
Wang et al. / Front Inform Technol Electron Eng 2016 17(10):982-993 982

TextGen: a realistic text data content generation method for

modern storage system benchmarks*

Long-xiang WANG1, Xiao-she DONG1, Xing-jun ZHANG‡1,

Yin-feng WANG2, Tao JU1, Guo-fu FENG3
(1School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

(2Shenzhen Institute of Information Technology, Shenzhen 518172, China)

(3College of Information Technology, Shanghai Ocean University, Shanghai 201306, China)

E-mail: wanglongxiang@stu.xjtu.edu.cn; xsdong@mail.xjtu.edu.cn; xjzhang@mail.xjtu.edu.cn;

wangyinfeng@gmail.com; jutao2011@stu.xjtu.edu.cn; jt_f@163.com

Received Oct. 13, 2015; Revision accepted Mar. 21, 2016; Crosschecked Sept. 18, 2016

Abstract: Modern storage systems incorporate data compressors to improve their performance and capacity. As a result, data
content can significantly influence the result of a storage system benchmark. Because real-world proprietary datasets are too large
to be copied onto a test storage system, and most data cannot be shared due to privacy issues, a benchmark needs to generate data
synthetically. To ensure that the result is accurate, it is necessary to generate data content based on the characterization of
real-world data properties that influence the storage system performance during the execution of a benchmark. The existing
approach, called SDGen, cannot guarantee that the benchmark result is accurate in storage systems that have built-in word-based
compressors. The reason is that SDGen characterizes the properties that influence compression performance only at the byte level,
and no properties are characterized at the word level. To address this problem, we present TextGen, a realistic text data content
generation method for modern storage system benchmarks. TextGen builds the word corpus by segmenting real-world text datasets,
and creates a word-frequency distribution by counting each word in the corpus. To improve data generation performance, the
word-frequency distribution is fitted to a lognormal distribution by maximum likelihood estimation. The Monte Carlo approach is
used to generate synthetic data. The running time of TextGen generation depends only on the expected data size, which means that
the time complexity of TextGen is O(n). To evaluate TextGen, four real-world datasets were used to perform an experiment. The
experimental results show that, compared with SDGen, the compression performance and compression ratio of the datasets
generated by TextGen deviate less from real-world datasets when end-tagged dense code, a representative of word-based
compressors, is evaluated.

Key words: Benchmark, Storage system, Word-based compression
http://dx.doi.org/10.1631/FITEE.1500332 CLC number: TP311.1

1 Introduction

Benchmarking is an important method for

measuring the performance of storage systems, and
has long been an important research area for the

storage community. A large volume of work has been
carried out in this area, including benchmarks for file
systems (Agrawal et al., 2009; Tarasov et al., 2011),
cloud storage (Cooper et al., 2010; Li et al., 2010;
Drago et al., 2013), and databases (Armstrong et al.,
2013; Difallah et al., 2013).

To obtain accurate performance results, a bench-
mark simulates the I/O behaviors of real-world ap-
plications. Because real-world proprietary datasets
are too large to be copied onto a test storage system,
and because most data cannot be shared due to pri-
vacy issues, a benchmark synthetically generates data

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (Nos. 61572394 and 61272098), the Shenzhen Funda
mental Research Plan (Nos. JCYJ20120615101127404 and
JSGG20140519141854753), and the National Key Technologies R&D
Program of China (No. 2011BAH04B03)

 ORCID: Xing-jun ZHANG, http://orcid.org/0000-0003-1434-7016
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2016

Wang et al. / Front Inform Technol Electron Eng 2016 17(10):982-993 983

that are used to perform I/O operations under simu-
lated workloads. However, research on storage
benchmarks has focused mainly on how to simulate
storage workloads (Anderson et al., 2004; Chilan,
2005; Traeger et al., 2008), whereas studies on data
generation have not received enough attention.
Agrawal et al. (2009) first pointed out the importance
of generating data for benchmarks, and proposed a
method focusing mainly on metadata generation. The
metadata included the directory structure, the number
of directories, the size of files, and the number of files.
Experimental results showed that the metadata sig-
nificantly influenced the accuracy of benchmark
results.

However, the ‘impressions’ solution proposed by
Agrawal et al. (2009) generates unrealistic data con-
tent. Gracia-Tinedo et al. (2015) pointed out that data
content significantly influences the benchmark results
in modern storage systems, such as the B-tree file
system (BTRFS) (Rodeh et al., 2013) and Zettabyte
file system (ZFS) (Bonwick et al., 2003). These sys-
tems compress data before storing it to improve their
performance and capacity. The data content signifi-
cantly affects the compression performance and the
compression ratio, as well as the performance and
space consumption of these storage systems. Thus,
these storage systems are called content-sensitive.
The data generated by ‘impressions’ (Agrawal et al.,
2009) cannot obtain accurate benchmark results in
content-sensitive storage systems. To address this
problem, researchers have proposed SDGen (Gra-
cia-Tinedo et al., 2015), which is an open and exten-
sible framework to generate realistic storage bench-
marking content. SDGen captures the byte-level
properties that influence the compression perfor-
mance of real-world data, and uses them to create a
characterization file, which saves the byte frequency
and repetition, and is used to generate synthetic data
content. The characterization file guarantees that the
byte frequency and repetition of synthetic data con-
tent are close to those of real-world datasets, and can
be shared by other researchers or practitioners to
obtain a reproducible benchmark result. By using the
data generated by SDGen, the storage system’s
benchmark result is accurate when the byte-based
Ziv-Lempel family (Ziv and Lempel, 1977) com-
pressors are enabled. Thus, SDGen deviates from
real-world data by less than 10% in compression ratio

