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Abstract:    Modern storage systems incorporate data compressors to improve their performance and capacity. As a result, data 
content can significantly influence the result of a storage system benchmark. Because real-world proprietary datasets are too large 
to be copied onto a test storage system, and most data cannot be shared due to privacy issues, a benchmark needs to generate data 
synthetically. To ensure that the result is accurate, it is necessary to generate data content based on the characterization of 
real-world data properties that influence the storage system performance during the execution of a benchmark. The existing 
approach, called SDGen, cannot guarantee that the benchmark result is accurate in storage systems that have built-in word-based 
compressors. The reason is that SDGen characterizes the properties that influence compression performance only at the byte level, 
and no properties are characterized at the word level. To address this problem, we present TextGen, a realistic text data content 
generation method for modern storage system benchmarks. TextGen builds the word corpus by segmenting real-world text datasets, 
and creates a word-frequency distribution by counting each word in the corpus. To improve data generation performance, the 
word-frequency distribution is fitted to a lognormal distribution by maximum likelihood estimation. The Monte Carlo approach is 
used to generate synthetic data. The running time of TextGen generation depends only on the expected data size, which means that 
the time complexity of TextGen is O(n). To evaluate TextGen, four real-world datasets were used to perform an experiment. The 
experimental results show that, compared with SDGen, the compression performance and compression ratio of the datasets 
generated by TextGen deviate less from real-world datasets when end-tagged dense code, a representative of word-based 
compressors, is evaluated. 
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1  Introduction 

 
Benchmarking is an important method for 

measuring the performance of storage systems, and 
has long been an important research area for the 

storage community. A large volume of work has been 
carried out in this area, including benchmarks for file 
systems (Agrawal et al., 2009; Tarasov et al., 2011), 
cloud storage (Cooper et al., 2010; Li et al., 2010; 
Drago et al., 2013), and databases (Armstrong et al., 
2013; Difallah et al., 2013).  

To obtain accurate performance results, a bench- 
mark simulates the I/O behaviors of real-world ap-
plications. Because real-world proprietary datasets 
are too large to be copied onto a test storage system, 
and because most data cannot be shared due to pri-
vacy issues, a benchmark synthetically generates data 
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that are used to perform I/O operations under simu-
lated workloads. However, research on storage 
benchmarks has focused mainly on how to simulate 
storage workloads (Anderson et al., 2004; Chilan, 
2005; Traeger et al., 2008), whereas studies on data 
generation have not received enough attention. 
Agrawal et al. (2009) first pointed out the importance 
of generating data for benchmarks, and proposed a 
method focusing mainly on metadata generation. The 
metadata included the directory structure, the number 
of directories, the size of files, and the number of files. 
Experimental results showed that the metadata sig-
nificantly influenced the accuracy of benchmark 
results. 

However, the ‘impressions’ solution proposed by 
Agrawal et al. (2009) generates unrealistic data con-
tent. Gracia-Tinedo et al. (2015) pointed out that data 
content significantly influences the benchmark results 
in modern storage systems, such as the B-tree file 
system (BTRFS) (Rodeh et al., 2013) and Zettabyte 
file system (ZFS) (Bonwick et al., 2003). These sys-
tems compress data before storing it to improve their 
performance and capacity. The data content signifi-
cantly affects the compression performance and the 
compression ratio, as well as the performance and 
space consumption of these storage systems. Thus, 
these storage systems are called content-sensitive. 
The data generated by ‘impressions’ (Agrawal et al., 
2009) cannot obtain accurate benchmark results in 
content-sensitive storage systems. To address this 
problem, researchers have proposed SDGen (Gra-
cia-Tinedo et al., 2015), which is an open and exten-
sible framework to generate realistic storage bench-
marking content. SDGen captures the byte-level 
properties that influence the compression perfor-
mance of real-world data, and uses them to create a 
characterization file, which saves the byte frequency 
and repetition, and is used to generate synthetic data 
content. The characterization file guarantees that the 
byte frequency and repetition of synthetic data con-
tent are close to those of real-world datasets, and can 
be shared by other researchers or practitioners to 
obtain a reproducible benchmark result. By using the 
data generated by SDGen, the storage system’s 
benchmark result is accurate when the byte-based 
Ziv-Lempel family (Ziv and Lempel, 1977) com-
pressors are enabled. Thus, SDGen deviates from 
real-world data by less than 10% in compression ratio 

