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Abstract:    Despite the critical role that middleboxes play in introducing new network functionality, management and innovation 
of them are still severe challenges for network operators, since traditional middleboxes based on hardware lack service flexibility 
and scalability. Recently, though new networking technologies, such as network function virtualization (NFV) and software- 
defined networking (SDN), are considered as very promising drivers to design cost-efficient middlebox service architectures, how 
to guarantee transmission efficiency has drawn little attention under the condition of adding virtual service process for traffic. 
Therefore, we focus on the service deployment problem to reduce the transport delay in the network with a combination of NFV 
and SDN. First, a framework is designed for service placement decision, and an integer linear programming model is proposed to 
resolve the service placement and minimize the network transport delay. Then a heuristic solution is designed based on the im-
proved quantum genetic algorithm. Experimental results show that our proposed method can calculate automatically the optimal 
placement schemes. Our scheme can achieve lower overall transport delay for a network compared with other schemes and reduce 
30% of the average traffic transport delay compared with the random placement scheme. 
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1  Introduction 
 
Current networks rely on rich functionalities, 

such as improved critical performance (e.g., proxies 
and load balancers), improved security (e.g., firewalls 
and the intrusion detection system (IDS)), reduced 
bandwidth costs (e.g., wide area network (WAN) 
optimizers), and policy compliance capabilities (e.g., 
network address translation (NAT) and content filters), 
which are introduced by a wide spectrum of special-
ized appliances or middleboxes (Carpenter and Brim, 

2002). Sherry et al. (2012) showed that the number of 
middleboxes is on par with the number of routers in a 
network (e.g., an average very-large network holds 
2850 layer-3 routers and 1946 middleboxes). In other 
words, middleboxes are a critical part of today’s 
networks and it is reasonable to expect that they will 
remain so in the foreseeable future (Walfish et al., 
2004; Joseph and Stoica, 2008).  

Though middleboxes are inevitably deployed in 
networks and are playing a critical role in introducing 
new network functionality, it is troubling that current 
middlebox architectures suffer from barriers, such as 
high cost (Anderson et al., 2012; Anwer et al., 2013), 
limited flexibility (Rajagopalan et al., 2013), and long 
development cycles (Sekar et al., 2012). The reason is 
that today’s middleboxes not only are closed and 
expensive systems with few or no hooks and appli-
cation programming interfaces (APIs) for extension 
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or experimentation, but also are built on a particular 
chosen hardware platform that typically supports a 
narrow range of specialized functions (e.g., IDS). 
Worse still, middleboxes are acquired from inde-
pendent vendors and deployed as standalone devices 
with little uniformity in their management APIs or 
cohesiveness in how the overall middleboxes are 
managed (Greenberg et al., 2005). 

Given the problems stated above, how to solve 
these issues of middleboxes has received a significant 
amount of attention (Hwang et al., 2015). Most recent 
strategies are built on two kinds of new networking 
technologies, namely software-defined networking 
(SDN) (McKeown et al., 2008; ONF, 2012; Nunes et 
al., 2014) and network function virtualization (NFV) 
(Chiosi et al., 2012; Li and Chen, 2015). These 
technologies have emerged aiming at cost reduction, 
network scalability increase, and service flexibility 
improvement with the strategies of enabling innova-
tion in network nodes, e.g., standardized APIs and 
software-centric implementations. NFV proposes to 
run network functions as software instances on 
commodity servers or datacenters, while SDN sup-
ports a decomposition of the network into control- 
and data-plane functions. Therefore, these new con-
cepts are considered very promising drivers to design 
cost-efficient middlebox service architectures (de 
Turck et al., 2015; Matias et al., 2015).  