and less than 20% in compression performance.
However, for other text-data-oriented word-

based compressors, such as end-tagged dense code
(ETDC) (Brisaboa et al., 2003) or the word-based
Lempel-Ziv-Welch (LZW) (Horspool and Cormack,
1992), the data generated by SDGen cannot ensure
that the compression ratio and compression perfor-
mance results are accurate. This is because SDGen
generates data content based on the byte-level char-
acterization of real-world data. SDGen lacks
word-level characterizations, which are the basic
factors that influence the compression ratio and
compression performance of word-based compres-
sors. Text is an important data type in storage systems.
Agrawal et al. (2007) analyzed the datasets of over
10 000 file systems on Windows desktop computers at
the Microsoft Corporation over five years. The results
showed that the text data types, cpp, html, h, and txt,
accounted for 7%, 5%, 3%, and 3% of data, respec-
tively, and this indicated that text comprises a high
proportion of data in the common working environ-
ment. A document database, which is also a common
storage system, has been widely used in various ap-
plications. It contains vast quantities of text data
generated endlessly by newspaper reporters, aca-
demics, lawyers, and government agencies. As de-
scribed above, text data are extremely important in
common storage systems. Compared with the tradi-
tional Ziv-Lempel family of compressors, word-
based compressors can achieve higher compression
performance and compression ratios with text data,
and have been the subject of many studies (Yoshida
et al., 1999; Brisaboa et al., 2003; 2007; 2010). A
large number of storage systems use word-based
compressors to improve the data compression ratio
and the performance (Moffat et al., 1997; Dvorský et
al., 1999; Fariña et al., 2012). Thus, research on
generating text data content more accurately at the
word level is meaningful for modern storage system
benchmarks.

To address the problem that the data content
generated by existing methods is inaccurate at the
word level, we present TextGen, a realistic text data
content generation method for modern storage system
benchmarks. The key idea behind TextGen is to cap-
ture the word-level properties that influence the
compression performance and compression ratio
of word-based the compressors, and to use these

Wang et al. / Front Inform Technol Electron Eng 2016 17(10):982-993 984

characterizations to generate content. Moreover, to
improve the performance of content generation, the
word-frequency distribution is fitted to a lognormal
distribution using maximum likelihood estimation
(MLE).

To compare the accuracy of compression per-
formance and the compression ratio between SDGen
and TextGen using a word-based compressor, we used
the following four text datasets to conduct an ex-
periment: Java source code, C source code, Calgary,
and 20News. ETDC was used in the experiment as a
representative word-based compressor. Experimental
results indicated that the compression performance
and compression ratio of ETDC deviated less from
those of real-world datasets, when synthetic datasets
were generated and compressed by TextGen rather
than SDGen.

2 Framework of TextGen

2.1 Overview

The general idea of TextGen is similar to that
of SDGen (Gracia-Tinedo et al., 2015), whereas
TextGen generates data content based on characteri-
zations at the word level instead of the byte level. An
overview of TextGen is shown in Fig. 1.

Gracia-Tinedo et al. (2015) pointed out that the

byte frequency and repetition are the most important
factors that influence the performance of most
byte-based compressors. This idea also works for

word-based compressors. However, repetition at the
word level is much less frequent than that at the byte
level. An example is shown in Fig. 2. Repetition
means that a byte or word sequence has a longest
match in the previous data stream. In Fig. 2, the ar-
rowed lines point from the current sequences to the
previous repeated ones. Note that the repetition length
should be equal to or longer than two. Thus, we con-
sider that the most important factor that influences the
performance of word-based compressors is the word-
frequency distribution. To capture this factor, we first
segment the real-world text datasets into words, and
then count the frequency of each word to build a
corpus, which has the form <word, frequency>.

Second, we arrange all the words in the corpus in
descending order by frequency. We give each word a
rank, starting from 1, to obtain the rank-frequency
distribution and the rank-word dictionary. To improve
the data generation performance, we fit the rank-
frequency distribution to a lognormal one by MLE.

Finally, we use the Monte Carlo method to gen-
erate dataset content. During the generation, a random
number is continually generated based on the fitted
lognormal distribution, and is used as the word rank.
With the word rank, we can obtain the word from the
rank-word dictionary which has the form <rank,
word>.

