
Xiong et al. / Front Inform Technol Electron Eng 2016 17(7):661-671 661

A virtual service placement approach based on

improved quantum genetic algorithm*

Gang XIONG†1, Yu-xiang HU1, Le TIAN2, Ju-long LAN1, Jun-fei LI1, Qiao ZHOU1

(1National Digital Switching System Engineering & Technological Research Center, Zhengzhou 450002, China)

(2Department of Mathematics and Computer Science, University of Antwerp, Antwerp 2020, Belgium)
†E-mail: xg1226@126.com

Received Nov. 10, 2015; Revision accepted Feb. 16, 2016; Crosschecked June 9, 2016

Abstract: Despite the critical role that middleboxes play in introducing new network functionality, management and innovation
of them are still severe challenges for network operators, since traditional middleboxes based on hardware lack service flexibility
and scalability. Recently, though new networking technologies, such as network function virtualization (NFV) and software-
defined networking (SDN), are considered as very promising drivers to design cost-efficient middlebox service architectures, how
to guarantee transmission efficiency has drawn little attention under the condition of adding virtual service process for traffic.
Therefore, we focus on the service deployment problem to reduce the transport delay in the network with a combination of NFV
and SDN. First, a framework is designed for service placement decision, and an integer linear programming model is proposed to
resolve the service placement and minimize the network transport delay. Then a heuristic solution is designed based on the im-
proved quantum genetic algorithm. Experimental results show that our proposed method can calculate automatically the optimal
placement schemes. Our scheme can achieve lower overall transport delay for a network compared with other schemes and reduce
30% of the average traffic transport delay compared with the random placement scheme.

Key words: Software-defined networking (SDN), Network function virtualization, Quantum genetic algorithm, Middlebox
http://dx.doi.org/10.1631/FITEE.1500494 CLC number: TP393

1 Introduction

Current networks rely on rich functionalities,

such as improved critical performance (e.g., proxies
and load balancers), improved security (e.g., firewalls
and the intrusion detection system (IDS)), reduced
bandwidth costs (e.g., wide area network (WAN)
optimizers), and policy compliance capabilities (e.g.,
network address translation (NAT) and content filters),
which are introduced by a wide spectrum of special-
ized appliances or middleboxes (Carpenter and Brim,

2002). Sherry et al. (2012) showed that the number of
middleboxes is on par with the number of routers in a
network (e.g., an average very-large network holds
2850 layer-3 routers and 1946 middleboxes). In other
words, middleboxes are a critical part of today’s
networks and it is reasonable to expect that they will
remain so in the foreseeable future (Walfish et al.,
2004; Joseph and Stoica, 2008).

Though middleboxes are inevitably deployed in
networks and are playing a critical role in introducing
new network functionality, it is troubling that current
middlebox architectures suffer from barriers, such as
high cost (Anderson et al., 2012; Anwer et al., 2013),
limited flexibility (Rajagopalan et al., 2013), and long
development cycles (Sekar et al., 2012). The reason is
that today’s middleboxes not only are closed and
expensive systems with few or no hooks and appli-
cation programming interfaces (APIs) for extension

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

* Project supported by the National Basic Research Program (973) of
China (Nos. 2012CB315901 and 2013CB329104), the National Nat-
ural Science Foundation of China (Nos. 61309019, 61372121,
61572519, and 61502530), and the National High-Tech R&D Program
(863) of China (Nos. 2015AA016102 and 2013AA013505)

 ORCID: Gang XIONG, http://orcid.org/0000-0002-4249-6820
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2016

mao
ZJUABC

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1500494&domain=pdf

Xiong et al. / Front Inform Technol Electron Eng 2016 17(7):661-671 662

or experimentation, but also are built on a particular
chosen hardware platform that typically supports a
narrow range of specialized functions (e.g., IDS).
Worse still, middleboxes are acquired from inde-
pendent vendors and deployed as standalone devices
with little uniformity in their management APIs or
cohesiveness in how the overall middleboxes are
managed (Greenberg et al., 2005).

Given the problems stated above, how to solve
these issues of middleboxes has received a significant
amount of attention (Hwang et al., 2015). Most recent
strategies are built on two kinds of new networking
technologies, namely software-defined networking
(SDN) (McKeown et al., 2008; ONF, 2012; Nunes et
al., 2014) and network function virtualization (NFV)
(Chiosi et al., 2012; Li and Chen, 2015). These
technologies have emerged aiming at cost reduction,
network scalability increase, and service flexibility
improvement with the strategies of enabling innova-
tion in network nodes, e.g., standardized APIs and
software-centric implementations. NFV proposes to
run network functions as software instances on
commodity servers or datacenters, while SDN sup-
ports a decomposition of the network into control-
and data-plane functions. Therefore, these new con-
cepts are considered very promising drivers to design
cost-efficient middlebox service architectures (de
Turck et al., 2015; Matias et al., 2015).

