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Abstract: To match human perception, extracting perceptual features effectively plays an important role in image
quality assessment. In contrast to most existing methods that use linear transformations or models to represent
images, we employ a complex mathematical expression of high dimensionality to reveal the statistical characteristics
of the images. Furthermore, by introducing kernel methods to transform the linear problem into a nonlinear one, a
full-reference image quality assessment method is proposed based on high-dimensional nonlinear feature extraction.
Experiments on the LIVE, TID2008, and CSIQ databases demonstrate that nonlinear features offer competitive
performance for image inherent quality representation and the proposed method achieves a promising performance
that is consistent with human subjective evaluation.
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1 Introduction

Image quality assessment (IQA) plays an impor-
tant role in image processing systems, which can be
used as feedback for evaluation, optimization, and
monitoring. Since subjective quality metrics are
costly, time-consuming, and impractical, they can-
not be integrated within real-world systems (Zhang
et al., 2015). This triggers the need to develop reli-
able objective quality assessment to replicate human
perception by using computational models of visual
appearance and potential mathematical expressions
of images. It is desirable to predict the perceived
visual quality as human subjective perception.
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In terms of methodology, early works focused
on error visibility, which means treating an image
as the sum of the original reference and error sig-
nals. Methods such as mean squared error (MSE)
and peak signal-to-noise ratio (PSNR) have been
applied in IQA because they are simple to calcu-
late and have clear physical meanings (Wang et al.,
2003; 2004). Over the last decades, various effective
IQA metrics have been proposed. Since the charac-
teristics and quality of features determine the per-
formance of the IQA method, the key difficulty is
to model the similarities and differences in a set of
computational tractable features which can repre-
sent the crucial content and information closely re-
lated to the inherent quality of images. A structure
similarity index measure (SSIM) (Wang et al., 2004)
and other decomposition methods have been devel-
oped based on the simple fact that natural images
are highly structured, and these methods simulate
the basic function of the human visual system well
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(Sheikh et al., 2005; Zhang et al., 2014). Currently,
researchers are attempting to reveal the statistical
characteristics within the natural scene, which is less
subjective and drives more applications of statistical
tools and methods (Zhang and Chandler, 2013; Ding
and Dai, 2014). It is hypothesized that distortion
disrupts the normal statistical property of an origi-
nal image regardless of the type of distortion. Based
on this principle and model, statistical analysis is
superior to that in previous methods.

In the context of feature extraction, indepen-
dent component analysis which decomposes image
data by a linear transformation turns out to be a
powerful tool (Ding and Dai, 2014). However, in gen-
eral, such methods fail to cope with nonlinear prob-
lems because of unique and complicated mathemati-
cal expressions in coded digital image data. To over-
come the drawback of independent component anal-
ysis, Bach and Jordan (2003) proposed kernel inde-
pendent component analysis (KICA) based on min-
imizing mutual information on the entire function
space of nonlinearities using the kernel method. The
kernel method or kernel trick has been widely used
in learning and optimization algorithms as a nonlin-
ear similarity measure. Some applications based on
KICA have been proposed in research areas such as
face recognition, blind source separation, and image
watermark (Yang et al., 2005; Li et al., 2007), but
none of the KICA-based works address image qual-
ity assessment. In this study, an IQA method based
on feature extraction in nonlinear kernel space is pro-
posed. After analyzing the nonlinear feature repre-
sentation in three color channels of distorted and
original images, image quality evaluation is given by
a pooling strategy.

According to the availability of an original im-
age, IQA can be classified into full-, reduced-, and
no-reference methods (Zhang et al., 2014). Con-

sidering the complexity and difficulty of exploiting
the commonality and difference among digital im-
ages based on nonlinear features, we focus only on
the full-reference method. The basic idea of full-
reference IQA is to find the visual or statistical sim-
ilarities among the original images (images without
distortion for reference) and the difference between
the reference images and distorted images, and then
to quantify and synthesize the difference into a dis-
tortion index by a certain pooling strategy. Reduced-
and no-reference methods measure the image qual-
ity with only partial information or no information
of reference images being available, respectively (Li
and Wang, 2009; Rehman and Wang, 2012; Ma et
al., 2013; Wu et al., 2015; 2016).

