
Gong et al. / Front Inform Technol Electron Eng 2016 17(7):701-716 701

An efficient and coordinated mapping algorithm in

virtualized SDN networks*

Shui-qing GONG†, Jing CHEN, Qiao-yan KANG, Qing-wei MENG, Qing-chao ZHU, Si-yi ZHAO

(College of Information and Navigation, Air Force Engineering University, Xi’an 710077, China)
†E-mail: gsq0121@126.com

Received Nov. 10, 2015; Revision accepted Feb. 16, 2016; Crosschecked June 9, 2016

Abstract: Software-defined networking (SDN) enables the network virtualization through SDN hypervisors to share the un-
derlying physical SDN network among multiple logically isolated virtual SDN networks (vSDNs), each with its own controller.
The vSDN embedding, which refers to mapping a number of vSDNs to the same substrate SDN network, is a key problem in the
SDN virtualization environment. However, due to the distinctions of the SDN, such as the logically centralized controller and
different virtualization technologies, most of the existing embedding algorithms cannot be applied directly to SDN virtualization.
In this paper, we consider controller placement and virtual network embedding as a joint vSDN embedding problem, and formulate
it into an integer linear programming with objectives of minimizing the embedding cost and the controller-to-switch delay for each
vSDN. Moreover, we propose a novel online vSDN embedding algorithm called CO-vSDNE, which consists of a node mapping
stage and a link mapping stage. In the node mapping stage, CO-vSDNE maps the controller and the virtual nodes to the substrate
nodes on the basis of the controller-to-switch delay and takes into account the subsequent link mapping at the same time. In the link
mapping stage, CO-vSDNE adopts the k-shortest path algorithm to map the virtual links. The evaluation results with simulation
and Mininet emulation show that the proposed CO-vSDNE not only significantly increases the long-term revenue to the cost ratio
and acceptance ratio while guaranteeing low average and maximum controller-to-switch delay, but also achieves good vSDN
performance in terms of end-to-end delay and throughput.

Key words: Software-defined networking (SDN), Network virtualization, Controller placement, Virtual network embedding,

Coordination
http://dx.doi.org/10.1631/FITEE.1500387 CLC number: TP393

1 Introduction

Software-defined networking (SDN) has
emerged as a promising technology for network pro-
grammability and experiments. The main ideas of
SDN include separation of the control plane from the
data plane, a logically centralized controller manag-
ing the data plane, and a uniform southbound inter-

face, e.g., OpenFlow (McKeown et al., 2008), be-
tween the control plane and the data plane. With such
a decoupled network architecture, SDN can signifi-
cantly simplify network management and enable
network innovations. Network virtualization has been
proposed as a fundamental ingredient of the future
Internet paradigm, which abstracts the physical sub-
strate network (SN) and allows multiple heteroge-
neous virtual networks (VNs) to coexist on the SN
(Khan et al., 2012; Wang et al., 2013). Each VN is a
collection of virtual nodes connected by virtual links
hosted on the physical SN. Moreover, multiple VNs
are isolated from each other and can provide
end-to-end services for end users. The virtualization
of SDN networks promises to use the merits of SDN

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

* Project supported by the National Natural Science Foundation of
China (Nos. 61201209 and 61401499), the Natural Science Founda-
tion of Shaanxi Province, China (No. 2015JM6340), and the Industrial
Science and Technology Project of Shaanxi Province, China (No.
2016GY-087)

 ORCID: Shui-qing GONG, http://orcid.org/0000-0002-3657-3666
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2016

mao
ZJUABC

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1500387&domain=pdf

Gong et al. / Front Inform Technol Electron Eng 2016 17(7):701-716 702

and network virtualization, and has therefore gained
considerable attention from both industry and aca-
demia in recent years.

The key component for the virtualization of
SDN networks is the SDN hypervisor, which ab-
stracts the physical SDN network into multiple iso-
lated slices (VNs) for multiple tenants. Each slice is
managed by its respective controller and can be op-
erated independently by different tenants. Generally,
existing hypervisors can be classified into two cate-
gories (Blenk et al., 2016): the centralized hypervisor
that consists of a single central entity, e.g., FlowVisor
(Sherwood et al., 2010), Advisor (Salvadori et al.,
2011), and VerTIGO (Corin et al., 2012), and the
distributed hypervisor that consists of several dis-
tributed virtualization functions, e.g., AutoSlice
(Bozakov and Papadimitriou, 2012), FlowN
(Drutskoy et al., 2013), and NVP (Koponen et al.,
2014). In this study, we assume FlowVisor as the
hypervisor for the virtualization of SDN networks as
it is well-documented, more established, and widely
used in experimental environments.

FlowVisor is a special-purpose OpenFlow con-
troller for virtualizing and sharing SDN networks, and
it sits between the control and data planes acting as
the network virtualization layer. With FlowVisor, the
physical SDN network is sliced in terms of switch
CPU, link bandwidth, and flow tables (Sherwood et
al., 2010). Each slice with an OpenFlow controller
has its own view of virtual topology that is specified
as a list of network nodes (switches) and links.
Moreover, with FlowVisor in the middle that works in
a transparent manner, all OpenFlow messages be-
tween slice controllers and slice switches are inter-
cepted and rewritten according to the slice policies
that define the network resources and the slice con-
troller allocated to each slice.

The virtualization of a given physical SDN
network through FlowVisor allows multiple tenants
to run distinct applications on their own slices. We
can consider a slice (VN) along with its correspond-
ing controller as a virtual SDN network (vSDN).
Since multiple vSDNs share the same physical SDN
network with finite resources, it is crucial to effi-
ciently assign physical network resources to vSDN
requests that specify the resource requirements,
which is also known as the VN embedding problem
(Fischer et al., 2013) in a network virtualization en-

vironment. As one of the main challenges in network
virtualization, VN embedding is known to be NP-hard
(Andersen, 2002) and a number of heuristic ap-
proaches have been proposed by researchers. How-
ever, because of the distinctions brought by SDN,
most of the existing embedding algorithms cannot be
directly applied to the SDN virtualization environ-
ment. In particular, since each vSDN on a physical
SDN network has its own controller, the controller
placement problem (Heller et al., 2012) should be
addressed when performing VN embedding. Such a
problem aims to find the optimal switch location in
the physical SDN network for collocating the con-
troller to minimize the controller-to-switch delay. As
a result, the controller can communicate effectively
with all the switches in the same vSDN. Moreover,
the differences between virtualization technology in
the SDN network environment, especially resource
sharing (Sherwood et al., 2010), and that in traditional
networks require modifications to existing VN em-
bedding approaches.