and less than 20% in compression performance.  
However, for other text-data-oriented word- 

based compressors, such as end-tagged dense code 
(ETDC) (Brisaboa et al., 2003) or the word-based 
Lempel-Ziv-Welch (LZW) (Horspool and Cormack, 
1992), the data generated by SDGen cannot ensure 
that the compression ratio and compression perfor-
mance results are accurate. This is because SDGen 
generates data content based on the byte-level char-
acterization of real-world data. SDGen lacks 
word-level characterizations, which are the basic 
factors that influence the compression ratio and 
compression performance of word-based compres-
sors. Text is an important data type in storage systems. 
Agrawal et al. (2007) analyzed the datasets of over 
10 000 file systems on Windows desktop computers at 
the Microsoft Corporation over five years. The results 
showed that the text data types, cpp, html, h, and txt, 
accounted for 7%, 5%, 3%, and 3% of data, respec-
tively, and this indicated that text comprises a high 
proportion of data in the common working environ-
ment. A document database, which is also a common 
storage system, has been widely used in various ap-
plications. It contains vast quantities of text data 
generated endlessly by newspaper reporters, aca-
demics, lawyers, and government agencies. As de-
scribed above, text data are extremely important in 
common storage systems. Compared with the tradi-
tional Ziv-Lempel family of compressors, word- 
based compressors can achieve higher compression 
performance and compression ratios with text data, 
and have been the subject of many studies (Yoshida  
et al., 1999; Brisaboa et al., 2003; 2007; 2010). A 
large number of storage systems use word-based 
compressors to improve the data compression ratio 
and the performance (Moffat et al., 1997; Dvorský et 
al., 1999; Fariña et al., 2012). Thus, research on 
generating text data content more accurately at the 
word level is meaningful for modern storage system 
benchmarks. 

To address the problem that the data content 
generated by existing methods is inaccurate at the 
word level, we present TextGen, a realistic text data 
content generation method for modern storage system 
benchmarks. The key idea behind TextGen is to cap-
ture the word-level properties that influence the 
compression performance and compression ratio  
of word-based the compressors, and to use these 
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characterizations to generate content. Moreover, to 
improve the performance of content generation, the 
word-frequency distribution is fitted to a lognormal 
distribution using maximum likelihood estimation 
(MLE). 

To compare the accuracy of compression per-
formance and the compression ratio between SDGen 
and TextGen using a word-based compressor, we used 
the following four text datasets to conduct an ex-
periment: Java source code, C source code, Calgary, 
and 20News. ETDC was used in the experiment as a 
representative word-based compressor. Experimental 
results indicated that the compression performance 
and compression ratio of ETDC deviated less from 
those of real-world datasets, when synthetic datasets 
were generated and compressed by TextGen rather 
than SDGen. 
 
 
2  Framework of TextGen 

2.1  Overview 

The general idea of TextGen is similar to that  
of SDGen (Gracia-Tinedo et al., 2015), whereas 
TextGen generates data content based on characteri-
zations at the word level instead of the byte level. An 
overview of TextGen is shown in Fig. 1. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Gracia-Tinedo et al. (2015) pointed out that the 

byte frequency and repetition are the most important 
factors that influence the performance of most 
byte-based compressors. This idea also works for 

word-based compressors. However, repetition at the 
word level is much less frequent than that at the byte 
level. An example is shown in Fig. 2. Repetition 
means that a byte or word sequence has a longest 
match in the previous data stream. In Fig. 2, the ar-
rowed lines point from the current sequences to the 
previous repeated ones. Note that the repetition length 
should be equal to or longer than two. Thus, we con-
sider that the most important factor that influences the 
performance of word-based compressors is the word- 
frequency distribution. To capture this factor, we first 
segment the real-world text datasets into words, and 
then count the frequency of each word to build a 
corpus, which has the form <word, frequency>. 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 