Although introducing SDN and NFV to the 
network function has several advantages as men-
tioned previously, it also brings some challenges for 
network transmission efficiency (Shen et al., 2015). 
For example, in the network shown in Fig. 1, an ad-
ditional traffic transport delay is expected, which 
requires a thorough planning of the middlebox loca-
tion within the network. In Fig. 1, two kinds of virtual 
middleboxes (VMs), i.e., IDS and firewall (FW), 
operating on general servers 1 and 2, are placed at 
network nodes R2 and R4. We assume that traffic 1 
(red solid curve), which requires both the IDS and FW 
services, enters the network from border router 1 and 
exits the network on border router 2, while that traffic 
2 (green dashed curve) needing the FW service enters 
the network from border router 2 and exits the net-
work on border router 3. However, with server 1 
supporting only the IDS function and server 2 per-
forming solely the FW function, traffic 1 has to trav-
erse the IDS box in R2 and then the FW box in R4,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
and traffic 2 must be steered to the FW box in server 2. 
Apparently, the placement scheme concerning service 
locations {R2, R4} increases the traffic transport de-
lay, compared with the scheme with locations  
{R2, R5}. 

While routers/switches process packets at every 
hop, middleboxes process only packets of a subset of 
all the hops. Apparently, if the middleboxes are de-
ployed randomly or in some remote nodes, the net-
work traffic may be sent on a detour for the middle-
box services, leading to a potential increase in packet 
latency and bandwidth consumption. Therefore, there 
is still an orthogonal problem at the network planning 
stage, i.e., where to place these middlebox services so 
that this performance penalty is minimized. We de-
note this problem as the service placement problem. 

In this paper, the middlebox service placement 
problem is discussed, focusing on how to place ser-
vices in the network with the objective of minimizing 
the average time it takes for the subscribers’ traffic to 
go through all required services. The following two 
key contributions are made: 

1. We formulate the service placement problem 
in theory by the integer linear programming model. 

2. We propose a heuristic solution based on the 
improved quantum genetic algorithm (QGA), and 
evaluate the algorithm performance. 

 
 

2  Related work 
 
Much current research focuses on the evolution 

of the middlebox service model. Generally, two 
complementary approaches are followed. The first 

Fig. 1  Motivation of the service deployment problem 
(References to color refer to the online version of this 
figure)
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tackles the high building capital expenditures 
(CAPEX) and limited extensibility by employing a 
combination of NFV and SDN. It allows operators to 
decouple the dependence from specialized equipment 
and operate network functions as virtualized software 
instances on a standardized platform instead. The 
second tackles the high operation expenditures 
(OPEX) and limited flexibility in the service proce-
dure by SDN controlling routing through the speci-
fied functional sequence. The main work related to 
these two approaches is summarized here. 

On the one hand, Sherry et al. (2012) proposed a 
practical service framework for outsourcing enter-
prise middlebox processing to the shared cloud 
computing platform (Qi et al., 2014). Sekar et al. 
(2011) innovated middlebox deployment with the 
software-centric middlebox implementations running 
on general-purpose hardware platforms managed via 
open and extensible management APIs. Regarding 
VMs as first-class entities, Gember et al. (2012a) 
presented a framework for immediate application 
deployment over or under the cloud. Furthermore, 
Gember et al. (2012b) realized a software-defined 
middlebox networking framework to simplify the 
management of complex and diverse functionalities. 
In the scenarios of NFV and SDN, Gember et al. 
(2014) designed a control plane called OpenNF, 
which could provide efficient, coordinated control of 
both internal middlebox state and network forwarding 
state. 

On the other hand, Qazi et al. (2013) presented 
the SIMPLE architecture, an SDN-based policy en-
forcement layer for efficient middlebox-specific traf-
fic steering. Built upon SDN and the OpenFlow pro-
tocol, Zhang et al. (2013) proposed a scalable 
framework (called StEERING) for dynamic traffic 
routing through any sequence of middleboxes. 
Fayazbakhsh et al. (2014) developed the FlowTags 
architecture, which consists of SDN controllers and 
FlowTags-enhanced middleboxes, to integrate mid-
dleboxes into SDN-capable networks. Gushchin et al. 
(2015) proposed a solution for routing traffic in an 
SDN-enabled dynamic network environment with 
consolidated middleboxes implemented using virtual 
machines. Cheng et al. (2015) used the simulating 
annealing algorithm for the combinational problem of 
service chains, which could manage network services 
in an efficient and scalable way. 