Although introducing SDN and NFV to the
network function has several advantages as men-
tioned previously, it also brings some challenges for
network transmission efficiency (Shen et al., 2015).
For example, in the network shown in Fig. 1, an ad-
ditional traffic transport delay is expected, which
requires a thorough planning of the middlebox loca-
tion within the network. In Fig. 1, two kinds of virtual
middleboxes (VMs), i.e., IDS and firewall (FW),
operating on general servers 1 and 2, are placed at
network nodes R2 and R4. We assume that traffic 1
(red solid curve), which requires both the IDS and FW
services, enters the network from border router 1 and
exits the network on border router 2, while that traffic
2 (green dashed curve) needing the FW service enters
the network from border router 2 and exits the net-
work on border router 3. However, with server 1
supporting only the IDS function and server 2 per-
forming solely the FW function, traffic 1 has to trav-
erse the IDS box in R2 and then the FW box in R4,

and traffic 2 must be steered to the FW box in server 2.
Apparently, the placement scheme concerning service
locations {R2, R4} increases the traffic transport de-
lay, compared with the scheme with locations
{R2, R5}.

While routers/switches process packets at every
hop, middleboxes process only packets of a subset of
all the hops. Apparently, if the middleboxes are de-
ployed randomly or in some remote nodes, the net-
work traffic may be sent on a detour for the middle-
box services, leading to a potential increase in packet
latency and bandwidth consumption. Therefore, there
is still an orthogonal problem at the network planning
stage, i.e., where to place these middlebox services so
that this performance penalty is minimized. We de-
note this problem as the service placement problem.

In this paper, the middlebox service placement
problem is discussed, focusing on how to place ser-
vices in the network with the objective of minimizing
the average time it takes for the subscribers’ traffic to
go through all required services. The following two
key contributions are made:

1. We formulate the service placement problem
in theory by the integer linear programming model.

2. We propose a heuristic solution based on the
improved quantum genetic algorithm (QGA), and
evaluate the algorithm performance.

2 Related work

Much current research focuses on the evolution

of the middlebox service model. Generally, two
complementary approaches are followed. The first

Fig. 1 Motivation of the service deployment problem
(References to color refer to the online version of this
figure)

Xiong et al. / Front Inform Technol Electron Eng 2016 17(7):661-671 663

tackles the high building capital expenditures
(CAPEX) and limited extensibility by employing a
combination of NFV and SDN. It allows operators to
decouple the dependence from specialized equipment
and operate network functions as virtualized software
instances on a standardized platform instead. The
second tackles the high operation expenditures
(OPEX) and limited flexibility in the service proce-
dure by SDN controlling routing through the speci-
fied functional sequence. The main work related to
these two approaches is summarized here.

On the one hand, Sherry et al. (2012) proposed a
practical service framework for outsourcing enter-
prise middlebox processing to the shared cloud
computing platform (Qi et al., 2014). Sekar et al.
(2011) innovated middlebox deployment with the
software-centric middlebox implementations running
on general-purpose hardware platforms managed via
open and extensible management APIs. Regarding
VMs as first-class entities, Gember et al. (2012a)
presented a framework for immediate application
deployment over or under the cloud. Furthermore,
Gember et al. (2012b) realized a software-defined
middlebox networking framework to simplify the
management of complex and diverse functionalities.
In the scenarios of NFV and SDN, Gember et al.
(2014) designed a control plane called OpenNF,
which could provide efficient, coordinated control of
both internal middlebox state and network forwarding
state.

On the other hand, Qazi et al. (2013) presented
the SIMPLE architecture, an SDN-based policy en-
forcement layer for efficient middlebox-specific traf-
fic steering. Built upon SDN and the OpenFlow pro-
tocol, Zhang et al. (2013) proposed a scalable
framework (called StEERING) for dynamic traffic
routing through any sequence of middleboxes.
Fayazbakhsh et al. (2014) developed the FlowTags
architecture, which consists of SDN controllers and
FlowTags-enhanced middleboxes, to integrate mid-
dleboxes into SDN-capable networks. Gushchin et al.
(2015) proposed a solution for routing traffic in an
SDN-enabled dynamic network environment with
consolidated middleboxes implemented using virtual
machines. Cheng et al. (2015) used the simulating
annealing algorithm for the combinational problem of
service chains, which could manage network services
in an efficient and scalable way.

The above studies either are based on the as-
sumption that the service has been deployed or make
only some preliminary exploration on the service
problem (Basta et al., 2014; Lange et al., 2015; Mo-
hammadkhan et al., 2015). Few studies have designed
a specific deployment strategy, which is our focus in
the next section.

3 Proposed solution

Our goal in this section is to address the service
placement problem by combining the theory of QGA
with the structure of SDN and NFV, which includes
today’s SDN controller (Gude et al., 2008), Open-
Flow switches, and virtual network function compo-
nents. Our solution is an optimal middlebox service
placement policy maker that decides a reasonable
high-level deployment policy for the network.