Second, we arrange all the words in the corpus in 
descending order by frequency. We give each word a 
rank, starting from 1, to obtain the rank-frequency 
distribution and the rank-word dictionary. To improve 
the data generation performance, we fit the rank- 
frequency distribution to a lognormal one by MLE.  

Finally, we use the Monte Carlo method to gen-
erate dataset content. During the generation, a random 
number is continually generated based on the fitted 
lognormal distribution, and is used as the word rank. 
With the word rank, we can obtain the word from the 
rank-word dictionary which has the form <rank, 
word>. 

2.2  Word segmentation and establishment of the 
corpus 

The dominant property that influences the com-
pression performance and compression ratio of 

Fig. 1  TextGen framework 

 

Fig. 2  Examples of repetition: (a) byte-level repetition; 
(b) word-level repetition 
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word-level compressors is the word distribution. 
Therefore, we need to segment text data into words. 
We use the segmentation method described by Hor-
spool and Cormack (1992) and Salomon (2006). In 
this method, a word is defined as a maximal string of 
either alphanumeric characters (letters and digits) or 
other characters (punctuations and spaces). We denote 
all the alphanumeric words by A, and all the other 
words by P. As a result, the words from A and P 
strictly alternate. Two simple segmentation examples 
are shown in Figs. 3 and 4, where ‘•’ indicates the 
end-of-line character (CR, LF, or both). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This segmentation method can be implemented 

by a simple finite-state automaton. With this method, 
real-world text datasets are recursively traversed to 
conduct word segmentation. The segmented words 
and their frequencies are saved in a hash table struc-
ture during segmentation. After word segmentation, 
the hash table is saved to a file as the corpus, which 
has the form <word, frequency>. If the datasets are 
too large, a random sampling method such as reser-
voir sampling (Vitter, 1985) can be used to reduce the 
segmentation time. 

2.3  Word-frequency distribution fitting 

The word-frequency distribution is established 

by the corpus. The Monte Carlo approach is then used 
to generate a data content. This approach continually 
generates a random number as the word rank, which 
maps the word content, and writes the word content 
into currently generating file until the expected file 
size is matched. Fitness proportional selection (Bäck, 
1996) can be used to generate the random number 
based on the word-frequency distribution. However, a 
search operation is needed during the random number 
generation process. Even when the most efficient 
binary search is used, random number generation 
performance is still low. This is because the time 
complexity of a binary search is O(log m), which 
makes the time complexity of the data content gen-
eration performance become O(nlog m). Here, n and 
m represent the word count in the expected dataset 
and the corpus, respectively. Thus, data content gen-
eration performance based on fitness proportional 
selection needs to be improved. 

Inspired by previous work on natural languages 
(Li, 1992), we propose the use of a probability dis-
tribution model to generate the random numbers. To 
fit the model to the word-frequency distribution, we 
first arrange the words in the corpus in descending 
order by frequency. We assign the word that has the 
highest frequency to rank 1, the second highest word 
to rank 2, and so on. In previous natural language 
studies, the Zipf-Mandelbrot distribution (Powers, 
1998) was the most widely used distribution to fit a 
word’s rank-frequency distribution. However, the 
performance of generating random numbers based on 
this distribution is low. Thus, the lognormal distribu-
tion, which is also frequently used to fit a word dis-
tribution in natural language studies (Baayen, 1992), 
is used to fit a word’s rank-frequency distribution. 
The probability density function (pdf) of the 
lognormal distribution is defined as 
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where μ is the mean and σ is the standard deviation, 
which are the parameters that need to be estimated. 
MLE is used to estimate μ and σ. The principle of 
MLE is to seek the value of the parameter vector by 
maximizing the likelihood function of the desired 
probability distribution (Myung, 2003). The likeli-
hood function is defined as the joint density treated as 

for⊔(int⊔i=0;⊔i⊔<⊔noWords;⊔++i)⊔{•

⊔⊔sentence.append(words[random.nextInt(words.length)]);•

⊔⊔sentence.append(space);•

}•

"for""⊔(""int""⊔""i""=""0"";⊔""i""⊔<⊔"