2.2 Word segmentation and establishment of the
corpus

The dominant property that influences the com-
pression performance and compression ratio of

Fig. 1 TextGen framework

Fig. 2 Examples of repetition: (a) byte-level repetition;
(b) word-level repetition

Wang et al. / Front Inform Technol Electron Eng 2016 17(10):982-993 985

word-level compressors is the word distribution.
Therefore, we need to segment text data into words.
We use the segmentation method described by Hor-
spool and Cormack (1992) and Salomon (2006). In
this method, a word is defined as a maximal string of
either alphanumeric characters (letters and digits) or
other characters (punctuations and spaces). We denote
all the alphanumeric words by A, and all the other
words by P. As a result, the words from A and P
strictly alternate. Two simple segmentation examples
are shown in Figs. 3 and 4, where ‘•’ indicates the
end-of-line character (CR, LF, or both).

This segmentation method can be implemented

by a simple finite-state automaton. With this method,
real-world text datasets are recursively traversed to
conduct word segmentation. The segmented words
and their frequencies are saved in a hash table struc-
ture during segmentation. After word segmentation,
the hash table is saved to a file as the corpus, which
has the form <word, frequency>. If the datasets are
too large, a random sampling method such as reser-
voir sampling (Vitter, 1985) can be used to reduce the
segmentation time.

2.3 Word-frequency distribution fitting

The word-frequency distribution is established

by the corpus. The Monte Carlo approach is then used
to generate a data content. This approach continually
generates a random number as the word rank, which
maps the word content, and writes the word content
into currently generating file until the expected file
size is matched. Fitness proportional selection (Bäck,
1996) can be used to generate the random number
based on the word-frequency distribution. However, a
search operation is needed during the random number
generation process. Even when the most efficient
binary search is used, random number generation
performance is still low. This is because the time
complexity of a binary search is O(log m), which
makes the time complexity of the data content gen-
eration performance become O(nlog m). Here, n and
m represent the word count in the expected dataset
and the corpus, respectively. Thus, data content gen-
eration performance based on fitness proportional
selection needs to be improved.

Inspired by previous work on natural languages
(Li, 1992), we propose the use of a probability dis-
tribution model to generate the random numbers. To
fit the model to the word-frequency distribution, we
first arrange the words in the corpus in descending
order by frequency. We assign the word that has the
highest frequency to rank 1, the second highest word
to rank 2, and so on. In previous natural language
studies, the Zipf-Mandelbrot distribution (Powers,
1998) was the most widely used distribution to fit a
word’s rank-frequency distribution. However, the
performance of generating random numbers based on
this distribution is low. Thus, the lognormal distribu-
tion, which is also frequently used to fit a word dis-
tribution in natural language studies (Baayen, 1992),
is used to fit a word’s rank-frequency distribution.
The probability density function (pdf) of the
lognormal distribution is defined as

2

2

1 (ln)
(| ,) exp ,

22

x
f x

x

 (1)

where μ is the mean and σ is the standard deviation,
which are the parameters that need to be estimated.
MLE is used to estimate μ and σ. The principle of
MLE is to seek the value of the parameter vector by
maximizing the likelihood function of the desired
probability distribution (Myung, 2003). The likeli-
hood function is defined as the joint density treated as

for⊔(int⊔i=0;⊔i⊔<⊔noWords;⊔++i)⊔{•

⊔⊔sentence.append(words[random.nextInt(words.length)]);•

⊔⊔sentence.append(space);•

}•

"for""⊔(""int""⊔""i""=""0"";⊔""i""⊔<⊔"

"noWords"";⊔++""i"")⊔{•⊔⊔""sentence"".""append"

"(""words""[""random"".""nextInt""(""words"

".""length"")]);•⊔⊔""sentence"".""append""("

"space"");•}•"

Segmentation

Fig. 4 Java source code segmentation example

Fig. 3 Natural language segmentation example

Wang et al. / Front Inform Technol Electron Eng 2016 17(10):982-993 986

a function of the parameters θ:

 1 2 1
1

(| , , ,) (;).
n

n
i

L x x x f x

 (2)

By maximizing the likelihood function of the
lognormal distribution, we obtain

 2

1

1
(ˆ ln) ,

n

i
i

x
n

 (3)

 2

1

1
ˆ ˆ(ln) ,

n

i
i

x
n

 (4)

where n is the observed word’s count, and xi is the
observed rank of the ith word. With Eqs. (3) and (4),
MLE can be implemented by a very simple program
to estimate μ and σ. After estimating the parameters,
we use the Box-Muller transform method (Box and
Muller, 1958) to generate a random number based on
the lognormal distribution.