3.1 SDN/NFV-based architecture

Fig. 2 gives an overview of our architecture,
where virtual implementations of middlebox applica-
tions are consolidated to run on a general-purpose
shared hardware platform, managed in a logically
centralized manner with uniform APIs for a network-
wide view. This SDN and NFV based solution re-
duces the cost and development cycles to build and
deploy new middlebox applications.

As shown in Fig. 2, the components of the ar-
chitecture can be classified into three kinds: (1) the
control plane components including the network

Fig. 2 Overview of middlebox deployment using
SDN/NFV

Xiong et al. / Front Inform Technol Electron Eng 2016 17(7):661-671 664

operation system, decision module, and databases; (2)
the data plane components containing the OpenFlow
switches and VM platforms; and (3) the interfaces
between the control plane and the data plane, such as
the OpenFlow protocol. Next, we will describe the
roles of the main components and how the proposed
solution can be used in the context of SDN and NFV.

The controller is the central administrator of the
network and plays a core role in our proposed scheme.
The controller periodically collects network state
information, including network topology, service
function description, network resources (e.g., band-
width and network-wide traffic workload), and stores
them in the databases. The substrate of SDN/NFV
contains routers/switches and NFV platforms, which
forward the traffic and provide middlebox service. In
addition, the APIs are responsible mainly for the
communication tasks between the control- and data-
planes.

The procedure of our placement scheme is as
follows: First, with the input databases in the con-
troller and the requirement of placement, the SDN
controller runs the service placement decision module,
which solves an optimization problem of minimizing
network-wide transport delay. Second, the results of
the decision module are output of the configuration
policy to guide service placement operation by the
uniform APIs. Finally, NFV platforms are placed on
network nodes with optimal locations, which can
provide middlebox services for the traffic from the
nodes without the service placed (as illustrated by
dashed lines in Fig. 2).

3.2 Integer programming model for service
placement

We formulate the service deployment problem as
an optimization problem that aims at minimizing the
transport delay or distance to be traversed by all
subscribers’ traffic (Lu et al., 2013). Assume that the
network topology is defined as an undirected graph
G=(V, E), with node set V representing switches and
edge set E representing the links. For example, in the
topology of Fig. 2, graph G is a symmetric graph with
weighted edges, and each edge is associated with a
transport delay value d(l) (lE).

The objective is to find a subset VS of the loca-
tions among all candidates V (1≤|VS|≤|V|=N, |·| is the

cardinality of a set), and place the services in these
selected locations so that the total delay for all the
users is minimized. The optimization problem can be
considered as an integer linear programming (ILP)
model, whose feasible solution defines a scheme that
satisfies our objectives. The problem is formulated as
follows:

First, given two nodes vi and vj (vi, vjV, vi≠vj),
the minimum transport delay between vi and vj is
calculated by

(,)
(,) arg min (),

k i j k

i j
p P v v l p

d v v d l
 

  (1)

where P(vi, vj) denotes the set of paths from node vi to
node vj, and pk is one path element of set P(vi, vj).

Let D=[d(vi, vj)]N×N (i, j=1, 2, …, N) denote the
shortest path matrix of graph G, and VE (VEV) the
egress node set. The linear optimization model is
shown as

E S

1 1

min (,) (1) (,)
N N

i i i i i i
i i

x d v v x d v v
 

 
  

 
  (2)

S

1,2,..., , 1

s.t. , { | , 1,

 (,) argmin (,)},
j

i i n n n

i n i j
j N x

v V v v v V x

d v v d v v
 

    

 (3)

E

E E, { | ,

 (,) arg min (,)},
j

i i k k

i k i j
v V

v V v v v V

d v v d v v


   

 (4)

{0, 1}, 1,2,..., ,ix i N  (5)

where xi{0, 1} (i=1, 2, …, N) are the variables of the
optimization (xi=0 means that node vi is not selected
for service placement; otherwise, vi is the location of

the network service), S
iv is the service node corre-

sponding to node vi, and E
iv is the egress point cor-

responding to node vi. Expression (2) defines the total
transport delay, which is calculated as the sum of the
transport delay between the ingress points and the
service points and the transport delay between the
service points and the egress points. Constraint (3)
means assigning the service node with the minimum

transport delay to vi as S.iv Constraint (4) indicates

that the egress node with the minimum transport delay

to vi is selected as E.iv

Xiong et al. / Front Inform Technol Electron Eng 2016 17(7):661-671 665

3.3 Solution based on the improved quantum ge-
netic algorithm

Malossini et al. (2008) and Mohammed et al.
(2012) have shown that the quantum genetic algo-
rithm (QGA) has a good performance in dealing with
integer programming. In this study, we extend the
basic QGA with some improvement methods, such as
dynamic rotation angle mechanism, quantum muta-
tion, and population catastrophe. Then we propose a
algorithm (called SP-IQGA) based on the improved
quantum genetic algorithm (IQGA) for the ILP model
to obtain the optimal service placement (SP).