The above studies either are based on the as-
sumption that the service has been deployed or make 
only some preliminary exploration on the service 
problem (Basta et al., 2014; Lange et al., 2015; Mo-
hammadkhan et al., 2015). Few studies have designed 
a specific deployment strategy, which is our focus in 
the next section. 

 
 

3  Proposed solution 
 

Our goal in this section is to address the service 
placement problem by combining the theory of QGA 
with the structure of SDN and NFV, which includes 
today’s SDN controller (Gude et al., 2008), Open-
Flow switches, and virtual network function compo-
nents. Our solution is an optimal middlebox service 
placement policy maker that decides a reasonable 
high-level deployment policy for the network. 

3.1  SDN/NFV-based architecture 

Fig. 2 gives an overview of our architecture, 
where virtual implementations of middlebox applica-
tions are consolidated to run on a general-purpose 
shared hardware platform, managed in a logically 
centralized manner with uniform APIs for a network- 
wide view. This SDN and NFV based solution re-
duces the cost and development cycles to build and 
deploy new middlebox applications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As shown in Fig. 2, the components of the ar-
chitecture can be classified into three kinds: (1) the 
control plane components including the network  

Fig. 2  Overview of middlebox deployment using 
SDN/NFV 
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operation system, decision module, and databases; (2) 
the data plane components containing the OpenFlow 
switches and VM platforms; and (3) the interfaces 
between the control plane and the data plane, such as 
the OpenFlow protocol. Next, we will describe the 
roles of the main components and how the proposed 
solution can be used in the context of SDN and NFV. 

The controller is the central administrator of the 
network and plays a core role in our proposed scheme. 
The controller periodically collects network state 
information, including network topology, service 
function description, network resources (e.g., band-
width and network-wide traffic workload), and stores 
them in the databases. The substrate of SDN/NFV 
contains routers/switches and NFV platforms, which 
forward the traffic and provide middlebox service. In 
addition, the APIs are responsible mainly for the 
communication tasks between the control- and data- 
planes. 

The procedure of our placement scheme is as 
follows: First, with the input databases in the con-
troller and the requirement of placement, the SDN 
controller runs the service placement decision module, 
which solves an optimization problem of minimizing  
network-wide transport delay. Second, the results of 
the decision module are output of the configuration 
policy to guide service placement operation by the 
uniform APIs. Finally, NFV platforms are placed on 
network nodes with optimal locations, which can 
provide middlebox services for the traffic from the 
nodes without the service placed (as illustrated by 
dashed lines in Fig. 2). 

3.2  Integer programming model for service 
placement 

We formulate the service deployment problem as 
an optimization problem that aims at minimizing the 
transport delay or distance to be traversed by all 
subscribers’ traffic (Lu et al., 2013). Assume that the 
network topology is defined as an undirected graph 
G=(V, E), with node set V representing switches and 
edge set E representing the links. For example, in the 
topology of Fig. 2, graph G is a symmetric graph with 
weighted edges, and each edge is associated with a 
transport delay value d(l) (lE). 

The objective is to find a subset VS of the loca-
tions among all candidates V (1≤|VS|≤|V|=N, |·| is the 

cardinality of a set), and place the services in these 
selected locations so that the total delay for all the 
users is minimized. The optimization problem can be 
considered as an integer linear programming (ILP) 
model, whose feasible solution defines a scheme that 
satisfies our objectives. The problem is formulated as 
follows: 

First, given two nodes vi and vj (vi, vjV, vi≠vj), 
the minimum transport delay between vi and vj is 
calculated by 

 

( , )
( , ) arg min ( ),

k i j k

i j
p P v v l p

d v v d l
 

                 (1) 

 
where P(vi, vj) denotes the set of paths from node vi to 
node vj, and pk is one path element of set P(vi, vj). 