Supposing U1 and U2 are two independent ran-
dom variables that are uniformly distributed in the
interval [0, 1), we define two variables Z1 and Z2 with
U1 and U2 in Eqs. (5) and (6), respectively:

 1 1 22ln cos(2)Z U U , (5)

 12 22ln sin(2)Z U U . (6)

Box and Muller (1958) have proved that Z1 and

Z2 are both independent random variables, each with a
standard normal distribution. Since Z (Z1 or Z2) is a
standard normal random variable, Y will have a nor-
mal distribution with a mean deviation μ and a
standard deviation σ:

 .Y Z (7)

The normal and lognormal distributions are
closely related. If X is distributed lognormally with
the µ and σ, then log X is distributed normally with µ
and σ. Thus, the random variables X with lognormal
distribution can be obtained by

 exp().X Y (8)

The mean deviation m and standard deviation υ

of a normal random variable are functions of µ and σ
of a lognormal random variable, respectively, ex-
pressed as

 2 2 2ln ,m (9)

 2 2 2ln[() /]. (10)

According to the above analysis, we can im-

plement lognormal random number generation by
Algorithm 1.

Algorithm 1 Lognormal random number generation
Input: mean deviation μ and standard deviation σ of the
lognormal distribution.
Output: random number x with lognormal distribution.

1: m=ln(μ*μ/sqrt(μ*μ+σ*σ));
2: υ=sqrt(ln((μ*μ+σ*σ)/(μ*μ)));
3: generate random number u~U(0, 1) with a uniform

distribution;
4: z←sqrt(-2*ln u*cos(2π*u));

/* or z←sqrt(-2*ln u*sin(2π*u)); */
5: y←z*m+v;

6: x←exp(y);
7: return x;

Algorithm 1 has a time complexity of O(1) be-

cause it can be finished in a constant time. Thus, the
time complexity of data content generation is O(n),
which is less than that of the fitness proportional
selection approach.

2.4 Dataset generation algorithm

We integrate the metadata generation approach
impressions (Agrawal et al., 2009) into our content
generation method. The dataset generation algorithm
is described in Algorithm 2. First, the dataset structure
tree is generated (line 1). The rank-word map is ini-
tialized with the rank-word dictionary C (line 2). For
each file in the dataset, the file name is generated by
giving a natural number, and the file size ss is gener-
ated based on the size distribution model. Then, the
size ss and file name are added to the fileInfoList until
the accumulated file size reaches the expected dataset
size s (lines 3–8). Second, the fileInfoList is traversed.
For each traverse, an empty file is created based on
the file name (lines 9–17). The current generated file
size is defined as curSize (line 10). The file contents
are generated as follows: a random number wordRank

Wang et al. / Front Inform Technol Electron Eng 2016 17(10):982-993 987

is generated based on the lognormal distribution as
the word rank, and then the word content is looked up
by wordRank in rankWordMap. Finally, the content
of the word is written to the current generating file
and the word size is added to curSize. This process is
repeated until curSize is equal to or larger than ss
(lines 11–16). When traversing fileInfoList is finished,
the dataset is successfully created.

Algorithm 2 Dataset generation
Input: parameters of the metadata generator and expected
dataset size s; parameters of lognormal distribution σ, μ;
rank-word dictionary C={(k, v)|k is the word rank, v is the
word}.
Output: dataset D={x|x is file or directory}.

1: generate a dataset structure tree;
2: rankWordMap←initMap(C)
3: while curSize<s do
4: generate the file name with a natural number;
5: generate the file size ss;
6: curSize←curSize+ss;
7: fileInfoList←<name,ss>;
8: end while
9: for <name, ss> in fileInfoList do
10: curSize←0;
11: while curSize<ss do
12: wordRank←lognrand(μ, σ);
13: word←lookup(rankWordMap,wordRank);
14: writeToFile(fd, word);
15: curSize←curSize+length(word);
16: end while
17: end for
18: return D;

3 Implementation

TextGen is implemented in Java based on the

source code of SDGen (Fig. 5).
TextScanner is extended from the abstract class

AbstractScanner in SDGen. It is composed of the
dataset traverse module, the word segmentation
module, and the distribution fitting module. The da-
taset traverse module recursively traverses the real-
world datasets by depth-first search (DFS). For each
traversed file, Algorithm 1 is used to segment the file
and build the word-frequency distribution. Then, the
distribution fitting module is called to estimate the
parameters of the lognormal distribution.

The characterization file is used to save the
rank-word dictionary established after word seg-
mentation, as well as the parameters of the lognormal
distribution estimated by MLE. Unlike SDGen, the
characterization file saves the properties that influ-
ence the performance of compressors at the word
level instead of the byte level.

The metadata generator is used to generate the
metadata of the dataset, including the directory
structure tree, and the file number, size, and name.
SDGen uses a wrapper class to call impressions to
implement the metadata generator. More information
about the metadata generator can be found in Agrawal
et al. (2009).

TextDataGenerator is extended from the abstract
class AbstractDataGenerator in SDGen. It is respon-
sible for generating realistic data content at the word
level. The lognormal-based random number generator
is implemented by the Monte Carlo method as de-
scribed in Section 2.4. The rank-word map, which
contains the word rank and its content, is imple-
mented by a HashMap data structure in Java and is
initialized with the characterization file.