In this paper, we focus on the mapping tech-
niques in virtualized SDN networks to address the
challenges brought by SDN. In contrast to previous
work, we consider controller placement and VN
embedding as a joint vSDN embedding problem for
the first time, and formulate it into a multi-objective
integer linear programming (ILP) to optimize the
controller-to-switch delay and the mapping cost. Due
to the NP-hard nature of the ILP, we then design a
novel online vSDN embedding algorithm called
‘CO-vSDNE’ to solve this formulation. CO-vSDNE
consists of two stages: (1) the node mapping stage in
which controller placement and virtual node mapping
are tackled, and (2) the link mapping stage. In the
node mapping stage, we first attach the controller to
the substrate node with the largest controller location
selection factor (CLSF), which exploits the delay
information of the entire network and pre-considers
the subsequent virtual node and link mapping to ob-
tain high revenue and low controller-to-switch delay.
Then we construct the virtual node mapping tree
(VNMT) for each vSDN according to the resources
they required, and adopt the breadth first search (BFS)
strategy to map virtual nodes onto the substrate nodes
with the largest node ranking (NR) value, which
measures the substrate node with the local resource,
controller-to-switch delay, and the number of hops of

Gong et al. / Front Inform Technol Electron Eng 2016 17(7):701-716 703

substrate paths. In the link mapping stage, we map the
virtual control links (controller-to-switch connections)
and the virtual links using the k-shortest path algo-
rithm. CO-vSDNE combines controller placement
with VN embedding and introduces better coordina-
tion among controller placement, virtual node map-
ping, and link mapping, which enables more efficient
resource utilization while guaranteeing lower
controller-to-switch delay. Note that we use ‘embed-
ding’ and ‘mapping’ interchangeably throughout this
paper.

This paper presents the following major
contributions:

1. To the best of our knowledge, we make the
first attempt to study the online vSDN embedding
problem with coordination.

2. We formulate the problem into a multi-
objective ILP and design a heuristic algorithm called
CO-vSDNE to minimize the controller-to-switch
delay and mapping cost.

3. We conduct extensive experiments to evaluate
CO-vSDNE in terms of delay, cost, revenue,
throughput, etc., which demonstrates the effective-
ness and efficiency of our proposed algorithm.

2 Related work

The VN embedding problem refers to the map-

ping of VN requests to specific physical nodes and
paths in the SN. Due to the multiple constraints on
virtual nodes and links, VN embedding has been
shown to be NP-hard. Generally, VN embedding
consists of two stages: virtual node mapping where
virtual nodes are mapped to substrate nodes in a
one-to-one manner while satisfying resource re-
quirements of virtual nodes, and virtual link mapping
where virtual links are mapped to loop-free substrate
paths while satisfying the resource requirements of
virtual links.

Most previous work focuses on the general em-
bedding problem in traditional networks, and has
proposed different VN embedding algorithms with
specific objectives or constraints. Cheng et al. (2011)
considered the resources and topological attributes of
nodes together, and proposed an efficient embedding
algorithm through topology-aware node ranking. Di
et al. (2014) presented a reliable heuristic VN em-

bedding algorithm for efficient bandwidth sharing by
using the cross and backup sharing scheme. Liu et al.
(2015) focused on security-aware VN embedding,
and proposed two heuristic algorithms based on the
models of security demands in network virtualization.
Su et al. (2014) considered the energy factor in per-
forming VN embedding. They formulated the energy
consumption models and proposed two energy-aware
VN embedding algorithms. However, the distinctions
of the SDN environment, such as the logically cen-
tralized controller and the different virtualization
technologies, call for novel VN embedding
algorithms.

There also exist a few studies that focus on VN
embedding in SDN networks. Wang et al. (2014)
studied the survivable VN embedding in virtualized
SDN. They exploited optimal backup topology to
survive a single link failure and proposed a survivable
VN embedding algorithm. Mijumbi et al. (2014)
studied the dynamic resource management in
SDN-based virtualized networks. Zhou et al. (2014)
proposed a multi-domain VN embedding mechanism
for SDN to improve the scalability in performance.
However, the aforementioned work on VN embed-
ding in SDN networks considered neither the con-
troller placement problem nor flow entry resource
allocation in node mapping. They are similar to tra-
ditional VN embedding approaches and not applica-
ble to the SDN virtualization environment.

The controller placement problem aims to find
the best switch location to attach the controller di-
rectly, such that the control message delays from the
controller to the switches are minimized. Such a
problem was not widely studied in academia com-
munity. In particular, Heller et al. (2012) adopted the
average and maximize delays between the controller
and the switches as the performance metrics, and
evaluated hundreds of existing network topologies
through extensive simulations to find the optimal
controller location in SDN networks. Hu et al. (2013)
considered the reliability of the control traffic path
and proposed four different controller placement
algorithms for SDN networks. In this study, we
combine controller placement with VN embedding
for mapping online vSDN requests to the physical
SDN network. Specifically, we introduce the coor-
dination among controller placement, virtual node
mapping, and link mapping, which helps increase the

Gong et al. / Front Inform Technol Electron Eng 2016 17(7):701-716 704

utilization of physical network resources while
keeping low controller-to-switch delay. Different
from previous work (Demirci and Ammar, 2014)
which performed the above-mentioned three stages in
a sequential and uncoordinated manner, our work
mends this gap.

3 System model

To design the mapping of vSDN in the SDN

virtualization environment, in this section we first
describe the architecture of SDN virtualization, and
then provide the network model.

3.1 SDN virtualization architecture

Indicated by McKeown et al. (2008), a typical
architecture of the SDN network consists of a logi-
cally centralized controller and multiple OpenFlow
(OF) switches (Fig. 1). The OF switches in the data
plane communicate with the controller in the control
plane via a southbound interface, i.e., OpenFlow.
Moreover, the controller is responsible for assigning
forwarding flow rules to switches and managing the
entire network. In this study, we assume that
controller-to-switch connections are deployed in
in-band mode where each control path uses the ex-
isting link connections between switches in the data
plane, which is more practical and cost-favorable.
The architecture of SDN virtualization using
FlowVisor is shown in Fig. 2. With the FlowVisor
layer injected between the control plane and the data
plane, multiple vSDNs can coexist on a shared un-
derlying physical SDN infrastructure and are isolated
from each other. Each vSDN consists of a managing
controller and a virtual network which is composed of

a set of virtual switch nodes and virtual links. A vir-
tual switch node is hosted on a particular physical
node, and a virtual link spans over a path in the un-
derlying physical SDN network. Moreover, since the
control traffic in vSDNs is operated in in-band mode,
the controller in each vSDN is placed at the same
location as any switch in a physical SDN infrastruc-
ture, and each controller-to-switch connection is
viewed as a virtual control link that also spans over a
path in the underlying physical SDN network.

3.2 Network model

We take the underlying physical SDN infra-
structure in Fig. 2 as the SN and model it by a
weighted undirected network graph GS=(NS, LS),
where NS refers to the substrate node (OF switch) set
with a total number of |NS| nodes and LS the substrate
link set with a total number of |LS| links. Since
FlowVisor slices the SN in terms of multiple dimen-
sions (Sherwood et al., 2010), in this study we take
the typical available switch CPU capacity and the
available ternary content-addressable memory
(TCAM) capacity as node attributes, and the available
bandwidth and delay as link attributes, where switch
CPU is used for communication message processing
and TCAM for flow table processing. In addition, we
denote PS as the set of loop-free substrate paths in the
SN.