The framework of the proposed method is illus-
trated in Fig. 1. In summary, there are three process-
ing stages. In the color space conversation stage, the
input reference and distorted images are separated
into RGB channels. In the feature extraction stage,
nonlinear features for each channel are extracted af-
ter dimension reduction. Finally, with a dedicated
support vector machine based pooling strategy, the
aggregation evaluation is given by synthesizing the
features in each channel.

2 Related work

Based on the hypothesis that visual percep-
tion is highly adapted for extracting structural in-
formation from a scene, most existing IQA methods
are based on structure information or decomposi-
tion (Wang et al., 2002). For example, SSIM is a
representative method which combines luminance,
contrast, and structure to simulate a human visual
system. It is widely used in image processing sys-
tems because of its good performance and simplicity
and has been extended by many researchers (Rao

Fig. 1 Framework of the proposed method
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and Reddy, 2009; Wang and Li, 2011). Yang and
Kaveh (2010) proposed a full-reference IQA method
measuring the change in the angle between the prin-
cipal singular vectors from original and distorted im-
age blocks. The change is used to quantize the loss
of structural content after distortion. Multi-scale
geometric analysis emulated by a contourlet trans-
form was applied in Liu and Yang (2009). These
transforms have advantages in multi-scale or multi-
direction aspects in analyzing images. In general,
these methods using linear features combined with
a linear or nonlinear aggregation method to prove
image quality find it difficult to analyze nonlinear
distortion types of noise in a separated way while
ignoring most of the complex image information.

Recently, natural image statistics (NIS) has
been introduced into IQA based on quantization of
statistical differences affected by a distortion (Zhang
et al., 2011; Liu et al., 2012). Hypothesizing that
distortion would affect the statistics characteristics
of features, NIS provides a promising way to assess
image quality that is different from structure-based
methods. Most decomposition methods like indepen-
dent component analysis (ICA) decompose images
or image patches into orthogonal components. Then
statistical characteristics are summarized from these
components and known as features (Chang et al.,
2015). However, the distortion types are hard to
separate using these methods and this still limits the
development of a metric.

As discussed above, feature extraction is a crit-
ical step for image quality quantification. There
should be some restrictions on the extracted features.
For example, features should be as independent as
possible from each other; otherwise, it is difficult
to deal with features carrying redundancy informa-
tion in a pooling strategy. The limited number of
features is another reason for independency as well
as consideration of computation cost. It turns out
that the obtained components extracted by many
feature extraction methods (Mittal et al., 2012) re-
lying on linear expressions by different kinds of de-
composition and transformation in the spatial and
frequency domains, are not really independent. For
example, an ICA model finds the most independent
components that are possible by a linear transfor-
mation, but a linear transformation has so few pa-
rameters that the estimated components are often
quite far from being independent (Hyvärinen et al.,

2009). Moreover, linear methods cannot separate
noise and error information thoroughly. In practice,
the expressions of digital images should be nonlinear
in a high-dimensional space representing the implicit
content within an image, which turns out to be very
similar to complex cells. As we all know, coefficients
of high-order terms of a polynomial equal zero, which
changes a problem from nonlinear to linear. In this
particular nonlinear space, the complex mix of image
content and error information may be easy to sepa-
rate and measure. Applying the same method to the
original and distorted images, we can compare the
features in pairs to tell the difference. Thus, mea-
suring nonlinear features to evaluate image quality
is more comprehensive, efficient, and promising.

Although the state-of-the-art IQA methods per-
form well in terms of computation efficiency or con-
cordance with human vision, in this study, we focus
on exploring the nonlinear features to evaluate image
quality in a way that is different from conventional
linear decomposition or transformation.