"noWords"";⊔++""i"")⊔{•⊔⊔""sentence"".""append"

"(""words""[""random"".""nextInt""(""words"

".""length"")]);•⊔⊔""sentence"".""append""("

"space"");•}•"

Segmentation

Fig. 4  Java source code segmentation example 

 

Fig. 3  Natural language segmentation example 
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a function of the parameters θ: 
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By maximizing the likelihood function of the 
lognormal distribution, we obtain  
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where n is the observed word’s count, and xi is the 
observed rank of the ith word. With Eqs. (3) and (4), 
MLE can be implemented by a very simple program 
to estimate μ and σ. After estimating the parameters, 
we use the Box-Muller transform method (Box and 
Muller, 1958) to generate a random number based on 
the lognormal distribution.  

Supposing U1 and U2 are two independent ran-
dom variables that are uniformly distributed in the 
interval [0, 1), we define two variables Z1 and Z2 with 
U1 and U2 in Eqs. (5) and (6), respectively: 

 

 1 1 22ln cos(2 )Z U U   , (5) 

 12 22ln sin(2 )Z U U   . (6) 

 
Box and Muller (1958) have proved that Z1 and 

Z2 are both independent random variables, each with a 
standard normal distribution. Since Z (Z1 or Z2) is a 
standard normal random variable, Y will have a nor-
mal distribution with a mean deviation μ and a 
standard deviation σ: 

 
 .Y Z    (7) 

 

The normal and lognormal distributions are 
closely related. If X is distributed lognormally with 
the µ and σ, then log X is distributed normally with µ 
and σ. Thus, the random variables X with lognormal 
distribution can be obtained by 

 
 exp( ).X Y  (8) 

 
The mean deviation m and standard deviation υ 

of a normal random variable are functions of µ and σ 
of a lognormal random variable, respectively, ex-
pressed as 

 

  2 2 2ln ,m      (9) 

 2 2 2ln[( ) / ].      (10) 

 
According to the above analysis, we can im-

plement lognormal random number generation by 
Algorithm 1. 

 

Algorithm 1   Lognormal random number generation  
Input: mean deviation μ and standard deviation σ of the 
lognormal distribution.  
Output: random number x with lognormal distribution.  

1: m=ln(μ*μ/sqrt(μ*μ+σ*σ)); 
2: υ=sqrt(ln((μ*μ+σ*σ)/(μ*μ))); 
3: generate random number u~U(0, 1) with a uniform  

distribution; 
4: z←sqrt(-2*ln u*cos(2π*u)); 

/* or z←sqrt(-2*ln u*sin(2π*u)); */ 
5: y←z*m+v; 

6: x←exp(y); 
7: return x; 

 
Algorithm 1 has a time complexity of O(1) be-

cause it can be finished in a constant time. Thus, the 
time complexity of data content generation is O(n), 
which is less than that of the fitness proportional 
selection approach. 