Generally, a vSDN request specifies a tenant’s
requirements including the topology of the VN, vir-
tual node resources, virtual link resources, etc. Simi-
larly, we model the VN of a vSDN request as a
weighted undirected network graph GV=(NV, LV),

Fig. 2 Architecture of SDN virtualization

Controller

vSDN 1

FlowVisor

vSDN 2

Underlying SDN infrastructrue

OpenFlow
switch

Virtual switch

Fig. 1 Architecture of the SDN network

Gong et al. / Front Inform Technol Electron Eng 2016 17(7):701-716 705

where NV refers to the set of virtual nodes with a total
number of |NV| nodes and LV the set of virtual links
with a total number of |LV| links. We express the re-
quirements on virtual nodes and links in terms of the
attributes of nodes and links in the SN. We also de-
note the managing controller of a vSDN request by nc
and the set of virtual control links by LC. For each
virtual control link lcvLC, we also consider that it
requires a certain amount of bandwidth from the
substrate path to which lcv is mapped, to avoid control
traffic congestion.

4 Multi-objective optimization for joint VN
embedding and the controller placement
problem

When a vSDN request arrives, the SN should

allocate resources to that request according to its
requirements. The vSDN request will be rejected or
postponed when there are not enough substrate re-
sources available. When the vSDN request expires,
the allocated substrate resources are released. The
mapping of a vSDN request to the SN can be de-
composed into two major components, i.e., VN em-
bedding and controller placement. In the following,
we explain each component in detail and formulate
the joint VN embedding and controller placement
problem as a multi-objective ILP.

4.1 VN embedding

The VN embedding for a vSDN request is de-
fined as a mapping M from GV to a subset of GS, such
that the resource requirements of virtual nodes and

links are satisfied, i.e., * *
V S S

n l
S S: , ,(, ,)M G N P R R

where *
S S ,N N *

S S ,P P and n
SR and l

SR represent

the resources of substrate nodes and links allocated to
the vSDN request, respectively. As mentioned in
Section 2, VN embedding can be generally decom-
posed into the virtual node mapping stage and the
virtual link mapping stage.

4.1.1 Virtual node mapping

The virtual node mapping selects suitable sub-
strate nodes to host virtual nodes in the VN such that
constraints on virtual nodes are satisfied. We define it

as a mapping N V
*
S:NM N from NV to a subset of NS.

Since each substrate node has finite CPU and TCAM
capacity, the required resources of a virtual node must
not exceed the available resources of the corre-
sponding mapped substrate node. Let CPU(ns) and
TCAM(ns) denote the amount of available CPU and
TCAM capacity of substrate node nsNS, respectively,
and CPU(nv) and TCAM(nv) denote the amount of
required CPU and TCAM capacity of virtual node
nvNV, respectively. Therefore, the capacity con-
straints for virtual node mapping are formulated as

niNV, njNS:

CPU() CPU(),i
j i jx n n (1)

TCAM() TCAM(),i
j i jx n n (2)

where i

jx {0, 1} is a binary variable indicating the

mapping between a virtual node and a substrate node

(i.e., i
jx =1 if virtual node ni is mapped to substrate

node nj, and 0 otherwise). In virtual node mapping,
each virtual node in the same VN is mapped to a dif-
ferent substrate node, and the corresponding con-
straints can be formulated as

S

V : 1,
j

i
i j

n N

n N x

 (3)

V

S : 1.
i

i
j j

n N

n N x

 (4)

Eq. (3) ensures that each virtual node is mapped to
just one substrate node, and Eq. (4) ensures that vir-
tual nodes from the same vSDN request are mapped
to different substrate nodes.

4.1.2 Virtual link mapping

In virtual link mapping, we assume that the SN
supports only the unsplittable flow, and each virtual
link is mapped to a substrate path between the cor-
responding substrate nodes that host the end virtual
nodes of that link. Thus, virtual link mapping can also

be defined as a mapping L V
*

S: LM P from LV to a

subset of PS. Since each substrate link has finite
bandwidth capacity which is shared by multiple vir-
tual links, the total required bandwidth capacity of
virtual links must not exceed the available bandwidth
capacity of the corresponding mapped substrate link.
Let BW(lij) denote the amount of available bandwidth
capacity of substrate link lijLS, and BW(luv) the

Gong et al. / Front Inform Technol Electron Eng 2016 17(7):701-716 706

required bandwidth capacity of virtual link luvLV.
The bandwidth capacity constraint for virtual link
mapping is formulated as

V

S : BW() BW(),
uv

uv
ij ij uv ij

l L

l L f l l

 (5)

where uv

ijf {0, 1} is a binary variable indicating the

mapping between a virtual link and a substrate link

(i.e., uv
ijf =1 if the substrate path to which virtual link

luv is mapped goes through the substrate link lij, and 0
otherwise). In addition, the connectivity constraints
for virtual link mapping, which ensure that substrate
links can be connected as a path to host a virtual link,
are provided as

njNS, luvLV:

S S

1, 1,

1, 1,

0, otherwise.ji ij

u
j

uv uv v
ji ij j

l L l L

x

f f x

 (6)

4.1.3 Objectives

Similar to previous work (Cheng et al., 2011; Li
et al., 2012; Ding et al., 2015), we consider the
long-term average revenue, long-term average cost,
and long-term revenue to cost (R/C) ratio as the VN
embedding objectives.

The revenue of embedding a VN GV at time t
refers to the total resources it demands, which can be
formulated as

V

V

V TCAM()() CPU()

BW().

v

v

v v
n N

v
l L

R G n n

l

 (7)

The cost of embedding a VN GV at time t is the total
substrate resources allocated to that VN, which can be
formulated as

V

V S

V TCAM(() CPU()

BW().

)

uv ij

v

v v
n N

uv
uv

ij
l L Ll

C G n n

f l

 (8)

Therefore, the long-term average revenue is de-

fined as

V0
()

lim .

T

t

T

R G
R

T

 (9)

The long-term average cost is defined as

V0
()

lim .

T

t

T

C G
C

T

 (10)

The long-term R/C ratio is defined as

V0

V0

()
/ lim .

()

T

t
TT

t

R G
R C

C G

 (11)

We can see that the R/C ratio refers to the resource
utilization of the SN. The larger the R/C is, the higher
the utilization of substrate resources is, and the more
efficient the embedding algorithm is.

4.2 Controller placement

The controller placement problem in in-band
mode aims to find the optimal switch node location in
the SN to which the controller of the vSDN is at-
tached, such that the average controller-to-switch

delay can be minimized. Let c
jy {0, 1} be a binary

variable, and c
jy =1 if controller nc is attached to the

substrate node nj, and 0 otherwise. Thus, the control-
ler placement constraint is formulated as

S

1,
j

c
j

n N

y

 (12)

which ensures that controller nc is attached to one
switch node in the SN.