4 Evaluation

4.1 Experimental setup and datasets

All the experiments in this section were run on a
single server, with the following configuration:

Fig. 5 Implementation architecture of TextGen

Wang et al. / Front Inform Technol Electron Eng 2016 17(10):982-993 988

1) CPU: 2 Intel Xeon E5-2650 v2 2.6 GHz
8-core processors;

2) RAM: 128 GB DDR3;
3) Disk: 1.2 T MLC PCIe SSD card;
4) Operating system: CentOS release 6.5 (final).
Four text datasets were used to conduct the

experiment:
Java: collection of Java source code from

the GitHub (https://github.com/) and Sourceforge
(http://sourceforge.net/) websites, including multiple
versions of source codes, such as Hadoop, ZooKeeper,
Hbase, and Lucene. The total size was 6.46 GB.

C: collection of C source code from GitHub and
the Sourceforge websites including multiple versions
of source code, such as httpd, memcached, nginx, and
Subversion. The total size was 6.3 GB.

Calgary/Canterbury corpus (Arnold and Bell,
1997): collection of text and binary data files, com-
monly used for comparing data compression algo-
rithms. The total size was 9.05 MB.

20News: collection of natural language docu-
ments from more than 20 000 newsgroups. It was
originally collected by Lang (1995). The total size
was 29.2 MB.

4.2 Lognormal distribution fitting results

In this section, the word rank-frequency distri-
bution of real-world datasets was fitted to a lognormal
distribution by MLE. The parameters of the lognor-
mal fitting results are shown in Table 1.

In Figs. 6–9, the pdf fitting curves of four
real-world datasets and their word probability
distributions are compared in log–log scale coordi-
nates. The results show that the fitted lognormal pdf
captures the characterization of the real-world da-
tasets well at the word level. Thus, the fitted
lognormal distribution can be used to replace the
word probability distribution to generate a random
number without significant loss of accuracy.

4.3 Dataset generation throughput evaluation

In Fig. 10, the dataset generation throughput
between SDGen and TextGen is compared. We also
compare two random number generation approaches
in TextGen: (1) using fitness proportional selection
based on word-frequency distribution; (2) using the
lognormal distribution. The throughput is defined as
the size of data generated per second (MB/s). There

Table 1 Parameters of lognormal fitting

Dataset ̂ ̂

Java 3.59 3.01

C 3.68 2.79

Calgary 3.05 3.10

20News 3.52 3.41

Fig. 7 C dataset’s word probability distribution and its
lognormal distribution fitting

P
ro

ba
b

ili
ty

Fig. 8 Calgary dataset’s word probability distribution
and its lognormal distribution fitting

Fig. 6 Java dataset’s word probability distribution and
its lognormal distribution fitting

Wang et al. / Front Inform Technol Electron Eng 2016 17(10):982-993 989

are two parameters that influence generation perfor-
mance: uniqueness and generation thread number.
The uniqueness is defined as

 1
uniqueness .

compression ratio
 (11)

An explanation of how uniqueness works is

shown in Algorithm 3.

Algorithm 3 Generating a dataset with a predefined
compression ratio
Input: uniqueness.
Output: dataset with a predefined compression ratio.

1: while (generation not finished)
2: double randomDouble=get a random double
3: number in the interval [0, 1];
4: boolean createUniqueData=true;
5: if (randomDoubl<=uniqueness)
6: createUniqueData=true;
7: else

8: createUniqueData=false;
9: end if
10: if (createUniqueData)
11: generate a new chunk;
12: else
13: copy data from previously generated chunks;
14: end if
15: end while

From the above pseudocode, we know that

uniqueness is used to decide whether the current
chunk is newly generated or a copy of previously
generated chunks. By doing this, the compression
ratio of the generated dataset will satisfy that defined
in the configuration file. Obviously, this parameter
will significantly influence the generation perfor-
mance. The generation thread number is used to in-
dicate how many threads would be used to generate
the dataset. SDGen divides the file into chunks; thus,
multiple chunks can be generated simultaneously by
multiple threads. TextGen can also be executed in a
similar multi-thread way to improve performance.

For a fair comparison of the results, both
uniqueness and the generation thread number of the
two methods were set to 1. The expected generation
size was set to 5 GB. The datasets were generated by
first scanning the four real-world text datasets and
building their characterization files. The results show
that TextGen (lognormal distribution-based) has the
highest throughput of dataset generation. This can be
explained as follows: both SDGen and TextGen
(frequency-based) use fitness proportional selection
to generate the random number using binary search.
The time complexities of these two approaches to
generate datasets are both O(nlog m), significantly
larger than the time complexity O(n) of TextGen
(lognormal-based). The results also indicate that the
dataset generation throughput of SDGen is slightly
lower than that of TextGen (frequency-based) in the
Calgary and 20News datasets. This is because the
basic generation unit of TextGen is word, whereas
that of SDGen is byte, and most data of these two
datasets are natural languages in which the word size
is larger than 1 byte.