2.4  Dataset generation algorithm 

We integrate the metadata generation approach 
impressions (Agrawal et al., 2009) into our content 
generation method. The dataset generation algorithm 
is described in Algorithm 2. First, the dataset structure 
tree is generated (line 1). The rank-word map is ini-
tialized with the rank-word dictionary C (line 2). For 
each file in the dataset, the file name is generated by 
giving a natural number, and the file size ss is gener-
ated based on the size distribution model. Then, the 
size ss and file name are added to the fileInfoList until 
the accumulated file size reaches the expected dataset 
size s (lines 3–8). Second, the fileInfoList is traversed. 
For each traverse, an empty file is created based on 
the file name (lines 9–17). The current generated file 
size is defined as curSize (line 10). The file contents 
are generated as follows: a random number wordRank 
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is generated based on the lognormal distribution as 
the word rank, and then the word content is looked up 
by wordRank in rankWordMap. Finally, the content 
of the word is written to the current generating file 
and the word size is added to curSize. This process is 
repeated until curSize is equal to or larger than ss 
(lines 11–16). When traversing fileInfoList is finished, 
the dataset is successfully created. 

 
Algorithm 2    Dataset generation 
Input: parameters of the metadata generator and expected 
dataset size s; parameters of lognormal distribution σ, μ; 
rank-word dictionary C={(k, v)|k is the word rank, v is the 
word}.  
Output: dataset D={x|x is file or directory}.  

1: generate a dataset structure tree; 
2: rankWordMap←initMap(C) 
3: while curSize<s do 
4: generate the file name with a natural number; 
5: generate the file size ss; 
6: curSize←curSize+ss; 
7: fileInfoList←<name,ss>; 
8: end while 
9: for <name, ss> in fileInfoList do  
10: curSize←0; 
11: while curSize<ss do 
12: wordRank←lognrand(μ, σ); 
13: word←lookup(rankWordMap,wordRank); 
14: writeToFile(fd, word); 
15: curSize←curSize+length(word); 
16: end while 
17: end for 
18: return D; 

 
 

3  Implementation 

 
TextGen is implemented in Java based on the 

source code of SDGen (Fig. 5). 
TextScanner is extended from the abstract class 

AbstractScanner in SDGen. It is composed of the 
dataset traverse module, the word segmentation 
module, and the distribution fitting module. The da-
taset traverse module recursively traverses the real- 
world datasets by depth-first search (DFS). For each 
traversed file, Algorithm 1 is used to segment the file 
and build the word-frequency distribution. Then, the 
distribution fitting module is called to estimate the 
parameters of the lognormal distribution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The characterization file is used to save the 
rank-word dictionary established after word seg-
mentation, as well as the parameters of the lognormal 
distribution estimated by MLE. Unlike SDGen, the 
characterization file saves the properties that influ-
ence the performance of compressors at the word 
level instead of the byte level. 

The metadata generator is used to generate the 
metadata of the dataset, including the directory 
structure tree, and the file number, size, and name. 
SDGen uses a wrapper class to call impressions to 
implement the metadata generator. More information 
about the metadata generator can be found in Agrawal 
et al. (2009). 

TextDataGenerator is extended from the abstract 
class AbstractDataGenerator in SDGen. It is respon-
sible for generating realistic data content at the word 
level. The lognormal-based random number generator 
is implemented by the Monte Carlo method as de-
scribed in Section 2.4. The rank-word map, which 
contains the word rank and its content, is imple-
mented by a HashMap data structure in Java and is 
initialized with the characterization file. 

 
 

4  Evaluation 

4.1  Experimental setup and datasets 

All the experiments in this section were run on a 
single server, with the following configuration: 

Fig. 5  Implementation architecture of TextGen 
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1) CPU: 2 Intel Xeon E5-2650 v2 2.6 GHz 
8-core processors; 

2) RAM: 128 GB DDR3; 
3) Disk: 1.2 T MLC PCIe SSD card; 
4) Operating system: CentOS release 6.5 (final). 
Four text datasets were used to conduct the 

experiment: 
Java: collection of Java source code from  

the GitHub (https://github.com/) and Sourceforge 
(http://sourceforge.net/) websites, including multiple 
versions of source codes, such as Hadoop, ZooKeeper, 
Hbase, and Lucene. The total size was 6.46 GB. 

C: collection of C source code from GitHub and 
the Sourceforge websites including multiple versions 
of source code, such as httpd, memcached, nginx, and 
Subversion. The total size was 6.3 GB. 