Let D=[d(vi, vj)]N×N (i, j=1, 2, …, N) denote the 
shortest path matrix of graph G, and VE (VEV) the 
egress node set. The linear optimization model is 
shown as 
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where xi{0, 1} (i=1, 2, …, N) are the variables of the 
optimization (xi=0 means that node vi is not selected 
for service placement; otherwise, vi is the location of 

the network service), S
iv  is the service node corre-

sponding to node vi, and E
iv  is the egress point cor-

responding to node vi. Expression (2) defines the total 
transport delay, which is calculated as the sum of the 
transport delay between the ingress points and the 
service points and the transport delay between the 
service points and the egress points. Constraint (3) 
means assigning the service node with the minimum 

transport delay to vi as S.iv  Constraint (4) indicates 

that the egress node with the minimum transport delay 

to vi is selected as E.iv  
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3.3  Solution based on the improved quantum ge-
netic algorithm 

Malossini et al. (2008) and Mohammed et al. 
(2012) have shown that the quantum genetic algo-
rithm (QGA) has a good performance in dealing with 
integer programming. In this study, we extend the 
basic QGA with some improvement methods, such as 
dynamic rotation angle mechanism, quantum muta-
tion, and population catastrophe. Then we propose a 
algorithm (called SP-IQGA) based on the improved 
quantum genetic algorithm (IQGA) for the ILP model 
to obtain the optimal service placement (SP). 

3.3.1  Introduction to QGA 

QGA is based on the concepts of quantum bit 
and quantum superposition state. The basic unit of 
information in quantum computation is the qubit. A 
qubit is a two-level quantum system with basis states 
|0  and |1 , which can be represented by a superpo-

sition of the basis states: 
 

2 2| | 0 |1 1,                    (6) 
 

where α and β are complex numbers, denoting the 
probability amplitudes of the basis states. 

QGA operates on a population composed of 
multiple feasible solutions. Each feasible solution of 
the QGA, which is made up of multiple qubits, is the 
element chromosome of the population. If the proba-
bility amplitudes of a qubit are [α, β]T, a chromosome 
containing N qubits is described by 

 
1 2

1 2

1 2

,

N

N

N

q q q

C
 
 

 
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



                     (7) 

 
where each qubit qi (i=1, 2, …, N) of the chromosome 
C can be one of the state |0 , state |1 , and superpo-

sition of states |0  and |1 , and will collapse into a 

certain state ( |0  or |1 ) in the observation of chro-

mosome. So, this operation endows the QGA with 
better population diversity than the basic genetic 
algorithm. 

In our SP-IQGA algorithm, the ith qubit state of 
chromosome C represents the service information of 
node vi; i.e., qi with state |1  means that node vi is 

chosen as the service placement location; otherwise, 

qi with state |0  means that vi is not placed in the 

service. 

3.3.2  Formulation of the SP-IQGA algorithm 

The main steps of the SP-IQGA algorithm can be 
described as follows: 

Step 1: acquisition of the shortest path matrix D. 
D is an important input parameter, and contains all 
minimum transport delays between any two nodes in 
graph G. For example, element d(vi, vj) of the ith row 
and jth column in D is the minimum transport delay 
value between vi and vj, which can be calculated by 
using the Bellman-Ford algorithm. 

Step 2: initialization of the QGA. At the initial 
stage of SP-IQGA, we set the chromosome popula-
tion size as M and the qubit length of each individual 
chromosome as N. Denote the tth generation popula-

tion as ( ) ( ) ( )
1 2( ) { , , , },t t t

MP t C C C   where ( )t
mC  (m=1, 

2, …, M) is as described in Eq. (7). In the initial 
search of the algorithm, all states appear with the 
same probability, so we set 
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Step 3: measurement of the observation value of 

chromosome C. The chromosome observation is to 
make each qubit of the chromosome collapse into a 
certain state. The measurement method is to generate 
a random number in range [0, 1] for each qubit. If the 
random number is less than |α|2, the measurement 
value of the qubit is 0; otherwise, it is 1. After the 
measurement operation, C is transformed to the ob-
servation value XC={x1, x2, …, xN}, where xi (i=1, 
2, …, N) is a binary variable (0 or 1). 