4.4 A comparison of word-based compressors

We compared three word-based compressors:
ETDC (Brisaboa et al., 2003), dynamic ETDC
(DETDC) (Brisaboa et al., 2008), and dynamic

Fig. 9 20News dataset’s word probability distribution
and its lognormal distribution fitting

Fig. 10 Comparison of dataset generation throughput

Wang et al. / Front Inform Technol Electron Eng 2016 17(10):982-993 990

lightweight ETDC (DLETDC) (Brisaboa et al., 2010),
in terms of data compression throughput and ratio,
with four real-world datasets. The compression ratio
results were very close among three compressors
(Fig. 11). This is because the three compressors are all
based on word-based Huffman coding. DETDC and
DLETDC outperformed ETDC in compression
throughput (Fig. 12). This is because DETDC and
DLETDC are optimized to improve their performance
compared with ETDC. We chose ETDC as a repre-
sentative word-based compressor to conduct our ex-
periment for two reasons: (1) Both DETDC and
DLETDC were developed based on ETDC; (2) ETDC
can represent a large family of word-based com-
pressors that use Huffman coding. Moreover, we used
the LZ77 compressor (Ziv and Lempel, 1977) to test

how TextGen behaves in a scenario other than its
design goal.

4.5 Compression throughput evaluation

In this section, we use word-based ETDC and
byte-based LZ77 compressors to compare the rates of
deviation of compression throughput between the
real-world datasets and synthetic datasets generated
by SDGen and TextGen, respectively. The compres-
sion throughput is defined as the size of data com-
pressed per second (MB/s). TextGen includes fre-
quency-based random number generation and
lognormal-based approaches. The rate of deviation is
defined as

 100%,

r s

d
r

 (12)

where r represents the real-world dataset compression
throughput, and s represents the synthetic dataset
compression throughput.

In Fig. 13, ETDC is used to evaluate the com-
pression throughput. The rates of deviation between
real-world and synthetic datasets generated by using
different methods in the four text dataset tests by
ETDC are: for SDGen, 62.77%, 60.32%, 16.17%, and
29.41%, respectively; for TextGen (frequency-based),
23.96%, 11.13%, 2.18%, and 4.44%, respectively; for
TextGen (lognormal-based), 23.74%, 4.55%, 0.05%,
and 3.11%, respectively. The results show that the rate
of deviation of TextGen is significantly lower than
that of SDGen. The reason is that SDGen captures the
properties that influence the compression perfor-
mance of the real-world datasets only at the byte level.
This causes ETDC, a word-based compressor that
uses word as its basic compression unit, to behave
completely differently on such synthetic datasets than
on real-world datasets. However, TextGen captures
enough characterizations at the word level to ensure
that the deviation ratio in the test is much lower than
that of SDGen. Compared with the frequency-based
random generation approach, the lognormal-based
approach results show no significant difference, val-
idating that the lognormal distribution fits the word-
frequency distribution of real-world datasets well.

In Fig. 14, LZ77 is used to evaluate the com-
pression throughput. The rates of deviation between

Fig. 11 Comparison of compression ratios of three
word-based compressors
ETDC: end-tagged dense code; DETDC: dynamic ETDC;
DLETDC: dynamic lightweight ETDC

Fig. 12 Comparison of compression throughputs of
three word-based compressors
ETDC: end-tagged dense code; DETDC: dynamic ETDC;
DLETDC: dynamic lightweight ETDC

Wang et al. / Front Inform Technol Electron Eng 2016 17(10):982-993 991

real-world and synthetic datasets generated by dif-
ferent methods in the four text dataset tests are: for
SDGen, 33.37%, 27.38%, 1.80%, and 12.73%, re-
spectively; for TextGen (frequency-based), 80.73%,
72.31%, 37.23%, and 39.08%, respectively; for
TextGen (lognormal-based), 79.65%, 71.41%, 39.43%,
and 37.94%, respectively. The results show that the
rate of deviation of TextGen is significantly higher
than that of SDGen. The reason is that the datasets
generated by TextGen lack byte-level properties
which influence the compression throughput of LZ77.

4.6 Compression ratio evaluation

In this section, we use word-based ETDC and
byte-based LZ77 compressors to compare the rates of
deviation of the compression ratio between real-world
and synthetic datasets generated by SDGen and
TextGen, respectively. The compression ratio is de-
fined as the ratio between uncompressed and com-

pressed sizes. TextGen includes frequency-based
random number generation and lognormal-based
approaches. Eq. (4) can be used to define the rate of
deviation of the compression ratio.

In Fig. 15, ETDC is used to evaluate the com-
pression ratio. The rates of deviation between real-
world and synthetic datasets generated by different
methods in the four text dataset tests are: for SDGen,
53.12%, 46.90%, 54.36%, and 49.51%, respectively;
for TextGen (frequency-based), 10.02%, 6.35%,
1.75%, and 1.17%, respectively; for TextGen
(lognormal-based), 13.37%, 10.79%, 0.28%, and
7.13%, respectively. The results show that: (1) the
rate of deviation of TextGen is significantly lower
than that of SDGen; (2) the lognormal distribution fits
the word-frequency distribution of real-world datasets
well. The reason is similar to that given following the
analysis of compression throughput in Section 4.5.