3 Nonlinear feature extraction and im-
age distortion quantification

3.1 Dimension reduction by principal compo-
nent analysis

Dimension reduction is developed along with
larger datasets and a larger number of variables
with more observations. High-dimensional datasets
provide many opportunities and mathematical chal-
lenges. Less but important information clears the
restriction of some computationally expensive meth-
ods. In general, to keep important information as
much as possible, the original data can be processed
in a covariance matrix based on second-order statis-
tics or be projected into a low-dimensional space.
Traditional methods for dimension reduction include
principal component analysis (PCA) (Jolliffe, 2002),
random projections, multi-dimensional scaling, etc.

In this study, dimension reduction is used to
specify the preprocessing of the image for further
feature extraction. We are facing two major prob-
lems in nonlinear feature extraction. For one thing,
the cardinality of the set of features of an image is
very large and unknown, so the result will be more
accurate with a larger number of samples. Consider-
ing the computing issues and algorithm complexity
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of KICA, data should be dimensionally reduced effi-
ciently in advance. The other reason is that, when
dealing with a small window size, it is possible with
a small probability that two or more image patches
contain the same content. However, the problem is
that KICA offers only a solution for full rank data.
The data must be sufficiently preprocessed.

Although PCA is not a successful model in
terms of modeling a visual system, it provides the
basis for the subsequent nonlinear feature extraction
by KICA. Therefore, we employ PCA as the prepro-
cessing tool for reducing the dimension of the input
images where the maximum amount of the variance
is preserved. For the implementation of PCA, read-
ers are referred to Hyvärinen et al. (2009) and Abdi
and Williams (2010). As an example, the data after
preprocessing by PCA is given in Fig. 2.

Fig. 2 Data derived by principal component analysis

3.2 Nonlinear feature extraction in kernel
space

In general, independent component analysis
aims to find the statistically independent factors or
factors as independent as possible, which constitute
the observed variables through linear combination.
The statistical independency ensures that each com-
ponent can be modeled, processed, and compared
separately. On the condition that observation x =

[x1, x2, . . . , xd]
T from an image can be regarded as a

product of a mixing matrix of content components
and distortion components, A ∈ R

d×m represents
weights, and component set s = [s1, s2, . . . , sm]T, it

is possible to estimate the components (ŝ) and the
demixing matrix W from the observation with no
prior knowledge:

x = As ⇒ ŝ = Wx. (1)

Here, the demixing matrix is used only to sep-
arate the component matrix which contains weights
of components to obtain original image patches. The
extracted components, which we call features, repre-
sent the original image. However, linear decompo-
sition is better at dimension reduction but not data
separation. As discussed above, we need to find a
method to transform the linear demixing or decom-
position problem into a nonlinear one. In such a
situation, the kernel method is considered to be a
good solution and is introduced here. Actually, the
kernel method owes its name to kernel functions with
the capability of turning any linear model into non-
linear ones (Schölkopf and Smola, 1998). In other
words, if a point set in a low dimension is hard to
separate using a plane, after transformation into a
high dimension, separation would be possible. Thus,
data in a low-dimensional space may be better classi-
fied in a high dimension, and the description of data
in a high dimension is better.

The nonlinear transformation is processed by
mapping the data of image patches into an implicit
reproducing kernel Hilbert space (RKHS):

φ : x ∈ R
n → φ (x) ∈ F , (2)

where x stands for the input image data, F is an
RKHS on R, φ (x) = K (·,x) is the feature map,
and K (·,x) is a kernel function in F for each x.
To obtain statistical independency, the F -correlation
between two features within the same image data is
denoted as

ρF = max
f1,f2∈F

corr (f1(x1), f2(x2))

= max
f1,f2∈F

cov(f1(x1), f2(x2))√
var(f1(x1)) · var(f2(x2))

, (3)

where f1(x1) and f2(x2) are any two features from
the RKHS of the input image.

The contrast function takes the following form:

IρF = −1

2
log (1− ρF ) , (4)

which is always non-negative and equals zero if and
only if the variables are independent.
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Based on the definitions above, KICA attempts
to separate individual nonlinear components by es-
timating and minimizing the F -correlation of the
transformed image patch:

ρ̂F = max
α,β∈Rm

αTKiKjβ
√

αTK2
i α

√
βTK2

jβ
, (5)

C(W ) = ÎρF (K1,K2, . . . ,Km), (6)

where Ki (i ∈ N+) is the Gram matrix for each
image patch.