3.3.1 Introduction to QGA

QGA is based on the concepts of quantum bit
and quantum superposition state. The basic unit of
information in quantum computation is the qubit. A
qubit is a two-level quantum system with basis states
|0 and |1 , which can be represented by a superpo-

sition of the basis states:

2 2| | 0 |1 1,           (6)

where α and β are complex numbers, denoting the
probability amplitudes of the basis states.

QGA operates on a population composed of
multiple feasible solutions. Each feasible solution of
the QGA, which is made up of multiple qubits, is the
element chromosome of the population. If the proba-
bility amplitudes of a qubit are [α, β]T, a chromosome
containing N qubits is described by

1 2

1 2

1 2

,

N

N

N

q q q

C
 
 

 
  
 





 (7)

where each qubit qi (i=1, 2, …, N) of the chromosome
C can be one of the state |0 , state |1 , and superpo-

sition of states |0 and |1 , and will collapse into a

certain state (|0 or |1) in the observation of chro-

mosome. So, this operation endows the QGA with
better population diversity than the basic genetic
algorithm.

In our SP-IQGA algorithm, the ith qubit state of
chromosome C represents the service information of
node vi; i.e., qi with state |1 means that node vi is

chosen as the service placement location; otherwise,

qi with state |0 means that vi is not placed in the

service.

3.3.2 Formulation of the SP-IQGA algorithm

The main steps of the SP-IQGA algorithm can be
described as follows:

Step 1: acquisition of the shortest path matrix D.
D is an important input parameter, and contains all
minimum transport delays between any two nodes in
graph G. For example, element d(vi, vj) of the ith row
and jth column in D is the minimum transport delay
value between vi and vj, which can be calculated by
using the Bellman-Ford algorithm.

Step 2: initialization of the QGA. At the initial
stage of SP-IQGA, we set the chromosome popula-
tion size as M and the qubit length of each individual
chromosome as N. Denote the tth generation popula-

tion as () () ()
1 2() { , , , },t t t

MP t C C C  where ()t
mC (m=1,

2, …, M) is as described in Eq. (7). In the initial
search of the algorithm, all states appear with the
same probability, so we set

(0) (0) 1

, 1,2, , , 1,2, ,
2

mi mi i N m M     

and obtain

(0) (0) (0)

(0) 1 2
(0) (0) (0)

1 2

1 / 2 1/ 2 1/ 2
.

1 / 2 1/ 2 1/ 2

m m mN
m

m m mN

C
  
  
 

  
 
 

  
  








Step 3: measurement of the observation value of

chromosome C. The chromosome observation is to
make each qubit of the chromosome collapse into a
certain state. The measurement method is to generate
a random number in range [0, 1] for each qubit. If the
random number is less than |α|2, the measurement
value of the qubit is 0; otherwise, it is 1. After the
measurement operation, C is transformed to the ob-
servation value XC={x1, x2, …, xN}, where xi (i=1,
2, …, N) is a binary variable (0 or 1).

Step 4: calculation of the fitness. The fitness is
the metric indicating the quality of the individual. The
higher the fitness value, the closer the individual to
the optimal solution. For individual XC={x1, x2, …,
xN}, the fitness function can be obtained by

Xiong et al. / Front Inform Technol Electron Eng 2016 17(7):661-671 666

1

E S

1 1

Fit() (,) (1) (,) .
N N

C i i i i i i
i i

X x d v v x d v v


 

    
 
  (8)

Step 5: adaptive adjustment strategy for the

quantum rotation gate. In QGA, the population can be
updated by quantum rotation gate U(θ). Based on the
quantum rotation gate, the adjustment operation of the

ith qubit in ()t
mC is as follows:

cos sin

() ,
sin cos

mi mi i i mi

mi mi i i mi

    


    
        

               
U (9)

where mi and mi  represent the probability ampli-

tudes of the ith qubit after adjustment. θi denotes the
rotation angle of quantum rotation gate, defined by

θi=s(αi, βi)·Δθi, (10)

where s(αi, βi) determines the direction of quantum
rotation and Δθi determines the size of quantum rota-
tion. To reduce the influence of the rotation angle on
the algorithm convergence rate, an adaptive method is
used to adjust θi in this study. Specific adjustment
policies are shown in Table 1, where δ is a coefficient
related to the convergence rate of the algorithm, and
we set it as a variable changing with the number of
iterations:

0.04π 1 ,
1

t

T
      

 (11)

where σ[0, 1] is a constant, t is the current evolution
iteration number, and T is the total number of evolu-
tion iterations.

Step 6: quantum variation and quantum crosso-
ver. The performance of QGA can be improved by
quantum variation and quantum crossover. Quantum
variation can generate new individuals to prevent
QGA from evolving into a local optimal solution.
During the variation, we choose a small proportion of
individuals from the population, appoint randomly a
variable qubit of chromosomes, and swap the proba-
bility amplitudes α and β of the appointed qubit. On
the other hand, quantum crossover can produce more
new models to improve the searching performance of
the algorithm. Our specific implementation process is
that all individuals in the population are ordered

randomly and then a new population is obtained by
cyclically shifting the ith qubit for i–1 times in all
ordered individuals.