In Fig. 16, LZ77 is used to evaluate the com-
pression ratio. The rates of deviation between
real-world and synthetic datasets generated by the
different methods are: for SDGen, 55.36%, 40.35%,
12.86%, and 8.87%, respectively; for TextGen
(frequency-based), 84.13%, 71.71%, 33.09%, and
16.46%, respectively; for TextGen (lognormal-based),
83.91%, 71.72%, 26.91%, and 17.82%, respectively.
The results show that the rate of deviation of TextGen
is significantly higher than that of SDGen. The reason
is that the datasets generated by TextGen lack the
byte-level properties which influence the compres-
sion ratio of LZ77.

Fig. 14 Comparison of compression throughput by LZ77

50

45

40

35

30

25

20

15

10

5

0
Java C Calgary 20News

Real data
SDGen

TextGen (frequency-based)
TextGen (lognormal-based)

Dataset

Fig. 13 Comparison of compression throughput by end-
tagged dense code

Fig. 15 Comparison of the compression ratio by end-
tagged dense code

Wang et al. / Front Inform Technol Electron Eng 2016 17(10):982-993 992

5 Conclusions

We present a lognormal-distribution-based text
data content generation method for modern storage
system benchmarks. The key idea behind TextGen is
to capture the word-level properties that influence the
compression performance and compression ratio of
word-based compressors, and to use the characteri-
zations to generate the content. To improve the per-
formance of content generation, the lognormal dis-
tribution is fitted to the word-frequency distribution
using maximum likelihood estimation (MLE). Four
text datasets were used to evaluate TextGen. Exper-
imental results show that compared with the real data
in the end-tagged dense code (ETDC) compressor
tests, the synthetic data perform accurately. Thus,
TextGen can be used to generate data contents for
word-based compressor-enabled storage system
benchmarks. However, TextGen is not applicable to
byte-based compressors. To solve this problem, we
can integrate TextGen into SDGen as a text data
generator module to face more complex situations in
which both the Ziv-Lempel family and word-based
compressors are enabled in the storage systems to be
tested.

The source code of TextGen can be downloaded
from https://github.com/wlx0419/TextGen.

References
Agrawal, N., Bolosky, W.J., Douceur, J.R., et al., 2007. A

five-year study of file-system metadata. ACM Trans. Stor.,
3(3):9.1-9.32.
http://dx.doi.org/10.1145/1288783.1288788

Agrawal, N., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.,
2009. Generating realistic impressions for file-system
benchmarking. ACM Trans. Stor., 5(4):16.1-16.30.

 http://dx.doi.org/10.1145/1629080.1629086
Anderson, E., Kallahalla, M., Uysal, M., et al., 2004. Buttress:

a toolkit for flexible and high fidelity I/O benchmarking.
Proc. USENIX Conf. on File and Storage Technologies,
p.4.

Armstrong, T.G., Ponnekanti, V., Borthakur, D., et al., 2013.
Linkbench: a database benchmark based on the Facebook
social graph. Proc. ACM SIGMOD Int. Conf. on
Management of Data, p.1185-1196.
http://dx.doi.org/10.1145/2463676.2465296

Arnold, R., Bell, T., 1997. A corpus for the evaluation of
lossless compression algorithms. Data Compression
Conf., p.201-210.

 http://dx.doi.org/10.1109/DCC.1997.582019
Baayen, H., 1992. Statistical-models for word-frequency

distributions—a linguistic evaluation. Comput. Human.
26(5-6):347-363.
http://dx.doi.org/10.1007/Bf00136980

Bäck, T., 1996. Evolutionary Algorithms in Theory and
Practice. Oxford University Press, Oxford, UK, p.120.

Bonwick, J., Ahrens, M., Henson, V., et al., 2003. The Zetta-
byte File System. Technical Report, Sun Microsystems,
Inc., Santa Clara, USA.

Box, G.E.P., Muller, M.E., 1958. A note on the generation of
random normal deviates. Ann.. Math. Statist., 29(2):
610-611. http://dx.doi.org/10.1214/aoms/1177706645

Brisaboa, N.R., Iglesias, E., Navarro, G., et al., 2003. An
efficient compression code for text databases. Adv. Inform.
Retriev., 2633:468-481.
http://dx.doi.org/10.1007/3-540-36618-0_33

Brisaboa, N.R., Fariña, A., Navarro, G., et al., 2007.
Lightweight natural language text compression. Inform.
Retriev., 10(1):1-33.
http://dx.doi.org/10.1007/s10791-006-9001-9

Brisaboa, N.R., Fariña, A., Navarro, G., 2008. New adaptive
compressors for natural language text. Softw.-Pract.
Exper., 38(13):1429-1450.
http://dx.doi.org/10.1002/spe.882

Brisaboa, N.R., Fariña, A., Navarro, G., et al., 2010. Dynamic
lightweight text compression. ACM Trans. Inform. Syst.,
28(3):1-32. http://dx.doi.org/10.1145/1777432.1777433

Chilan, C.M., 2005. IOzone: an Open Source File System
Benchmark Tool. Technical Report, the National Center
for Supercomputing Applications Hierarchical Data
Format Group, University of Illinois at Urbana-
Champaign, Illinois.