In this way, nonlinear component extraction is
turned into calculating the demixing matrix W in
Eq. (6). By computing the inner products between
the images of all pairs of data in the feature space
instead of the coordinates of the data in the orig-
inal space, the computation difficulty and cost are
decreased greatly. A sample of features extracted by
nonlinear decomposition KICA is given in Fig. 3.

Fig. 3 Features derived by kernel independent com-
ponent analysis

3.3 Distortion quantification and quality
mapping

In general, with the features extracted from the
reference and testing images, the distortion index of
the testing image can be quantified by measuring
discrepancies of features from that of the reference
image. Because of the robustness of KICA to prob-
ability density functions, deviations of distributions
among the kernel components are not obvious. As
an example, we plot the distribution of a random
sample of kernel independent components in Fig. 4.

Three distributions are shown: one is fitted from the
features of a reference image (‘monarch.bmp’ in the
LIVE database), one is from a distorted image with
serious fast-fading distortion (‘img136.bmp’ in the
LIVE database) but the same content as the first
reference image, and the third one is from another
original image with different content (‘ocean.bmp’
in the LIVE database). Obviously, although there
is a tremendous difference of feature meaning and
distortion degree, the feature distributions exhibit
almost the same probability trends. Therefore, the
discrepancies and deviations between the nonlinear
components of each patch extracted from a distorted
image and the corresponding components from the
reference image are hardly measured by conventional
methods, such as Kullback-Leibler distance and Eu-
clidean distance. In this study, we use the correlation
coefficient to quantify such deviations:

corr(Ci(x, y))=

m∑

j=0

(xj − x̄)(yj − ȳ)

√
m∑

j=1

(xj − x̄)2 ·
m∑

j=1

(yj − ȳ)2

, (7)

where x and y represent every estimated component
from the reference and distorted images, respectively,
m is the number of image patches, and x̄ and ȳ are
the mean values. In the set of features derived from
the demixing result of content patches, the implicit
meanings are distinguishable consisting of distortion,
redundancy, and image content mathematically. If
distortion is slight, the features extracted from the
original and distorted images are more relevant. Tak-
ing an extreme example, if there is no distortion, the

Reference 1
Reference 2
Distortion 1

Fig. 4 Distribution of sample kernel independent
components
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correlation of the two matrices is 1.
Then such deviations of all the components in

the RGB color space are synthesized into a distortion
index with a pooling strategy. Instead of the con-
ventional pooling strategy that uses the Minkowski
equation which carries with it the tedious business
of weight coefficient optimization, in this study, sup-
port vector regression (SVR) is employed to learn the
optimal weights of each extracted component (fea-
ture) by supervised training. Thus, the distortion
index of all the components in each channel is com-
bined by an SVR fuser, i.e.,

Dr,g,b =

N∑

i=0

(wi|corr(Ci)|), (8)

where wi is the weight for the ith component which
is obtained from SVR training and N is the total
number of components in each color channel. We
choose the radial basis function (RBF) as the kernel
function in SVR. The SVR training and predicting
platform is LIBSVM (Chang and Lin, 2011).

Based on the fact that human vision is more
sensitive to green channel than red and blue chan-
nels, the final index aggregated from features of each
channel is synthesized and evaluated as

D = 0.299Dr + 0.587Dg + 0.114Db. (9)

Finally, a nonlinear mapping function with five
parameters is employed to map the distortion index
to an objective score (Video Quality Experts Group,
2003; Wang and Li, 2011):

Q(x)=β1

(
1

2
− 1

1+exp[β2(x−β3)]

)
+β4x+β5, (10)

where x is the image distortion index obtained
from Eq. (9) and β1–β5 are the parameters for
optimization.