Each virtual control link lcvLC in a vSDN re-
quest is mapped to a substrate path between the sub-
strate node where controller nc is collocated and the
substrate node that hosts virtual node nv. Let BW(lcv)
denote the required bandwidth capacity of lcv. The
corresponding capacity constraint for virtual control
link mapping is formulated as

C

S : BW() BW(),
cv

cv
ij ij cv ij

l L

l L g l l

 (13)

where cv

ijg {0, 1} is the binary variable indicating

Gong et al. / Front Inform Technol Electron Eng 2016 17(7):701-716 707

the mapping between a virtual control link and a

substrate link (i.e., cv
ijg =1 if virtual control link lcv

spans over substrate link lij, and 0 otherwise). In ad-
dition, the connectivity constraints for virtual control
link mapping are provided as

njNS, lcvLC:

S S

1, 1,

1, 1,

0, otherwise.ji ij

c
j

cv cv v
ji ij j

l L l L

y

g g x

 (14)

Let D(lij) denote the traffic delay of substrate

link lijLS. Inspired by Heller et al. (2012), we define
the average controller-to-switch delay D for a vSDN
request as the ratio between the total delay of sub-
strate links that virtual control links go over and the
number of virtual control links, which is formulated
as

C S

C

()

,
| |

cv ij

cv
ij ij

l L l L

g D l

D
L

 (15)

where |LC| denotes the total number of virtual control
links in LC.

Note that the switch node to which the controller
is directly attached can send its control messages
without going through the SN.

4.3 Formulation of joint VN embedding and the
controller placement problem

The formal definition of the vSDN embedding
problem for joint VN embedding and controller
placement in virtualized SDN networks is stated as
follows. Given a substrate SDN network modeled by
GS=(NS, LS), a vSDN request with a VN modeled by
GV=(NV, LV), a managing controller nc, a set of
controller-to-switch connections LC, and the corre-
sponding resource requirements, map the vSDN re-
quest to the SN in a way that will: (1) satisfy the re-
source requirements of virtual nodes, virtual links,
and controller-to-switch connections, (2) minimize
the cost of embedding the VN for this vSDN request,
and (3) minimize the average controller-to-switch
delay for this vSDN request.

Therefore, with the aforementioned respective
formulations for VN embedding and controller
placement, we formulate the vSDN embedding
problem into a multi-objective ILP:

1. Objective:

Vmin (),

min .

C G

D

 (16)

2. Capacity constraints:

V S, :i jn N n N

 CPU() CPU(),

TCAM() TCAM().

i
j i j

i
j i j

x n n

x n n

 (17)

S :ijl L

V C

BW() BW() BW().
uv cv

uv cv
ij uv ij cv ij

l L l L

f l g l l

 (18)

3. Connectivity constraints:

S V, :j uvn N l L

S S

1, 1,

1, 1,

0, otherwise.ji ij

u
j

uv uv v
ji ij j

l L l L

x

f f x

 (19)

S C, :j cvn N l L

S S

1, 1,

1, 1,

0, otherwise.ji ij

c
j

cv cv v
ji ij j

l L l L

y

g g x

 (20)

4. Variable constraints:

S

V : 1
j

i
i j

n N

n N x

 , (21)

V

S : 1
i

i
j j

n N

n N x

 , (22)

S

1:
j

c
j

n N
cn y

 , (23)

V S , : {0,1}i
i j jn N n N x , (24)

S , : {0,1}c
c j jn n N y , (25)

V S, : {0,1}uv
uv ij ijl L l L f , (26)

C S, : {0,1}cv
cv ij ijl L l L g . (27)

Gong et al. / Front Inform Technol Electron Eng 2016 17(7):701-716 708

5 Heuristic algorithm design

Solving an ILP is known to be NP-hard

(Schrijver, 1998). Although exact algorithms (e.g.,
branch and bound, cutting plane) can achieve optimal
results, they may incur exponentially increasing run-
ning time. As a result, they cannot scale to solve large
vSDN embedding problems. In this section, we pro-
pose a novel heuristic vSDN embedding algorithm,
called ‘CO-vSDNE’, to achieve the trade-off between
embedding performance and time complexity. More
specifically, CO-vSDNE performs vSDN embedding
in a way that minimizes both mapping cost and
controller-to-switch delay while guaranteeing proper
computing time. By treating the controller of a vSDN
as a special virtual node and controller-to-switch
connections as special virtual links, CO-vSDNE is
presented as a two-stage algorithm: the node mapping
stage that handles controller node mapping and vir-
tual node mapping, and the link mapping stage that
handles virtual control link mapping and virtual link
mapping.

5.1 Node mapping

In this stage, we first perform controller node
mapping, and then virtual node mapping.

5.1.1 Controller node mapping

We have two goals to achieve in this mapping.
First, we want to minimize the controller-to-switch
delay by selecting the optimal substrate switch loca-
tion to collocate the controller. Second, as controller
node mapping affects the following virtual node
mapping and link mapping, we want to perform it in a
way that facilitates the subsequent mapping steps.

Towards the above two goals, in our algorithm,
we attach the controller node to the substrate node
with the largest controller location selection factor
(CLSF). The CLSF of substrate node ni is defined as

S

bw(,)
CLSF() (CPU() TCAM()) ,

delay(,)
j

i j
i j j

n N i j

n n
n n n

n n

 (28)

where bw(ni, nj) is the available bandwidth along the
shortest path from ni to nj, described as the minimum
bandwidth along this shortest path, and
delay(ni, nj) is the traffic delay from ni to nj, which is

calculated by the total delay along the shortest path
from ni to nj.

Since virtual node mapping is not performed, we
need to attach the controller node to the substrate
node with the lowest average delay to all other sub-
strate nodes, such that the average controller-to-
switch delay can be minimized. Thus, CLSF consid-
ers the average delay from a node to all the others in
the SN. Meanwhile, CLSF takes the available re-
source of substrate nodes and the bandwidth of sub-
strate links into consideration, which can make sub-
sequent virtual node mapping and link mapping easier,
and increase the probability of accepting the vSDN
requests.

5.1.2 Virtual node mapping

In this mapping stage, the goal is to find a sub-
strate node to host each virtual node while minimizing
the delay to the controller, and satisfying their node
constraints in terms of CPU and TCAM requirements.
As virtual node mapping affects subsequent link
mapping, we also need to pre-consider link mapping
in this virtual node mapping stage.

In our algorithm, we first sort the virtual nodes
according to their required resource in descending
order. The required resource of a virtual node nv is
defined as

()

() CPU() TCAM() BW(),
v v

v v v v
l L n

H n n n l

 (29)

where L(nv) is the set of adjacent links that connect
directly to virtual node nv, and BW(lv) denotes the
required bandwidth resource of virtual link lv. The
larger the H value of node nv is, the more the re-
sources it demands, and thus it is more difficult to
map due to the limitation of resources in the SN.

Then, we construct the virtual node mapping tree
(VNMT) for the VN in a vSDN request, which can
effectively decrease the number of hops of substrate
paths to which virtual links are mapped. VNMT is a
mapping tree constructed according to the H values of
virtual nodes and the topology of VN. Specifically,
the construction of the VNMT works as follows. For a
given VN, we first select the virtual node with the
largest H value as the root node. Then those virtual
nodes that connect directly to the root by virtual links
become its children from left to right according to

Gong et al. / Front Inform Technol Electron Eng 2016 17(7):701-716 709

descending order of their H values. Other virtual
nodes in VN are constructed recursively in a similar
way.

