
http://dx.doi.org/10.1049/iet-cta.2013.0233
http://dx.doi.org/10.1016/S0165-0114(02)00573-0
http://dx.doi.org/10.1016/S0165-0114(02)00573-0
http://dx.doi.org/10.1016/j.neucom.2012.08.003
http://dx.doi.org/10.1016/j.neucom.2012.08.003
http://dx.doi.org/10.1002/asjc.389
http://dx.doi.org/10.1016/j.neunet.2013.05.001
http://dx.doi.org/10.1016/j.fss.2012.04.002
http://dx.doi.org/10.1109/TNNLS.2013.2251000
http://dx.doi.org/10.1109/TNNLS.2013.2251000
http://dx.doi.org/10.1109/TNNLS.2013.2295846
http://dx.doi.org/10.1109/TNNLS.2013.2295846
http://dx.doi.org/10.1016/j.asoc.2012.04.025
http://dx.doi.org/10.1016/j.asoc.2012.04.025
http://dx.doi.org/10.1109/TNNLS.2013.2251747
http://dx.doi.org/10.1109/TNNLS.2013.2251747
http://dx.doi.org/10.1016/j.automatica.2010.10.014
http://dx.doi.org/10.1016/j.automatica.2010.10.014
http://dx.doi.org/10.1016/j.fss.2011.05.001


768 Liu et al. / Front Inform Technol Electron Eng 2015 16(9):759-768

Suykens, J., Vandewalle, J., de Moor, B., 1996. Artificial
Neural Networks for Modelling and Control of Non-
linear Systems. Springer, London.

Yang, C., 2013. One input control of exponential synchro-
nization for a four-dimensional chaotic system. Appl.
Math. Comput., 219(10):5152-5161. [doi:10.1016/
j.amc.2012.11.003]

Yang, X., Liu, D., Huang, Y., 2013. Neural-network-
based online optimal control for uncertain non-linear
continuous-time systems with control constraints. IET
Contr. Theory Appl., 7(17):2037-2047. [doi:10.1049/
iet-cta.2013.0472]

Yang, Y., Wu, J., Zheng, W., 2012. Trajectory tracking
for an autonomous airship using fuzzy adaptive sliding
mode control. J. Zhejiang Univ.-Sci. C (Comput. &

Electron.), 13(7):534-543. [doi:10.1631/jzus.C1100371]
Yao, C., Zhao, Q., Yu, J., 2011. Complete synchroniza-

tion induced by disorder in coupled chaotic lattices.
Phys. Lett. A, 377(5):370-377. [doi:10.1016/j.physleta.
2012.12.004]

Zhang, D., Yu, L., 2010. H∞ output tracking control for
neutral systems with time-varying delay and nonlinear
perturbations. Commun. Nonl. Sci. Numer. Simul.,
15(11):3284-3292. [doi:10.1016/j.cnsns.2009.12.032]

Zhang, G., Shen, Y., Wang, L., 2013. Global anti-
synchronization of a class of chaotic memristive neu-
ral networks with time-varying delays. Neur. Netw.,
46:1-8. [doi:10.1016/j.neunet.2013.04.001]

Zhang, H., Shi, Y., Liu, M., 2013a. H∞ step tracking
control for networked discrete-time nonlinear systems
with integral and predictive actions. IEEE Trans. Ind.
Inform., 9(1):337-345. [doi:10.1109/TII.2012.2225434]

Zhang, H., Shi, Y., Xu, M., et al., 2013b. Observer-
based tracking controller design for networked predic-
tive control systems with uncertain Markov delays.
Proc. 36th American Control Conf., p.5682-5687.
[doi:10.1109/ACC.2012.6315295]

Zhu, B., Zhang, Q., Chang, C., 2014. Delay-dependent
dissipative control for a class of nonlinear system via
Takagi-Sugeno fuzzy descriptor model with time de-
lay. IET Contr. Theory Appl., 8(7):451-461. [doi:10.
1049/iet-cta.2013.0438]

http://dx.doi.org/10.1016/j.amc.2012.11.003
http://dx.doi.org/10.1016/j.amc.2012.11.003
http://dx.doi.org/10.1049/iet-cta.2013.0472
http://dx.doi.org/10.1049/iet-cta.2013.0472
http://dx.doi.org/10.1631/jzus.C1100371
http://dx.doi.org/10.1016/j.physleta.2012.12.004
http://dx.doi.org/10.1016/j.physleta.2012.12.004
http://dx.doi.org/10.1016/j.cnsns.2009.12.032
http://dx.doi.org/10.1016/j.neunet.2013.04.001
http://dx.doi.org/10.1109/TII.2012.2225434
http://dx.doi.org/10.1109/ACC.2012.6315295
http://dx.doi.org/10.1049/iet-cta.2013.0438
http://dx.doi.org/10.1049/iet-cta.2013.0438

	Introduction
	Preliminaries and problem formulation
	H tracking controller design for the unified model
	Numerical example
	Conclusions