4 Experimental results and discussion

Experimental results and comparisons on three
public databases, including LIVE (http://live.ece.

utexas.edu/research/quality), TID2008 (http://
www.ponomarenko.info/tid2008.htm), and CSIQ
(Larson and Chandler, 2010), are presented in this
section. In each database, there are hundreds of color
images contaminated by a variety of distortion types
as well as their corresponding reference images. For
each distorted image, the databases provide a subjec-
tive evaluation score, e.g., mean opinion score (MOS)
or difference mean opinion score (DMOS), which is
obtained by psychometric tests. The main charac-
teristics of the three databases are summarized in
Table 1.

Three criteria are employed for quantitative per-
formance evaluation of IQA methods, i.e., Pear-
son linear correlation coefficient (PLCC), Spearman
rank-order correlation coefficient (SRCC), and root
mean square error (RMSE). PLCC is an indicator of
prediction accuracy. SRCC operates on the rank of
the data points and ignores the relative distance be-
tween data points. It is used to evaluate prediction
monotonicity. RMSE is used to evaluate the predic-
tion consistency with subjective scores. The larger
values of PLCC and SRCC as well as the smaller
value of RMSE indicate a better performance of the
IQA method.

For performance evaluation, the proposed
method is compared with some representative meth-
ods, including ASVD (Yang and Kaveh, 2010),
MSDD (Liu and Yang, 2009), VIF (Sheikh et al.,
2005), MS-SSIM (Wang et al., 2003), GSM (Liu
et al., 2012), SSIM (Wang et al., 2004), QDFS
(Zhang et al., 2014), and FSIM (Zhang et al., 2011).
PSNR is selected as the basic IQA because of its sim-
plicity and superior capability in predicting the qual-
ity of images with additive noise (Liu et al., 2013).

4.1 Performance evaluation on individual dis-
tortion types

To examine the IQA performance on each dis-
tortion type, a thorough performance evaluation
is conducted on the LIVE database. The LIVE
database contains 174 fast-fading images, 174 Gauss

Table 1 Databases for performance evaluation

Database name Number of reference images Number of distorted images Number of distortion types Image size (pixel)

LIVE 29 779 5 Various
TID2008 25 1700 17 512×384

CSIQ 30 866 6 512×512
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blurred (Gblur) images, 227 JPEG2000 (JP2K) im-
ages, 233 JPEG images, and 174 white noise images.
In the experiments, the Gauss kernel is chosen for
population and precision (Genton, 2001).

Detailed performance comparison with the com-
peting methods on different image distortion types in
the LIVE database is listed in Table 2, where SRCC
is used as the evaluation measure and the best re-
sult of each distortion type has been highlighted in
boldface. Using other measures such as PLCC and
RMSE, similar conclusions can be drawn. The pro-
posed method achieves a comparatively larger SRCC
on each distortion type, validating it as a power-
ful method for image quality assessment. Although
JPEG and JPEG2000 produced significant differ-
ences in edges and structures, the proposed method
achieves results equivalent to algorithms based on
texture analysis and visual characteristics. Since
white noise is an additive noise such that PSNR

Table 2 Spearman rank-order correlation coefficient
(SRCC) comparison on individual distortion types in
the LIVE database

Method
SRCC

JP2K JPEG WN Gblur FF

PSNR 0.8954 0.8809 0.9854 0.7823 0.8907
ASVD 0.9146 0.9112 0.9425 0.8226 0.9048
MSDD 0.8991 0.8828 0.9461 0.9480 0.9226
SSIM 0.9614 0.9764 0.9694 0.9517 0.9556

MS-SSIM 0.9654 0.9793 0.9731 0.9584 0.9321
VIF 0.9683 0.9842 0.9845 0.9722 0.9652

FSIM 0.9717 0.9834 0.9652 0.9708 0.9499
GSM 0.9759 0.9392 0.8577 0.9589 0.8925
QDFS 0.9603 0.9517 0.9656 0.9527 0.9415

Proposed 0.9639 0.9766 0.9724 0.9633 0.9658
JP2K: JPEG2000 images; WN: white noise images; Gblur:
Gauss blurred images; FF: fast-fading images. The best
result of each distortion type is in boldface

outperforms other methods directly calculating the
difference, the performance of the proposed method
indicates that nonlinear features can also be used
to measure linear distortion. In addition, the pro-
posed method performs best among these methods
on fast-fading which is produced during transmission
channel fading, showing that nonlinear features have
advantages in measuring distortions with local differ-
ences over distortions with global differences. In gen-
eral, the competitive experimental results demon-
strate that the proposed method is a stable and
powerful model in accordance with the perceptual
quality.