Cooper, B.F., Silberstein, A., Tam, E., et al., 2010.
Benchmarking cloud serving systems with YCSB. Proc.
ACM Symp. on Cloud Computing, p.143-154.
http://dx.doi.org/10.1145/1807128.1807152

Difallah, D.E., Pavlo, A., Curino, C., et al., 2013. OLTP-bench:
an extensible testbed for benchmarking relational
databases. Proc. VLDB Endow., 7(4):277-288.

Fig. 16 Comparison of the compression ratio by LZ77

Wang et al. / Front Inform Technol Electron Eng 2016 17(10):982-993 993

http://dx.doi.org/10.14778/2732240.2732246
Drago, I., Bocchi, E., Mellia, M., et al., 2013. Benchmarking

personal cloud storage. Proc. Conf. on Int. Measurement,
p.205-212.
http://dx.doi.org/10.1145/2504730.2504762

Dvorský, J., Pokorný, J., Snášel, V., 1999. Word-based
compression methods and indexing for text retrieval
systems. Adv. Database Inform. Syst., 1691:76-84.

 http://dx.doi.org/10.1007/3-540-48252-0_6
Fariña, A., Brisaboa, N.R., Navarro, G., et al., 2012.

Word-based self-indexes for natural language text. ACM
Trans. Inform. Syst., 30(1):1-34.

 http://dx.doi.org/10.1145/2094072.2094073
Gracia-Tinedo, R., Harnik, D., Naor, D., et al., 2015. SDGen:

mimicking datasets for content generation in storage
benchmarks. Proc. USENIX Conf. on File and Storage
Technologies, p.317-330.

Horspool, R.N., Cormack, G.V., 1992. Constructing word-
based text compression algorithms. Data Compression
Conf., p.62-71.

 http://dx.doi.org/10.1109/DCC.1992.227475
Lang, K., 1995. Newsweeder: learning to filter netnews. Proc.

Int. Conf. on Machine Learning, p.331-339.
Li, A., Yang, X., Kandula, S., et al., 2010. Cloudcmp:

comparing public cloud providers. Proc. ACM
SIGCOMM Conf. on Internet Measurement, p.1-14.

 http://dx.doi.org/10.1145/1879141.1879143
Li, W.T., 1992. Random texts exhibit Zipf-law-like word-

frequency distribution. IEEE Trans. Inform. Theor.,
38(6):1842-1845.

 http://dx.doi.org/10.1109/18.165464
Moffat, A., Zobel, J., Sharman, N., 1997. Text compression for

dynamic document databases. IEEE Trans. Knowl.
Database Eng., 9(2):302-313.

http://dx.doi.org/10.1109/69.591454
Myung, I.J., 2003. Tutorial on maximum likelihood estimation.

J. Math. Psychol., 47(1):90-100.
 http://dx.doi.org/10.1016/S0022-2496(02)00028-7
Powers, D.M.W., 1998. Applications and explanations of

Zipf’s law. Proc. Joint Conf. on New Methods in
Language Processing and Computational Natural
Language Learning, p.151-160.

Rodeh, O., Bacik, J., Mason, C., 2013. BTRFS: the Linux
B-tree filesystem. ACM Trans. Stor., 9(3):1-32.

 http://dx.doi.org/10.1145/2501620.2501623
Salomon, D., 2006. Data Compression: the Complete

Reference. Springer-Verlag New York, Inc., New York,
USA, p.885.

Tarasov, V., Bhanage, S., Zadok, E., et al., 2011.
Benchmarking file system benchmarking: it *is* rocket
science. Proc. USENIX Conf. on Hot Topics in Operating
Systems, p.8-13.

Traeger, A., Zadok, E., Joukov, N., et al., 2008. A nine year
study of file system and storage benchmarking. ACM
Trans. Stor., 4(2):1-56.

 http://dx.doi.org/10.1145/1367829.1367831
Vitter, J.S., 1985. Random sampling with a reservoir. ACM

Trans. Math. Softw., 11(1):37-57.
 http://dx.doi.org/10.1145/3147.3165
Yoshida, S., Morihara, T., Yahagi, H., et al., 1999. Application

of a word-based text compression method to Japanese and
Chinese texts. Data Compression Conf., p.561.

 http://dx.doi.org/10.1109/DCC.1999.785718
Ziv, J., Lempel, A., 1977. A universal algorithm for sequential

data compression. IEEE Trans. Inform. Theor., 23(3):
337-343. http://dx.doi.org/10.1109/TIT.1977.1055714