Calgary/Canterbury corpus (Arnold and Bell, 
1997): collection of text and binary data files, com-
monly used for comparing data compression algo-
rithms. The total size was 9.05 MB. 

20News: collection of natural language docu-
ments from more than 20 000 newsgroups. It was 
originally collected by Lang (1995). The total size 
was 29.2 MB. 

4.2  Lognormal distribution fitting results 

In this section, the word rank-frequency distri-
bution of real-world datasets was fitted to a lognormal 
distribution by MLE. The parameters of the lognor-
mal fitting results are shown in Table 1. 

 
 

 
 
 

 
 
 
 

In Figs. 6–9, the pdf fitting curves of four  
real-world datasets and their word probability  
distributions are compared in log–log scale coordi-
nates. The results show that the fitted lognormal pdf 
captures the characterization of the real-world da-
tasets well at the word level. Thus, the fitted 
lognormal distribution can be used to replace the 
word probability distribution to generate a random 
number without significant loss of accuracy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3  Dataset generation throughput evaluation 

In Fig. 10, the dataset generation throughput 
between SDGen and TextGen is compared. We also 
compare two random number generation approaches 
in TextGen: (1) using fitness proportional selection 
based on word-frequency distribution; (2) using the 
lognormal distribution. The throughput is defined as 
the size of data generated per second (MB/s). There 

Table 1  Parameters of lognormal fitting 

Dataset ̂  ̂  

Java 3.59 3.01 

C 3.68 2.79 

Calgary 3.05 3.10 

20News 3.52 3.41 

 

 
Fig. 7  C dataset’s word probability distribution and its 
lognormal distribution fitting 
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Fig. 8  Calgary dataset’s word probability distribution 
and its lognormal distribution fitting 

 

 
Fig. 6  Java dataset’s word probability distribution and 
its lognormal distribution fitting 
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are two parameters that influence generation perfor-
mance: uniqueness and generation thread number. 
The uniqueness is defined as 

 

 1
uniqueness .

compression ratio
  (11) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An explanation of how uniqueness works is 

shown in Algorithm 3. 
 

Algorithm 3    Generating a dataset with a predefined 
compression ratio 
Input: uniqueness. 
Output: dataset with a predefined compression ratio. 

1:  while (generation not finished)  
2: double randomDouble=get a random double 
3: number in the interval [0, 1]; 
4: boolean createUniqueData=true; 
5: if (randomDoubl<=uniqueness) 
6: createUniqueData=true; 
7: else 

8: createUniqueData=false; 
9: end if 
10: if (createUniqueData) 
11: generate a new chunk; 
12: else 
13: copy data from previously generated chunks; 
14: end if 
15: end while 

 
From the above pseudocode, we know that 

uniqueness is used to decide whether the current 
chunk is newly generated or a copy of previously 
generated chunks. By doing this, the compression 
ratio of the generated dataset will satisfy that defined 
in the configuration file. Obviously, this parameter 
will significantly influence the generation perfor-
mance. The generation thread number is used to in-
dicate how many threads would be used to generate 
the dataset. SDGen divides the file into chunks; thus, 
multiple chunks can be generated simultaneously by 
multiple threads. TextGen can also be executed in a 
similar multi-thread way to improve performance. 

For a fair comparison of the results, both 
uniqueness and the generation thread number of the 
two methods were set to 1. The expected generation 
size was set to 5 GB. The datasets were generated by 
first scanning the four real-world text datasets and 
building their characterization files. The results show 
that TextGen (lognormal distribution-based) has the 
highest throughput of dataset generation. This can be 
explained as follows: both SDGen and TextGen 
(frequency-based) use fitness proportional selection 
to generate the random number using binary search. 
The time complexities of these two approaches to 
generate datasets are both O(nlog m), significantly 
larger than the time complexity O(n) of TextGen 
(lognormal-based). The results also indicate that the 
dataset generation throughput of SDGen is slightly 
lower than that of TextGen (frequency-based) in the 
Calgary and 20News datasets. This is because the 
basic generation unit of TextGen is word, whereas 
that of SDGen is byte, and most data of these two 
datasets are natural languages in which the word size 
is larger than 1 byte. 