After constructing VNMT, CO-vSDNE adopts
the breadth first search (BFS) strategy to map the
virtual nodes. For the root node of VNMT,
CO-vSDNE maps it to the substrate node with the
largest H value, which represents the available re-
sources of a substrate node. For the other virtual
nodes, CO-vSDNE maps them to substrate nodes with
the largest NR, which is a metric for selecting the
substrate nodes in the virtual node mapping stage (see
Eq. (31)). In particular, when we map a virtual node nv,
we first build a set of candidate substrate nodes Ω(nv)
for nv, which consists of substrate nodes that are un-
mapped with any other node in the same vSDN re-
quest, and whose available node resources can satisfy
the requirements of nv, i.e.,

Ω(nv)= {ns | CPU(nv) ≤ CPU(ns),
TCAM(nv) ≤ TCAM(ns), nsNS}. (30)

Then we map virtual node nv to candidate substrate
node ns with the largest NR value, which is defined as

N N

()
NR() ,

delay(, hops(() ,)()) ()
s

s vc
s

s

H n
n

M n n M f n n

(31)

where H(ns) denotes the available resources of sub-
strate node ns and is calculated by Eq. (29), MN(nc)
denotes the substrate node to which controller nc is
attached, delay(MN(nc), ns) denotes the control mes-
sage delay from MN(nc) to ns in the SN. f(nv) denotes
the father node of nv in VNMT, MN(f(nv)) denotes the
substrate node to which f(nv) is mapped, and
hops(MN(f(nv)), ns) denotes the number of hops for the
shortest path from f(nv) to ns in the SN.

The substrate node’s NR is proportional to its H
value, and inversely proportional to delay(MN(nc), ns)
and hops(MN(f(nv)), ns). The reasons why we take NR
as the node selection metric are as follows: (1) The
substrate node with a larger H value indicates that the
node’s available resource is richer, and selecting the
substrate node with a larger H value helps balance the
stress on substrate nodes; (2) Mapping the virtual
node to the substrate node with low delay(MN(nc), ns)
can reduce the controller-to-switch delay; (3) As the

virtual node f(nv) has been mapped to the SN, if
hops(MN(f(nv)), ns) is too large, the cost of mapping
the virtual link between nv and f(nv) will be too large
according to Eq. (8), resulting in low resource utili-
zation of the SN. Therefore, based on VNMT and NR,
the virtual node mapping algorithm can keep the
mapped substrate nodes connected closely to each
other, and is favorable for the following link mapping.
Algorithm 1 shows the details of the node mapping
algorithm.

5.2 Link mapping

In the link mapping stage, similar to the previous
work (Cheng et al., 2011; Li et al., 2014), CO-vSDNE
adopts the k-shortest path algorithm (Eppstein, 1998)
to map each virtual link to a substrate path between
the corresponding substrate nodes that host the end

Algorithm 1 Node mapping
Input: GS=(NS, LS), GV=(NV, LV), nc
Output: node mapping solution

/*Controller node mapping*/
Compute the shortest path for all node pairs (ni, nj), s.t. ni,
njNS
Calculate the delay for all such node pairs
for each substrate node nsNS do

Calculate CLSF(ns)
end for
Attach controller node nc to the substrate node with the
largest CLSF value

/*Virtual node mapping*/
for each virtual node nvNV do

Calculate H(nv)
end for
Construct the VNMT for GV according to H values of virtual
nodes in descending order
Map the root node of VNMT to the substrate node with the
largest H value
for other unmapped nodes in the VNMT do

Choose the virtual node nv using the BFS strategy, and
construct the substrate candidate set Ω(nv) for nv
if Ω(nv)= then

return NODE_MAPPING_FAILED
else

for each candidate node nsΩ(nv) do
Calculate NR(ns)

end for
Map nv to the candidate node ns with the largest NR
value

end if
end for
return NODE_MAPPING_SUCCESS

Gong et al. / Front Inform Technol Electron Eng 2016 17(7):701-716 710

nodes of that virtual link (Algorithm 2). Since dif-
ferent substrate paths to which virtual links are
mapped may share the same substrate links and
compete for their limited bandwidth resources, it may
be difficult or even impossible to map virtual links
with large bandwidth requirements due to the limita-
tion of bandwidth resources in the SN. Therefore,
virtual links with large required bandwidth should be
mapped in priority. Specifically, to map a virtual
control link lcvLC, the link mapping algorithm
searches the k-shortest paths by increasing k, and
stops the search if it finds a set of paths that have the
same number of hops and satisfy the bandwidth con-
straint of lcv. We then map lcv to the substrate path with
the lowest delay in this set. For each virtual link
luvLV, we also adopt the k-shortest path algorithm to
map virtual links to substrate paths.

5.3 CO-vSDNE algorithm

In a realistic SDN virtualization scenario, vSDN
requests may not always arrive one by one in regular
intervals. The scenario that multiple vSDN requests
arrive at the same time may occur. Thus, to be applied
in a real-time scenario, our vSDN embedding algo-
rithm is designed to be executed once in every con-
stant time interval. This time interval depends on the
permissible waiting periods of incoming vSDN re-
quests and the processing time of the embedding
work.

The detailed procedure of CO-vSDNE is shown
in Algorithm 3. The node ranks for CLSF, H, and NR
can be computed in polynomial time in terms of |GS|
and |GV|, and the link mapping algorithm can also be
finished in polynomial time in terms of |GS|, |GV|, |LC|,
and k. Thus, CO-vSDNE is a polynomial-time
algorithm.

6 Performance evaluation

In this section, we first evaluate our proposed

vSDN embedding algorithm in terms of controller-
to-switch delay, R/C ratio, and acceptance ratio with
extensive simulations. Then, to gain insights into how
our proposed algorithm is influencing vSDN perfor-
mance, we focus on the advantages of our algorithm
in terms of end-to-end delay and throughput with
Mininet (Lantz et al., 2010) emulation.

Algorithm 2 Link mapping
Input: GS=(NS, LS), GV=(NV, LV), nc, LC, node mapping
solution
Output: link mapping solution

/*Virtual control link mapping*/
Rank the virtual control links lcvLC according to the re-
quired bandwidth in descending order
for each unmapped virtual control link lcvLC do

Search the k-shortest paths between the selected nodes
in the SN
if link bandwidth constraint of lcv is satisfied then

Map lcv to the k-shortest substrate path with the
lowest delay

else
return LINK_MAPPING_FAILED

end if
end for

/*Virtual link mapping*/
Rank the virtual links luvLV according to the required
bandwidth in descending order
for each unmapped virtual link luvLV do

Search the k-shortest paths between the selected nodes
in the SN
if a path is found that can satisfy the link bandwidth
constraint of luv then

Map luv to this path
else

return LINK _MAPPING_FAILED
end if

end for
return LINK_MAPPING_SUCCESS

Algorithm 3 CO-vSDNE
Sort the vSDN requests within the same time interval ac-
cording to their revenues in descending order
for all unmapped vSDN requests do

Select the vSDN request with the maximum revenue
Map the virtual nodes and the controller of this request
using the node mapping algorithm
if NODE_MAPPING_SUCCESS then

Map the virtual links of this request using the link
mapping algorithm

end if
if LINK_MAPPING_SUCCESS then

Occupy the substrate resources and update the
state of the substrate network
Set the state of this request to MAPPING_
SUCCESS
continue

end if
Set the state of this request to MAPPING_FAILED

end for

Gong et al. / Front Inform Technol Electron Eng 2016 17(7):701-716 711

6.1 Simulation environment

Similar to most previous work, we use the
GT-ITM tool (Zegura et al., 1996) to generate to-
pologies of the SN and vSDN requests. The SN is
configured with 100 nodes, and each pair of substrate
nodes is randomly connected with a probability of 0.5.
For each substrate node, the capacities of available
CPU and TCAM resources are uniformly distributed
between 50 and 100, respectively. For each substrate
link, the delay follows a uniform distribution ranging
from 5 to 20 ms, and the capacity of available band-
width resource is also uniformly distributed between
50 and 100.