Based on the above description, we input all
algorithm parameters and call the SP-IQGA algorithm
to obtain the service placement scheme. The process
flow is shown in Algorithm 1.

Upon the controller, the decision module runs
the SP-IQGA algorithm and achieves the result
Xb={x1, x2, …, xi, …, xN}, where xi represents the node
vi being the service location vS.

4 Performance evaluation

4.1 Experimental environment

To evaluate the performance, we set up the ex-
perimental environment on a computer with a 2.67
GHz two-core Intel® CoreTM i7 CPU and 4 GB RAM.
The GT-ITM tool (Zegura et al., 1996) is used for
generating different network topologies, and we im-
plement the proposed algorithm with MATLAB.

We evaluate the SP-IQGA algorithm for the
service location described in Section 3 using the test
topology from the GT-ITM and the simulated real
network traffic from the data center network traffic
record. The method for generating links is Waxman,
with parameters α=0.3 and β=0.2. The link transport
delay in the test topology is measured in millisecond,
and the transport delay of each link is randomly dis-
tributed in range [1, 100]. In SP-IQGA, we set the
population size M=20 and the variation probability
r=0.1.

4.2 Evaluation results

4.2.1 Effectiveness of different parameters

With the intelligent decision of QGA, SP-IQGA
can calculate automatically the service node number

Table 1 Adjustment policies for the rotation angle

ix b
ix Fit(X)≥Fit(Xb) Δθi

s(αi, βi)

αi βi>0 αi βi<0 αi=0 βi=0

0 1 False 0 0 0 0 0

0 1 True δ −1 ±1 ±1 0

1 0 False δ −1 ±1 ±1 0

1 0 True δ 1 −1 0 ±1

1 1 False δ 1 −1 0 ±1

1 1 True δ 1 −1 0 ±1

Xb is the current optimal solution, and b
ix is the ith qubit of Xb

Xiong et al. / Front Inform Technol Electron Eng 2016 17(7):661-671 667

(NS) under different network topologies. For different
network sizes (NV), the optimal service node ratios
(NS/NV) with different numbers of egress nodes (NE)
are obtained by SP-IQGA (Eqs. (2)–(5)) (Fig. 3). It is
intuitive to find that the service node ratio is in range
[0.05, 0.25] and increases with NE. The reason is that
with more egress nodes, more network nodes become
suitable for the placing service.

Then, under different values of parameter NE and
set NV=100, we show the overall transport delay
(Eq. (2)) of network traffic varying with the iteration
number in Fig. 4. SP-IQGA reaches rapidly the con-
vergence state after about 100 iterations and searches
toward the optimal solution by quantum variation and

quantum crossover (i.e., sharp changes in the overall
delays).

Finally, we test the convergence performance of
SP-IQGA by comparison with the genetic algorithm
(GA) and the basic quantum genetic algorithm (QGA).
Under the conditions NE=5 and NV=200 or 500, we
acquire the simulation results of three algorithms.
Fig. 5 illustrates that our SP-IQGA converges to the
stable states faster. Furthermore, the larger the net-
work size, the more obvious the advantage.

Algorithm 1 SP-IQGA
Input: network topology graph G, population size M, chro-
mosome length N, variation probability r, number of evolu-
tion iterations T
Output: optimal placement location scheme Xb
1 Run the Bellman-Ford algorithm for calculating the

shortest path matrix D of G

2 Generate original population (0) (0) (0)
1 2(0) { , , , },MP C C C 

and initialize each chromosome individual
3 Measure P(t) and obtain observation value O(t)={X1,

X2, …, XM}
4 for all XiO(t) do
5 for all xjXi do
6 if xj=0 then

7 Query matrix D, and assign a minimum transport

delay node S
iv to xj

8 end if

9 end for

10 Calculate the fitness value Fit(Xi)

11 end for

12 Xb={Xi|Fit(Xi)=argmaxXO(t) Fit(X)}
13 while (t<T)
14 Evolve t to t+1 by quantum rotation gate: t=t+1

15 Perform steps 3 to 10

16 B(t)={Xi|Fit(Xi)=argmaxXO(t) Fit(X)}
17 if Fit(Xb)<Fit(B(t)) then

18 Xb=B(t)

19 end if
20 if Xb has not changed after N/2 evolution generations

then
21 Do quantum crossover for P(t)

22 Do quantum variation with probability r for P(t)

23 end if

24 end while

Fig. 3 Service node ratio with different network sizes

100 200 300 400 500
0.05

0.10

0.15

0.20

0.25

Number of network nodes (NV)

NE=1

NE=3

NE=5

Fig. 4 Overall transport delay with different number of
iterations

0 20 40 60 80 100
1900

2000

2100

2200

2300

2400

2500

2600

Number of iterations

O
ve

ra
ll

de
la

y
(m

s)

NE=1

NE=3

NE=5

Fig. 5 Convergence comparison of different strategies

O
ve

ra
ll

de
la

y
(m

s)

Xiong et al. / Front Inform Technol Electron Eng 2016 17(7):661-671 668

Furthermore, we show the time consumptions of
operating 200 iterations for the three algorithms in
Fig. 6. As shown, with the increase in network size,
the computation time of the three methods also in-
creases rapidly. The consumed time of SP-IQGA is
more than that of QGA, and both are much higher
than that of GA. The reason is that SP-IQGA and
QGA execute quantum operation, quantum variation,
and quantum crossover, which spend more calcula-
tion time. In particular, the dynamic quantum rotation
operation in the SP-IQGA algorithm further increases
its time consumption.