Step 4: calculation of the fitness. The fitness is 
the metric indicating the quality of the individual. The 
higher the fitness value, the closer the individual to 
the optimal solution. For individual XC={x1, x2, …, 
xN}, the fitness function can be obtained by 
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1

E S

1 1

Fit( ) ( , ) (1 ) ( , ) .
N N

C i i i i i i
i i

X x d v v x d v v


 

    
 
    (8) 

 
Step 5: adaptive adjustment strategy for the 

quantum rotation gate. In QGA, the population can be 
updated by quantum rotation gate U(θ). Based on the 
quantum rotation gate, the adjustment operation of the 

ith qubit in ( )t
mC  is as follows: 

 
cos sin
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where mi  and mi   represent the probability ampli-

tudes of the ith qubit after adjustment. θi denotes the 
rotation angle of quantum rotation gate, defined by 

 
θi=s(αi, βi)·Δθi,                         (10) 

 
where s(αi, βi) determines the direction of quantum 
rotation and Δθi determines the size of quantum rota-
tion. To reduce the influence of the rotation angle on 
the algorithm convergence rate, an adaptive method is 
used to adjust θi in this study. Specific adjustment 
policies are shown in Table 1, where δ is a coefficient 
related to the convergence rate of the algorithm, and 
we set it as a variable changing with the number of 
iterations: 

 

0.04π 1 ,
1

t

T
      

             (11) 

 
where σ[0, 1] is a constant, t is the current evolution 
iteration number, and T is the total number of evolu-
tion iterations. 

Step 6: quantum variation and quantum crosso-
ver. The performance of QGA can be improved by 
quantum variation and quantum crossover. Quantum 
variation can generate new individuals to prevent 
QGA from evolving into a local optimal solution. 
During the variation, we choose a small proportion of 
individuals from the population, appoint randomly a 
variable qubit of chromosomes, and swap the proba-
bility amplitudes α and β of the appointed qubit. On 
the other hand, quantum crossover can produce more 
new models to improve the searching performance of 
the algorithm. Our specific implementation process is 
that all individuals in the population are ordered 

 
 
 
 
 
 
 
 
 
 
 
randomly and then a new population is obtained by 
cyclically shifting the ith qubit for i–1 times in all 
ordered individuals. 

Based on the above description, we input all 
algorithm parameters and call the SP-IQGA algorithm 
to obtain the service placement scheme. The process 
flow is shown in Algorithm 1. 

Upon the controller, the decision module runs 
the SP-IQGA algorithm and achieves the result 
Xb={x1, x2, …, xi, …, xN}, where xi represents the node 
vi being the service location vS. 

 
 

4  Performance evaluation 

4.1  Experimental environment 

To evaluate the performance, we set up the ex-
perimental environment on a computer with a 2.67 
GHz two-core Intel® CoreTM i7 CPU and 4 GB RAM. 
The GT-ITM tool (Zegura et al., 1996) is used for 
generating different network topologies, and we im-
plement the proposed algorithm with MATLAB. 

We evaluate the SP-IQGA algorithm for the 
service location described in Section 3 using the test 
topology from the GT-ITM and the simulated real 
network traffic from the data center network traffic 
record. The method for generating links is Waxman, 
with parameters α=0.3 and β=0.2. The link transport 
delay in the test topology is measured in millisecond, 
and the transport delay of each link is randomly dis-
tributed in range [1, 100]. In SP-IQGA, we set the 
population size M=20 and the variation probability 
r=0.1. 