In addition, the scatter diagrams of the pro-
posed method on the LIVE database are exhibited
in Fig. 5. Fig. 5a presents the scatter plots of the
objective scores for the entire LIVE database of
the proposed method versus subjective DMOS, and
Figs. 5b–5f show the subjective ratings of perception
versus predicted values for each type of distortion.
If the predicted score reflects the DMOS faithfully,
scatter plots should be close to the fitted curve. In-
tuitively, with most points close to the fitted logistic
curve in the scatter plots as shown in Fig. 5, the pro-
posed method provides good prediction of DMOS
and stability on different distortion types.

4.2 Performance comparison on different
databases

To validate the performance and robustness of
IQA schemes on different databases, the comparison
on all types of distortions in the three databases is
listed in Table 3, where the two best results for each
criterion on each database have been highlighted in
boldface. From Table 3, we can see that the proposed

Table 3 Performance comparison on different databases

Database Criterion PSNR SSIM MS-SSIM MSDD FSIM VIF GSM Proposed

PLCC 0.8723 0.9449 0.9409 0.8900 0.9597 0.9598 0.9437 0.9476
LIVE SRCC 0.8756 0.9479 0.9513 0.8901 0.9634 0.9632 0.9554 0.9543

RMSE 13.3597 8.9454 9.2593 7.3413 7.6780 7.6670 9.0376 7.6502

PLCC 0.5726 0.7710 0.8451 – 0.8738 0.8090 0.8462 0.8467
TID2008 SRCC 0.5794 0.7749 0.8542 – 0.8805 0.7496 0.8554 0.8488

RMSE 1.1003 0.8546 0.7173 – 0.6525 0.7888 0.7151 0.7210

PLCC 0.7998 0.8612 0.8990 – 0.9120 0.9227 0.8979 0.9143
CSIQ SRCC 0.8005 0.8756 0.9133 – 0.9242 0.9195 0.9126 0.9124

RMSE 0.1576 0.1334 0.1150 – 0.1077 0.0980 0.1156 0.1068

PLCC: Pearson linear correlation coefficient; SRCC: Spearman rank-order correlation coefficient; RMSE: root
mean square error. Two best results for each criterion on each database are in boldface
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Fig. 5 Scatter diagrams of the proposed method on different distortion types in the LIVE database: (a) for the
whole database; (b) for JPEG2000 distortion; (c) for JPEG distortion; (d) for white noise distortion; (e) for
Gauss blurred distortion; (f) for fast-fading distortion

method, FSIM, and VIF give the best performance
on almost all the three databases.

The robustness of the proposed method on dif-
ferent databases is also demonstrated in Table 3.
Clearly, VIF is not good for TID2008 although it
is the best for LIVE. Likewise, GSM is the best for

TID2008 but is relatively poor for the LIVE and
CSIQ databases. The proposed scheme and FSIM
give more consistent and stable performances across
all the three databases in comparison with the other
schemes. The experimental results demonstrate the
robustness of our method across different databases.
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5 Conclusions

In this paper, a novel image quality assessment
method has been proposed as a successful attempt to
extract nonlinear features of digital images and apply
them in the framework of IQA. In comparison with
existing image quality assessment approaches, the
results show that nonlinear features have equivalent
and even better ability to evaluate the image qual-
ity in accord with the human visual system without
considering human visual properties in IQA develop-
ment. The accuracy and robustness across different
distortion types and databases demonstrate the pro-
posed method to be a general-purpose and stable
approach. Future works include improving the com-
putation efficiency and studying the characteristics
of features further for no-reference IQA applications.
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