We varied the scales of vSDN requests in small,
regular, and large sizes; specifically, the number of
virtual nodes is uniformly distributed between 2 and
10, 10 and 20, 20 and 50, respectively. For each vSDN
request of different scales, the virtual link connectiv-
ity rate of the virtual node pair is set to 0.5, and each
virtual node is connected directly to the controller
node by a virtual control link. All of the quality-of-
service (QoS) requirements (i.e., CPU, TCAM, and
bandwidth) of virtual nodes, virtual control links, and
virtual links are real numbers uniformly distributed
between 0 and 50. Moreover, similar to most previous
work on VN embedding, we assume that the arrival of
vSDN requests follows the Poisson process with an
average arrival rate of 5 vSDN requests per 100 time
units, and each vSDN request has an exponentially
distributed lifetime with an average of 1000 time
units.

As controller-to-switch delay and the mapping
cost are the two objects of CO-vSDNE optimization,
we use the following metrics to evaluate our algo-
rithm: (1) the long-term average (maximum)
controller-to-switch delay, which is defined as the
ratio between the total average (maximum)
controller-to-switch delay for each vSDN that has
been mapped successfully and the number of suc-
cessfully mapped vSDNs in the long run, (2) the
long-term R/C ratio according to Eq. (11), and (3) the
acceptance ratio of vSDN requests, defined as the
ratio between the number of vSDN requests mapped
successfully to the number of total arrival vSDN re-
quests. As there are no existing algorithms that tackle
the online vSDN embedding problem, we compare
CO-vSDNE with its two simpler variations: the un-
coordinated naive delay-minimizing vSDN embed-

ding algorithm (DM-vSDNE), and the pure
cost-minimizing vSDN embedding algorithm
(CM-vSDNE) (Table 1). We run our simulations un-
der each condition for 50 000 time units to achieve a
stable-state performance. Ten instances are performed
for each simulation and the average values are rec-
orded as the final result.

6.2 Simulation results

6.2.1 Comparison on regular-sized vSDN scale

We first investigate the performance of our
CO-vSDNE algorithm in terms of long-term average
and maximum controller-to-switch delays, the
long-term R/C ratio, and the acceptance ratio. The
simulations are performed on regular-sized vSDN
scale. The comparison results are shown in Fig. 3.

Fig. 3a shows the long-term average controller-
to-switch delay for all three vSDN embedding algo-
rithms in stable state. It can be seen that CO-vSDNE
produces very close delays to DM-vSDNE, even
though CO-vSDNE is trying to minimize the mapping
cost, and CM-vSDNE produces obviously higher
delays. This is because CO-vSDNE considers at-
taching the controller to the substrate node with the
lowest delay compared to all other substrate nodes in
controller node mapping, which makes the following
virtual node mapping easier and therefore obtains low
delays. The long-term maximum controller-to-switch
delays shown in Fig. 3b present a similar pattern: the
maximum delays produced by CO-vSDNE and
DM-vSDNE are close to each other, and the maxi-
mum delays produced by CM-vSDNE are higher as
expected.

Table 1 Algorithm comparison

Algorithm Description

CO-vSDNE Our efficient and coordinated vSDN em-
bedding algorithm

DM-vSDNE Place the controller of vSDN randomly, and
then map virtual nodes to the closest sub-
strate nodes with sufficient node resources
to minimize the controller-to-switch delay

CM-vSDNE Place the controller of vSDN randomly, and
execute the virtual node mapping algo-
rithm of CO-vSDNE without regard to
delays (i.e., cut the delay part in NR(nS))
to minimize the mapping cost

Gong et al. / Front Inform Technol Electron Eng 2016 17(7):701-716 712

Fig. 3c shows the long-term R/C ratio for all

three vSDN embedding algorithms in stable state. It
can be seen that the R/C ratio of CO-vSDNE is a little
higher than that of CM-vSDNE and obviously higher
than that of DM-vSDNE. This is because: (1)
CO-vSDNE pre-considers the following mapping
steps in controller node mapping, which facilitates the
subsequent mappings; (2) according to the definition
of the R/C ratio, the cost of mapping virtual links has
significant effect on the R/C ratio. Thus, CO-vSDNE
achieves a higher R/C ratio because it considers re-
ducing the number of hops of substrate paths, and
tries to map the virtual nodes to the substrate nodes
nearby in the virtual node mapping stage, leading to a
low cost of link mapping and higher R/C ratio.

Fig. 3d shows the acceptance ratio for all three
vSDN embedding algorithms in stable state. The
acceptance ratio of our CO-vSDNE is larger than
those of others. Moreover, the average acceptance
ratio of CO-vSDNE is almost 0.887, which is the
largest among all considered algorithms. This is

because CO-vSDNE coordinates the two mapping
stages by pre-considering link mapping in the node
mapping stage. In addition, the higher R/C ratio ob-
tained by CO-vSDNE indicates a higher resource
utilization, which further leads to accepting more
vSDN requests at finite SN resources.

6.2.2 Impact of vSDN scales on performance

To evaluate the impact of vSDN scales on the
performance of our CO-vSDNE algorithm, we gen-
erate two more different-sized vSDN requirements
mentioned in Section 6.1: small-sized vSDNs with the
number of virtual nodes uniformly distributed be-
tween 2 and 10, and large-sized vSDNs with the
number of virtual nodes distributed between 20 and
50. The comparison results among three algorithms
are shown in Fig. 4. From these results, we have the
following observations.

First, as the vSDN scale increases, all three al-
gorithms maintain the same rank in terms of the
long-term average and maximum controller-to-switch

Fig. 3 Comparisons between our algorithm and others on regular-sized vSDN scales in stable state: (a) long-term av-
erage controller-to-switch delay; (b) long-term maximum controller-to-switch delay; (c) long-term R/C ratio; (d) ac-
ceptance ratio

4 20 30 40
0

10

20

30

40

50

Time (×103 time unit)

(a)

CM-vSDNE

DM-vSDNE

CO-vSDNE

4 20 30 40
10

20

30

40

50

60

70

80

90

100

Time (×103 time unit)

(b)

CM-vSDNE

DM-vSDNE

CO-vSDNE

4 20 30 40
0.60

0.65

0.70

0.75

0.80

0.85

Time (×103 time unit)

(c)

CM-vSDNE

DM-vSDNE

CO-vSDNE

4 20 30 40
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Time (×103 time unit)

(d)

CM-vSDNE

DM-vSDNE

CO-vSDNE

Gong et al. / Front Inform Technol Electron Eng 2016 17(7):701-716 713

delays, the long-term R/C ratio, and the acceptance
ratio. In addition, since CO-vSDNE coordinates node
mapping and link mapping when embedding a vSDN
request, it always obtains a larger value than
DM-vSDNE in terms of the R/C ratio and the ac-
ceptance ratio, and a smaller value than CM-vSDNE

in terms of average and maximum controller-
to-switch delays.