4.2.2 Comparison of different algorithms

To verify the performance of the proposed algo-
rithm, we compare our SP-IQGA with four other
placement strategies.

Strategy 1 is based on random placement, de-
noted as SP-Random; strategy 2 is based on the
greedy algorithm, denoted as SP-Greedy (Zhang et al.,
2013); strategy 3 is based on a heuristics, denoted as
SP-B+COR (Mohammadkhan et al., 2015); strategy 4
is based on another heuristics, denoted as SP-Anneal
(Cheng et al., 2015). The notations and descriptions
of different algorithms are listed in Table 2.

Fig. 7 shows the simulation results of the five
strategies when NE=5. The overall transport delay of
the optimal deployment scheme obtained by different
policies increases with the increase of the network
size. It is easily seen that the transport delay of
SP-IQGA is similar to that of SP-B+COR, and they
are both lower than that of the three other strategies
under the same network size.

Under the same condition as in Fig. 7, Fig. 8
shows the computational time overhead of the five
algorithms. Because the random strategy does not
need to solve the optimization problem, its time

overhead is set to zero. The simulation results
demonstrate that the calculation time of SP-B+COR
is the highest among the algorithms compared and its
time consumption increases rapidly with the increase
of the network size. Relatively speaking, the calcula-
tion time overhead of our proposed SP-IQGA algo-
rithm is significantly lower than that of the three other
heuristic algorithms, and it is less affected by the
network size.

For the network topology with NV=100 and
NE=5, we execute service placement using the five
algorithms to obtain their respective optimal de-
ployment schemes: Xrandom, Xgreedy, Xanneal, XB+COR, and
XIQGA. We simulate 10 types of application traffics
and each application contains 5 data flows. Therefore,
a total number of 50 flows are investigated. Suppose
that every data flow needs to be processed by mid-
dlebox services, and these service requests can be
satisfied by a service node. Under the five service

Table 2 Comparison of algorithms

Algorithm Description

SP-Random Service placement based on a random number
generator

SP-Greedy Service placement based on a greedy algo-
rithm (Zhang et al., 2013)

SP-B+COR Service placement based on a heuristic
method of partitioning flows (Moham-
madkhan et al., 2015)

SP-Anneal Service placement based on a simulating
annealing algorithm (Cheng et al., 2015)

SP-IQGA Service placement based on an improved
quantum genetic algorithm proposed in this
study

Fig. 7 Comparison of overall transport delay under
different network sizes

Fig. 6 Comparison of time cost of different strategies

Xiong et al. / Front Inform Technol Electron Eng 2016 17(7):661-671 669

placement schemes, we let all flows transport the
network topology and compute the average transport
delay of each traffic for different deployment
schemes.

Fig. 9 shows the average transport delay of data
flows in each network application under different
placement algorithms. The results show that the av-
erage transport delay of SP-Random is the highest
among all schemes. The delays of SP-Greedy and
SP-Anneal are similar and lie in the middle of the
algorithms compared. SP-B+COR and SP-IQGA can
achieve less transport delay.

Fig. 10 shows the transport delay cumulative
distribution function (CDF) for all the flows. CDF can
show clearly the transmission delay distribution of all
applications. The greater the curvature of a CDF
curve, the more concentrated the delay value distri-
bution. As shown, the transport delay of each data

flow is distributed in [0, 200]. For 50% of the flows,
SP-B+COR and SP-IQGA can achieve about 51 and
55 ms transport delays, respectively, while SP-Greedy,
SP-Anneal, and SP-Random need 63, 67, and 80 ms
transport delays, respectively. Compared with
SP-Random, SP-IQGA can decrease the transport
delay by about 30%. Thus, the advantage of SP-IQGA
is significant, and it can be used to efficiently solve
the service placement problem.

5 Conclusions

To solve the service deployment problem in the

NFV and SDN network environment, we presented a
placement approach based on the improved quantum
genetic algorithm. Built on top of SDN and the intel-
ligence of QGA, our placement strategy can auto-
matically obtain the optimal schemes for different
network topologies. Simulation experiments showed
that significant latency reduction can be obtained by
our algorithm for placing services in different net-
work topologies. In future work, we will use the
proposed approach to help construct network function
service chains.