4.4  A comparison of word-based compressors 

We compared three word-based compressors: 
ETDC (Brisaboa et al., 2003), dynamic ETDC 
(DETDC) (Brisaboa et al., 2008), and dynamic 

 
Fig. 9  20News dataset’s word probability distribution 
and its lognormal distribution fitting 

 

 
Fig. 10  Comparison of dataset generation throughput 
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lightweight ETDC (DLETDC) (Brisaboa et al., 2010), 
in terms of data compression throughput and ratio, 
with four real-world datasets. The compression ratio 
results were very close among three compressors 
(Fig. 11). This is because the three compressors are all 
based on word-based Huffman coding. DETDC and 
DLETDC outperformed ETDC in compression 
throughput (Fig. 12). This is because DETDC and 
DLETDC are optimized to improve their performance 
compared with ETDC. We chose ETDC as a repre-
sentative word-based compressor to conduct our ex-
periment for two reasons: (1) Both DETDC and 
DLETDC were developed based on ETDC; (2) ETDC 
can represent a large family of word-based com-
pressors that use Huffman coding. Moreover, we used 
the LZ77 compressor (Ziv and Lempel, 1977) to test  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

how TextGen behaves in a scenario other than its 
design goal. 

4.5  Compression throughput evaluation 

In this section, we use word-based ETDC and 
byte-based LZ77 compressors to compare the rates of 
deviation of compression throughput between the 
real-world datasets and synthetic datasets generated 
by SDGen and TextGen, respectively. The compres-
sion throughput is defined as the size of data com-
pressed per second (MB/s). TextGen includes fre-
quency-based random number generation and 
lognormal-based approaches. The rate of deviation is 
defined as 
 

 100%,


 
r s

d
r

 (12) 

 
where r represents the real-world dataset compression 
throughput, and s represents the synthetic dataset 
compression throughput. 

In Fig. 13, ETDC is used to evaluate the com-
pression throughput. The rates of deviation between 
real-world and synthetic datasets generated by using 
different methods in the four text dataset tests by 
ETDC are: for SDGen, 62.77%, 60.32%, 16.17%, and 
29.41%, respectively; for TextGen (frequency-based), 
23.96%, 11.13%, 2.18%, and 4.44%, respectively; for 
TextGen (lognormal-based), 23.74%, 4.55%, 0.05%, 
and 3.11%, respectively. The results show that the rate 
of deviation of TextGen is significantly lower than 
that of SDGen. The reason is that SDGen captures the 
properties that influence the compression perfor-
mance of the real-world datasets only at the byte level. 
This causes ETDC, a word-based compressor that 
uses word as its basic compression unit, to behave 
completely differently on such synthetic datasets than 
on real-world datasets. However, TextGen captures 
enough characterizations at the word level to ensure 
that the deviation ratio in the test is much lower than 
that of SDGen. Compared with the frequency-based 
random generation approach, the lognormal-based 
approach results show no significant difference, val-
idating that the lognormal distribution fits the word- 
frequency distribution of real-world datasets well. 