4.2  Evaluation results 

4.2.1  Effectiveness of different parameters 

With the intelligent decision of QGA, SP-IQGA 
can calculate automatically the service node number 

Table 1  Adjustment policies for the rotation angle 

ix b
ix Fit(X)≥Fit(Xb) Δθi

s(αi,  βi) 

αi βi>0 αi βi<0 αi=0 βi=0

0 1 False 0 0 0 0 0 

0 1 True δ −1 ±1 ±1 0 

1 0 False δ −1 ±1 ±1 0 

1 0 True δ 1 −1 0 ±1 

1 1 False δ 1 −1 0 ±1 

1 1 True δ 1 −1 0 ±1 

Xb is the current optimal solution, and b
ix  is the ith qubit of Xb 
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(NS) under different network topologies. For different 
network sizes (NV), the optimal service node ratios 
(NS/NV) with different numbers of egress nodes (NE) 
are obtained by SP-IQGA (Eqs. (2)–(5)) (Fig. 3). It is 
intuitive to find that the service node ratio is in range 
[0.05, 0.25] and increases with NE. The reason is that 
with more egress nodes, more network nodes become 
suitable for the placing service. 

Then, under different values of parameter NE and 
set NV=100, we show the overall transport delay 
(Eq. (2)) of network traffic varying with the iteration 
number in Fig. 4. SP-IQGA reaches rapidly the con-
vergence state after about 100 iterations and searches 
toward the optimal solution by quantum variation and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

quantum crossover (i.e., sharp changes in the overall 
delays). 

Finally, we test the convergence performance of 
SP-IQGA by comparison with the genetic algorithm 
(GA) and the basic quantum genetic algorithm (QGA). 
Under the conditions NE=5 and NV=200 or 500, we 
acquire the simulation results of three algorithms. 
Fig.  5 illustrates that our SP-IQGA converges to the 
stable states faster. Furthermore, the larger the net-
work size, the more obvious the advantage. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 1  SP-IQGA 
Input: network topology graph G, population size M, chro-
mosome length N, variation probability r, number of evolu-
tion iterations T 
Output: optimal placement location scheme Xb 
1 Run the Bellman-Ford algorithm for calculating the 

shortest path matrix D of G 

2 Generate original population (0) (0) (0)
1 2(0) { , , , },MP C C C 

and initialize each chromosome individual 
3 Measure P(t) and obtain observation value O(t)={X1,

X2, …, XM} 
4 for all XiO(t) do 
5     for all xjXi do 
6         if xj=0 then 

7             Query matrix D, and assign a minimum transport 

delay node S
iv  to xj 

8         end if 

9     end for 

10     Calculate the fitness value Fit(Xi) 

11 end for 

12 Xb={Xi|Fit(Xi)=argmaxXO(t) Fit(X)} 
13 while (t<T) 
14     Evolve t to t+1 by quantum rotation gate: t=t+1 

15     Perform steps 3 to 10 

16     B(t)={Xi|Fit(Xi)=argmaxXO(t) Fit(X)} 
17     if Fit(Xb )<Fit(B(t)) then 

18         Xb=B(t) 

19     end if 
20     if Xb has not changed after N/2 evolution generations

then 
21         Do quantum crossover for P(t) 

22         Do quantum variation with probability r for P(t) 

23     end if 

24 end while 

Fig. 3  Service node ratio with different network sizes 
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Furthermore, we show the time consumptions of 
operating 200 iterations for the three algorithms in  
Fig. 6. As shown, with the increase in network size, 
the computation time of the three methods also in-
creases rapidly. The consumed time of SP-IQGA is 
more than that of QGA, and both are much higher 
than that of GA. The reason is that SP-IQGA and 
QGA execute quantum operation, quantum variation, 
and quantum crossover, which spend more calcula-
tion time. In particular, the dynamic quantum rotation 
operation in the SP-IQGA algorithm further increases 
its time consumption. 
 
 
 
 
 
 
 
 
 
 
 

4.2.2  Comparison of different algorithms 

To verify the performance of the proposed algo-
rithm, we compare our SP-IQGA with four other 
placement strategies.  