Second, as the vSDN scale increases, from
Figs. 4a and 4b we can see that the long-term average
and maximum controller-to-switch delays of
CO-vSDNE and DM-vSDNE are close to each other,
while the relative delays of CO-vSDNE to that of
CM-vSDNE decline. Specifically, for small-sized
vSDN requests, CO-vSDNE saves 62.5% average
delay and 66.7% maximum delay than CM-vSDNE.
However, for regular-sized vSDN requests,
CO-vSDNE saves 56.2% average delay and 58.5%
maximum delay than CM-vSDNE. When the vSDN
scale expands to large sizes, the relative average de-
lays drop to 26.7%, and the relative maximum delays
drop to 35.5%.

Third, from Figs. 4c and 4d, which illustrate the
long-term R/C ratio and the acceptance ratio, we can
see that as the vSDN requests scale from small to
large sizes, the R/C ratio and the acceptance ratio
decrease for all three algorithms. This is because with
the increasing scale of vSDN requests, they require
more resources (i.e., CPU, TCAM, and bandwidth)
when embedded to the SN. Thus, virtual links are
more likely to be assigned to longer substrate paths
and consume more resources due to the limitaion of
bandwidth resources in the SN, leading to a decreas-
ing R/C ratio. Besides, because of the increasing re-
source consumption in the SN by larger vSDN re-
quests, the mapping of newly arriving vSDN requests
may fail for lacking of substrate resources, resulting
in a low acceptance ratio.

Fourth, as the vSDN scale increases, from
Figs. 4c and 4d we can see that CO-vSDNE performs
almost as well as CM-vSDNE in terms of the
long-term R/C ratio and the acceptance ratio. The
reasons are as follows: (1) Both CM-vSDNE and
CO-vSDNE try to map virtual nodes to substrate
nodes nearby in the virtual node mapping stage. As a
result, the number of hops of substrate paths to which
virtual links are mapped is reduced, leading to low
cost of mapping virtual links and high R/C ratio. (2)
CM-vSDNE places the controller of vSDN randomly,
which might result in higher cost of mapping virtual
control links and fewer available bandwidth resources
for mapping virtual links compared with CO-vSDNE.
However, since it maps virtual nodes according to NR
without regard to delay, CM-vSDNE could reduce the

Fig. 4 Comparisons between our algorithms and others on
different-sized vSDN scales in stable state: (a) long-term
average controller-to-switch delay; (b) long-term maxi-
mum controller-to-switch delay; (c) long-term R/C ratio;
(d) acceptance ratio

A
ve

ra
g

e
 c

on
tr

ol
le

r-
to

-s
w

itc
h

de
la

y
(m

s)
M

ax
im

um
 c

on
tr

ol
le

r-
to

-s
w

itc
h

de
la

y
(m

s)
R

/C
ra

tio
A

cc
ep

ta
nc

e
ra

tio

Gong et al. / Front Inform Technol Electron Eng 2016 17(7):701-716 714

number of hops of substrate paths to which virtual
links might be mapped more effectively than
CO-vSDNE in the virtual node mapping stage. (3) For
small-sized vSDN requests, they consume fewer
substrate resources when embedded to the SN, and
thus the SN has enough resources for accepting more
vSDN requests, leading to a high R/C ratio and a high
acceptance ratio among all three algorithms. When
the vSDN scale expands to a large size, the R/C ratio
and acceptance ratio for all three algorithms become
low due to high resource requirements of vSDN re-
quests and the lack of substrate resources.

6.3 End-to-end delay and throughput emulation

For the evaluation of end-to-end delay and
throughput, we use Mininet 2.2 to emulate the opera-
tion of an SDN with multiple vSDNs placed on it.
Twenty different vSDNs are embedded on six SNs
sliced using FlowVisor. We set the number of sub-
strate nodes between 50 and 100 and the number of
virtual nodes for each vSDN from 5 to 20. Other
settings are the same as those in Section 6.1. The
end-to-end delays are measured by ‘ping’, and the
throughputs are measured by executing file transfer
between each pair of nodes via the Transmission
Control Protocol (TCP) with the Iperf tool. We record
the arithmetic means as the final results (Figs. 5 and 6).

Fig. 5 shows the average end-to-end delays for
all three vSDN embedding algorithms. It can be seen
that CO-vSDNE performs considerably better than
CM-vSDNE, offering an average delay reduction of
48.5% compared to CM-vSDNE. This is because
CO-vSDNE considers the coordination between the
controller placement and the following mapping steps,
and tries to map the virtual nodes to the substrate
nodes nearby in the SN, resulting in low end-to-end
delays. DM-vSDNE maps virtual nodes to substrate
nodes which are as close to the controller as possible,
so it is good at minimizing both controller-to-switch
delays and end-to-end delays, and can perform similar
to CO-vSDNE.

Fig. 6 shows the average throughput for all three
vSDN embedding algorithms. It can be seen that the
average throughput of our CO-vSDNE is close to that
of CM-vSDNE and obviously larger than that of
DM-vSDNE. The reason is that both CO-vSDNE and
CM-vSDNE prefer to select substrate nodes with
large available resources in the node mapping stage,

which helps balance the stress on the SN and leads to
larger throughput. DM-vSDNE performs the worst in
terms of throughput since it maps the vSDN in a
confined area without any regard to node or link
stress.

The emulation results indicate that our proposed
vSDN embedding algorithm can improve the per-
formance of vSDNs in a realistic network emulation
environment.

7 Conclusions

VN embedding is a key problem in network

virtualization. In this paper, we study the technique to
perform vSDN embedding in an SDN virtualization
environment. The goal of our study is to minimize the
controller-to-switch delay and the mapping cost.
Specifically, we first build the network model in an
SDN virtualization environment and formulate the
vSDN embedding problem into a multi-objective
integer linear programming. To solve this formulation,
we propose a novel online vSDN embedding algo-
rithm CO-vSDNE, which performs controller place-
ment, virtual node mapping, and link mapping in a

Fig. 5 Comparison of average end-to-end delay

50 10060 70 80 90
Number of substrate nodes

0

10

20

30

40

50

60

70

80
CO-vSDNE
DM-vSDNE
CM-vSDNE

Fig. 6 Comparison of average throughput

50 10060 70 80 90
Number of substrate nodes

4

6

8

10

12

14

16

18

20

CO-vSDNE
DM-vSDNE
CM-vSDNE

Gong et al. / Front Inform Technol Electron Eng 2016 17(7):701-716 715

coordinated way. Simulation and emulation results
showed that the proposed algorithm achieves good
performance in terms of the average and maximum
controller-to-switch delays, the R/C ratio, the ac-
ceptance ratio, the end-to-end delay, and the
throughput under different-sized vSDN scales.

In the future, we plan to consider the vSDN re-
configuration in our algorithm to further improve the
embedding performance. Besides, we will extend our
work by considering more aspects of vSDN embed-
ding problems, e.g., energy consumption, fault tol-
erance, and security issues.