Acknowledgements

The authors would like to thank the reviewers of China
Future Network Development and Innovation Forum 2015
(5th FNF). Their careful examination of the manuscript and
valuable comments helped us considerably improve the paper.

References
Anderson, J.W., Braud, R., Kapoor, R., et al., 2012. xOMB:

extensible open middleboxes with commodity servers.

Fig. 8 Comparison of time cost of different algorithms
under different network sizes

Fig. 9 Comparison of average transport delay under
different traffic flows

Fig. 10. Distribution of transport delay of different ser-
vice placement strategies

Xiong et al. / Front Inform Technol Electron Eng 2016 17(7):661-671 670

Proc. 8th ACM/IEEE Symp. on Architectures for Net-
working and Communications Systems, p.49-60.
http://dx.doi.org/10.1145/2396556.2396566

Anwer, B., Benson, T., Feamster, N., et al., 2013. A slick con-
trol plane for network middleboxes. Proc. 2nd ACM
SIGCOMM Workshop on Hot Topics in Software De-
fined Networking, p.147-148.
http://dx.doi.org/10.1145/2491185.2491223

Basta, A., Kellerer, W., Hoffmann, M., et al., 2014. Applying
NFV and SDN to LTE mobile core gateways, the func-
tions placement problem. Proc. 4th Workshop on All
Things Cellular: Operations, Applications, and Chal-
lenges, p.33-38.
http://dx.doi.org/10.1145/2627585.2627592

Carpenter, B., Brim, S., 2002. Middleboxes: Taxonomy and
Issues, RFC 3234. The Internet Engineering Task Force.
Available from http://www.rfc-base.org/rfc-3234.html.

Cheng, G.Z., Chen, H.C., Hu, H.C., et al., 2015. Enabling
network function combination via service chain instanti-
ation. Comput. Netw., 92(Part 2):396-407.
http://dx.doi.org/10.1016/j.comnet.2015.09.015

Chiosi, M., Clarke, D., Willis, P., et al., 2012. Network func-
tions virtualisation—introductory white paper. SDN and
OpenFlow World Congress. Available from
https://portal.etsi.org/NFV/NFV_White_Paper.pdf.

de Turck, F., Boutaba, R., Chemouil, P., et al., 2015. Guest
editors’ introduction: special issue on efficient manage-
ment of SDN/NFV-based systems—part I. IEEE Trans.
Netw. Serv. Manag., 12(1):1-3.
http://dx.doi.org/10.1109/TNSM.2015.2403775

Fayazbakhsh, S.K., Chaing, L., Sekar, V., et al., 2014. En-
forcing network-wide policies in the presence of dynamic
middlebox actions using FlowTags. 11th USENIX Symp.
on Networked Systems Design and Implementation,
p.533-546.

Gember, A., Grandl, R., Anand, A., et al., 2012a. Stratos:
virtual middleboxes as first-class entities. Technical Re-
port, No. TR1771, University of Wisconsin-Madison, WI.

Gember, A., Prabhu, P., Ghadiyali, Z., et al., 2012b. Towards
software-defined middlebox networking. Proc. 11th
ACM Workshop on Hot Topics in Networks, p.7-12.
http://dx.doi.org/10.1145/2390231.2390233

Gember, A., Viswanathan, R., Prakash, C., et al., 2014.
OpenNF: enabling innovation in network function control.
Proc. ACM Conf. on SIGCOMM, p.163-174.
http://dx.doi.org/10.1145/2740070.2626313

Greenberg, A., Hjalmtysson, G., Maltz, D.A., et al., 2005. A
clean slate 4D approach to network control and man-
agement. ACM SIGCOMM Comput. Commun. Rev.,
35(5):41-54.
http://dx.doi.org/10.1145/1096536.1096541

Gude, N., Koponen, T., Pettit, J., et al., 2008. NOX: towards an
operating system for networks. ACM SIGCOMM Comput.
Commun. Rev., 38(3):105-110.
http://dx.doi.org/10.1145/1384609.1384625

Gushchin, A., Walid, A., Tang, A., 2015. Scalable routing in

SDN-enabled networks with consolidated middleboxes.
Proc. ACM SIGCOMM Workshop on Hot Topics in
Middleboxes and Network Function Virtualization,
p.55-60. http://dx.doi.org/10.1145/2785989.2785999

Hwang, J., Ramakrishnan, K.K., Wood, T., 2015. NetVM: high
performance and flexible networking using virtualization
on commodity platforms. IEEE Trans. Netw. Serv.
Manag., 12(1):34-47.
http://dx.doi.org/10.1109/TNSM.2015.2401568

Joseph, D., Stoica, I., 2008. Modeling middleboxes. IEEE
Netw., 22(5):20-25.
http://dx.doi.org/10.1109/MNET.2008.4626228

Lange, S., Gebert, S., Zinner, T., et al., 2015. Heuristic ap-
proaches to the controller placement problem in large
scale SDN networks. IEEE Trans. Netw. Serv. Manag.,
12(1):4-17.
http://dx.doi.org/10.1109/TNSM.2015.2402432