In Fig. 14, LZ77 is used to evaluate the com-
pression throughput. The rates of deviation between 

 
Fig. 11  Comparison of compression ratios of three 
word-based compressors 
ETDC: end-tagged dense code; DETDC: dynamic ETDC; 
DLETDC: dynamic lightweight ETDC 

 
Fig. 12  Comparison of compression throughputs of 
three word-based compressors 
ETDC: end-tagged dense code; DETDC: dynamic ETDC; 
DLETDC: dynamic lightweight ETDC 
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real-world and synthetic datasets generated by dif-
ferent methods in the four text dataset tests are: for 
SDGen, 33.37%, 27.38%, 1.80%, and 12.73%, re-
spectively; for TextGen (frequency-based), 80.73%, 
72.31%, 37.23%, and 39.08%, respectively; for 
TextGen (lognormal-based), 79.65%, 71.41%, 39.43%, 
and 37.94%, respectively. The results show that the 
rate of deviation of TextGen is significantly higher 
than that of SDGen. The reason is that the datasets 
generated by TextGen lack byte-level properties 
which influence the compression throughput of LZ77. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.6  Compression ratio evaluation 

In this section, we use word-based ETDC and 
byte-based LZ77 compressors to compare the rates of 
deviation of the compression ratio between real-world 
and synthetic datasets generated by SDGen and 
TextGen, respectively. The compression ratio is de-
fined as the ratio between uncompressed and com-

pressed sizes. TextGen includes frequency-based 
random number generation and lognormal-based 
approaches. Eq. (4) can be used to define the rate of 
deviation of the compression ratio. 

In Fig. 15, ETDC is used to evaluate the com-
pression ratio. The rates of deviation between real- 
world and synthetic datasets generated by different 
methods in the four text dataset tests are: for SDGen, 
53.12%, 46.90%, 54.36%, and 49.51%, respectively; 
for TextGen (frequency-based), 10.02%, 6.35%, 
1.75%, and 1.17%, respectively; for TextGen 
(lognormal-based), 13.37%, 10.79%, 0.28%, and 
7.13%, respectively. The results show that: (1) the 
rate of deviation of TextGen is significantly lower 
than that of SDGen; (2) the lognormal distribution fits 
the word-frequency distribution of real-world datasets 
well. The reason is similar to that given following the 
analysis of compression throughput in Section 4.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In Fig. 16, LZ77 is used to evaluate the com-
pression ratio. The rates of deviation between  
real-world and synthetic datasets generated by the 
different methods are: for SDGen, 55.36%, 40.35%, 
12.86%, and 8.87%, respectively; for TextGen  
(frequency-based), 84.13%, 71.71%, 33.09%, and 
16.46%, respectively; for TextGen (lognormal-based), 
83.91%, 71.72%, 26.91%, and 17.82%, respectively. 
The results show that the rate of deviation of TextGen 
is significantly higher than that of SDGen. The reason 
is that the datasets generated by TextGen lack the 
byte-level properties which influence the compres-
sion ratio of LZ77. 

 
Fig. 14  Comparison of compression throughput by LZ77

50

45

40

35

30

25

20

15

10

5

0
Java           C          Calgary    20News

Real data
SDGen

TextGen (frequency-based)
TextGen (lognormal-based)

Dataset
 

Fig. 13  Comparison of compression throughput by end- 
tagged dense code 

 
Fig. 15  Comparison of the compression ratio by end- 
tagged dense code 
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5  Conclusions 

 

We present a lognormal-distribution-based text 
data content generation method for modern storage 
system benchmarks. The key idea behind TextGen is 
to capture the word-level properties that influence the 
compression performance and compression ratio of 
word-based compressors, and to use the characteri-
zations to generate the content. To improve the per-
formance of content generation, the lognormal dis-
tribution is fitted to the word-frequency distribution 
using maximum likelihood estimation (MLE). Four 
text datasets were used to evaluate TextGen. Exper-
imental results show that compared with the real data 
in the end-tagged dense code (ETDC) compressor 
tests, the synthetic data perform accurately. Thus, 
TextGen can be used to generate data contents for 
word-based compressor-enabled storage system 
benchmarks. However, TextGen is not applicable to 
byte-based compressors. To solve this problem, we 
can integrate TextGen into SDGen as a text data 
generator module to face more complex situations in 
which both the Ziv-Lempel family and word-based 
compressors are enabled in the storage systems to be 
tested. 

The source code of TextGen can be downloaded 
from https://github.com/wlx0419/TextGen. 
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