Strategy 1 is based on random placement, de-
noted as SP-Random; strategy 2 is based on the 
greedy algorithm, denoted as SP-Greedy (Zhang et al., 
2013); strategy 3 is based on a heuristics, denoted as 
SP-B+COR (Mohammadkhan et al., 2015); strategy 4 
is based on another heuristics, denoted as SP-Anneal 
(Cheng et al., 2015). The notations and descriptions 
of different algorithms are listed in Table 2. 

Fig. 7 shows the simulation results of the five 
strategies when NE=5. The overall transport delay of 
the optimal deployment scheme obtained by different 
policies increases with the increase of the network 
size. It is easily seen that the transport delay of 
SP-IQGA is similar to that of SP-B+COR, and they 
are both lower than that of the three other strategies 
under the same network size. 

Under the same condition as in Fig. 7, Fig. 8 
shows the computational time overhead of the five 
algorithms. Because the random strategy does not 
need to solve the optimization problem, its time 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
overhead is set to zero. The simulation results 
demonstrate that the calculation time of SP-B+COR 
is the highest among the algorithms compared and its 
time consumption increases rapidly with the increase 
of the network size. Relatively speaking, the calcula-
tion time overhead of our proposed SP-IQGA algo-
rithm is significantly lower than that of the three other 
heuristic algorithms, and it is less affected by the 
network size. 

For the network topology with NV=100 and 
NE=5, we execute service placement using the five 
algorithms to obtain their respective optimal de-
ployment schemes: Xrandom, Xgreedy, Xanneal, XB+COR, and 
XIQGA. We simulate 10 types of application traffics 
and each application contains 5 data flows. Therefore, 
a total number of 50 flows are investigated. Suppose 
that every data flow needs to be processed by mid-
dlebox services, and these service requests can be 
satisfied by a service node. Under the five service 

Table 2  Comparison of algorithms 

Algorithm Description 

SP-Random Service placement based on a random number 
generator  

SP-Greedy Service placement based on a greedy algo-
rithm (Zhang et al., 2013) 

SP-B+COR Service placement based on a heuristic 
method of partitioning flows (Moham-
madkhan et al., 2015) 

SP-Anneal Service placement based on a simulating 
annealing algorithm (Cheng et al., 2015) 

SP-IQGA Service placement based on an improved 
quantum genetic algorithm proposed in this 
study 

Fig. 7  Comparison of overall transport delay under 
different network sizes 

Fig. 6  Comparison of time cost of different strategies
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placement schemes, we let all flows transport the 
network topology and compute the average transport 
delay of each traffic for different deployment 
schemes. 

Fig. 9 shows the average transport delay of data 
flows in each network application under different 
placement algorithms. The results show that the av-
erage transport delay of SP-Random is the highest 
among all schemes. The delays of SP-Greedy and 
SP-Anneal are similar and lie in the middle of the 
algorithms compared. SP-B+COR and SP-IQGA can 
achieve less transport delay. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 shows the transport delay cumulative 
distribution function (CDF) for all the flows. CDF can 
show clearly the transmission delay distribution of all 
applications. The greater the curvature of a CDF 
curve, the more concentrated the delay value distri-
bution. As shown, the transport delay of each data 

flow is distributed in [0, 200]. For 50% of the flows, 
SP-B+COR and SP-IQGA can achieve about 51 and 
55 ms transport delays, respectively, while SP-Greedy, 
SP-Anneal, and SP-Random need 63, 67, and 80 ms 
transport delays, respectively. Compared with 
SP-Random, SP-IQGA can decrease the transport 
delay by about 30%. Thus, the advantage of SP-IQGA 
is significant, and it can be used to efficiently solve 
the service placement problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5  Conclusions 
 
To solve the service deployment problem in the 

NFV and SDN network environment, we presented a 
placement approach based on the improved quantum 
genetic algorithm. Built on top of SDN and the intel-
ligence of QGA, our placement strategy can auto-
matically obtain the optimal schemes for different 
network topologies. Simulation experiments showed 
that significant latency reduction can be obtained by 
our algorithm for placing services in different net-
work topologies. In future work, we will use the 
proposed approach to help construct network function 
service chains. 
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