Li, Y., Chen, M., 2015. Software-defined network function
virtualization: a survey. IEEE Access, 3:2542-2553.
http://dx.doi.org/10.1109/ACCESS.2015.2499271

Lu, B., Chen, J.Y., Cui, H.Y., et al., 2013. A virtual network
mapping algorithm based on integer programming. J.
Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(12):
899-908. http://dx.doi.org/10.1631/jzus.C1300120

Malossini, A., Blanzieri, E., Calarco., T., 2008. Quantum
genetic optimization. IEEE Trans. Evol. Comput., 12(2):
231-241. http://dx.doi.org/10.1109/TEVC.2007.905006

Matias, J., Garay, J., Toledo, N., et al., 2015. Toward an
SDN-enabled NFV architecture. IEEE Commun. Mag.,
53(4):187-193.
http://dx.doi.org/10.1109/MCOM.2015.7081093

McKeown, N., Anderson, T., Balakrishnan, H., et al., 2008.
OpenFlow: enabling innovation in campus networks.
ACM SIGCOMM Comput. Commun. Rev., 38(2):69-74.
http://dx.doi.org/10.1145/1355734.1355746

Mohammadkhan, A., Ghapani, S., Liu, G.Y., et al., 2015. Vir-
tual function placement and traffic steering in flexible and
dynamic software defined networks. IEEE Int. Workshop
on Local and Metropolitan Area Networks, p.1-6.
http://dx.doi.org/10.1109/LANMAN.2015.7114738

Mohammed, A.M., Elhefnawy, N.A., El-Sherbiny, M.M., et al.,
2012. Quantum crossover based quantum genetic algo-
rithm for solving non-linear programming. 8th Int. Conf.
on Informatics and Systems, p.BIO-145-BIO-153.

Nunes, B.A.A., Mendonca, M., Nguyen, X.N., et al., 2014. A
survey of software-defined networking: past, present, and
future of programmable networks. IEEE Commun. Surv.
Tutor., 16(3):1617-1634.
http://dx.doi.org/10.1109/SURV.2014.012214.00180

Open Networking Foundation (ONF), 2012. Software-Defined
Networking: the New Norm for Networks. ONF White
Paper.

Qazi, Z.A., Tu, C.C., Chiang, L., et al., 2013. SIMPLE-fying
middlebox policy enforcement using SDN. Proc. ACM
SIGCOMM Conf., p.27-38.
http://dx.doi.org/10.1145/2486001.2486022

Xiong et al. / Front Inform Technol Electron Eng 2016 17(7):661-671 671

Qi, H., Shiraz, M., Liu, J.Y., et al., 2014. Data center network
architecture in cloud computing: review, taxonomy, and
open research issues. J. Zhejiang Univ.-Sci. C (Comput. &
Electron.), 15(9):776-793.
http://dx.doi.org/10.1631/jzus.C1400013

Rajagopalan, S., Williams, D., Jamjoom, H., et al., 2013.
Split/Merge: system support for elastic execution in vir-
tual middleboxes. 10th USENIX Symp. on Networked
Systems Design and Implementation, p.227-240.

Sekar, V., Ratnasamy, S., Reiter, M.K., et al., 2011. The mid-
dlebox manifesto: enabling innovation in middlebox de-
ployment. Proc. 10th ACM Workshop on Hot Topics in
Networks, p.1-6.
http://dx.doi.org/10.1145/2070562.2070583

Sekar, V., Egi, N., Ratnasamy, S., et al., 2012. Design and
implementation of a consolidated middlebox architecture.
Proc. 9th USENIX Conf. on Networked Systems Design
and Implementation, p.323-336.

Shen, J., He, W.B., Liu, X., et al., 2015. End-to-end delay

analysis for networked systems. Front. Inform. Technol.
Electron. Eng., 16(9):732-743.
http://dx.doi.org/10.1631/FITEE.1400414

Sherry, J., Hasan, S., Scott, C., et al., 2012. Making middle-
boxes someone else’s problem: network processing as a
cloud service. ACM SIGCOMM Comput. Commun. Rev.,
42(4):13-24. http://dx.doi.org/10.1145/2377677.2377680

Walfish, M., Stribling, J., Krohn, M., et al., 2004. Middleboxes
no longer considered harmful. Proc. 6th Symp. on Oper-
ating Systems Design & Implementation, p.215-230.

Zegura, E.W., Calvert, K.L., Bhattacharjee, S., 1996. How to
model an internetwork. 15th Annual Joint Conf. of the
IEEE Computer and Communications Societies,
p.594-602.
http://dx.doi.org/10.1109/INFCOM.1996.493353

Zhang, Y., Beheshti, N., Beliveau, L., et al., 2013. StEERING:
a software-defined networking for inline service chaining.
Proc. 21st IEEE Int. Conf. on Network Protocols, p.1-10.
http://dx.doi.org/10.1109/ICNP.2013.6733615