References
Andersen, D.G., 2002. Theoretical Approaches to Node As-

signment. Available from http://www.cs.cmu.edu/~dga/
papers/andersen-assign.ps [Accessed on Sept. 20, 2010].

Blenk, A., Basta, A., Reisslein, M., et al., 2016. Survey on
network virtualization hypervisors for software defined
networking. IEEE Commun. Surv. Tutor., 18(1):655-685.
http://dx.doi.org/10.1109/COMST.2015.2489183

Bozakov, Z., Papadimitriou, P., 2012. AutoSlice: automated
and scalable slicing for software-defined networks. Proc.
ACM CoNEXT Student Workshop, p.3-4.
http://dx.doi.org/10.1145/2413247.2413251

Cheng, X., Su, S., Zhang, Z., et al., 2011. Virtual network
embedding through topology-aware node ranking. ACM
SIGCOMM Comput. Commun. Rev., 41(2):38-47.
http://dx.doi.org/10.1145/1971162.1971168

Corin, R.D., Gerola, M., Riggio, R., et al., 2012. VeRTIGO:
network virtualization and beyond. European Workshop
on Software Defined Networks, p.24-29.
http://dx.doi.org/10.1109/EWSDN.2012.19

Demirci, M., Ammar, M., 2014. Design and analysis of tech-
niques for mapping virtual networks to software-defined
network substrates. Comput. Commun., 45:1-10.
http://dx.doi.org/10.1016/j.comcom.2014.03.008

Di, H., Anand, V., Yu, H.F., 2014. Design of reliable virtual
infrastructure with resource sharing. Comput. Netw.,
62:137-151. http://dx.doi.org/10.1016/j.bjp.2013.09.022

Ding, J., Huang, T., Liu, J., et al., 2015. Virtual network em-
bedding based on real-time topological attributes. Front.
Inform. Technol. Electron. Eng., 16(2):109-118.
http://dx.doi.org/10.1631/FITEE.1400147

Drutskoy, D., Keller, E., Rexford, J., 2013. Scalable network
virtualization in software-defined networks. IEEE Inter-
net Comput., 17(2):20-27.
http://dx.doi.org/ 10.1109/MIC.2012.144

Eppstein, D., 1998. Finding the k shortest paths. SIAM J.
Comput., 28(2):652-673.
http://dx.doi.org/10.1137/S0097539795290477

Fischer, A., Botero, J.F., Till Beck, M., et al., 2013. Virtual
network embedding: a survey. IEEE Commun. Surv. Tu-
tor., 15(4):1888-1906.
http://dx.doi.org/10.1109/SURV.2013.013013.00155

Heller, B., Sherwood, R., McKeown, N., 2012. The controller
placement problem. ACM SIGCOMM Comput. Commun.
Rev., 42(4):473-478.
http://dx.doi.org/10.1145/2377677.2377767

Hu, Y., Wang, W., Gong, X., et al., 2013. Reliability-aware
controller placement for software-defined networks. Proc.
IFIP/IEEE Int. Symp. on Integrated Network Manage-
ment, p.672-675.

Khan, A., Zugenmaier, A., Jurca, D., et al., 2012. Network
virtualization: a hypervisor for the Internet? IEEE Com-
mun. Mag., 50(1):136-143.
http://dx.doi.org/10.1109/MCOM.2012.6122544

Koponen, T., Amidon, K., Balland, P., et al., 2014. Network
virtualization in multi-tenant datacenters. USENIX Conf.
on Networked System Design and Implementation,
p.203-216.

Lantz, B., Heller, B., McKeown, N., 2010. A network in a
laptop: rapid prototyping for software-defined networks.
Proc. 9th ACM SIGCOMM Workshop on Hot Topics in
Networks, p.19:1-19:6.
http://dx.doi.org/10.1145/1868447.1868466

Li, X.L., Wang, H.M., Guo, C.G., et al., 2012. Topology
awareness algorithm for virtual network mapping. J.
Zhejiang Univ.-Sci. C (Comput. & Electron.), 13(3):178-
186. http://dx.doi.org/10.1631/jzus.C1100282

Li, X.L., Wang, H.M., Ding, B., et al., 2014. Resource alloca-
tion with multi-factor node ranking in data center net-
works. Fut. Gener. Comput. Syst., 32:1-12.
http://dx.doi.org/10.1016/j.future.2013.09.028

Liu, S.H., Cai, Z.P., Xu, H., et al., 2015. Towards security-
aware virtual network embedding. Comput. Netw.,
91:151-163.
http://dx.doi.org/10.1016/j.comnet.2015.08.014

McKeown, N., Anderson, T., Balakrishnan, H., et al., 2008.
OpenFlow: enabling innovation in campus networks.
ACM SIGCOMM Comput. Commun. Rev., 38(2):69-74.
http://dx.doi.org/10.1145/1355734.1355746

Mijumbi, R., Serrat, J., Rubio-Loyola, J., et al., 2014. Dynamic
resource management in SDN-based virtualized networks.
Int. Conf. on Network and Service Management,
p.412-417.
http://dx.doi.org/10.1109/CNSM.2014.7014204

Salvadori, E., Corin, R.D., Broglio, A., et al., 2011. General-
izing virtual network topologies in OpenFlow-based
networks. IEEE Global Telecommunications Conf.,
p.1-6.
http://dx.doi.org/10.1109/GLOCOM.2011.6134525

Schrijver, A., 1998. Theory of Linear and Integer Program-
ming. Wiley, New York, USA.

Sherwood, R., Gibb, G., Yap, K.K., et al., 2010. Can the
production network be the testbed? 9th USENIX Symp.
on Operating System Design and Implementation, p.1-6.

Su, S., Zhang, Z.B., Liu, A.X., et al., 2014. Energy-aware
virtual network embedding. IEEE/ACM Trans. Netw.,
22(5):1607-1620.
http://dx.doi.org/10.1109/TNET.2013.2286156

Gong et al. / Front Inform Technol Electron Eng 2016 17(7):701-716 716

Wang, A.J., Iyer, M., Dutta, R., et al., 2013. Network virtual-
ization: technologies, perspectives, and frontiers. J.
Lightw. Technol., 31(4):523-537.
http://dx.doi.org/10.1109/JLT.2012.2213796

Wang, Z.M., Wu, J.X., Wang, Y., et al., 2014. Survivable
virtual network mapping using optimal backup topology
in virtualized SDN. China Commun., 11(2):26-37.
http://dx.doi.org/10.1109/CC.2014.6821735

Zegura, E.W., Calvert, K.L., Bhattacharjee, S., 1996. How to
model an internetwork. 15th Annual Joint Conf. of the

IEEE Computer and Communications Societies,
p.594-602.
http://dx.doi.org/10.1109/INFCOM.1996.493353

Zhou, B., Gao, W., Zhao, S., et al., 2014. Virtual network
mapping for multi-domain data plane in software-defined
networks. Int. Conf. on Wireless Communications, Ve-
hicular Technology, Information Theory and Aerospace
& Electronic Systems, p.1-5.
http://dx.doi.org/10.1109/VITAE.2014.6934439

