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Abstract:    The RGB2GRAY conversion model is the most popular and classical tool for image decolorization. A recent study 
showed that adapting the three weighting parameters in this first-order linear model with a discrete searching solver has a great 
potential in its conversion ability. In this paper, we present a two-step strategy to efficiently extend the parameter searching solver 
to a two-order multivariance polynomial model, as a sum of three subspaces. We show that the first subspace in the two-order 
model is the most important and the second one can be seen as a refinement. In the first stage of our model, the gradient correlation 
similarity (Gcs) measure is used on the first subspace to obtain an immediate grayed image. Then, Gcs is applied again to select the 
optimal result from the immediate grayed image plus the second subspace-induced candidate images. Experimental results show 
the advantages of the proposed approach in terms of quantitative evaluation, qualitative evaluation, and algorithm complexity. 
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1  Introduction 
 

 Color-to-gray conversion is a fundamental 
problem for many real-world applications in image 
processing and computer vision. It aims to convert a 
color image into a grayscale one. One advantage of 
this conversion is that it enables the application of 
single-channel algorithms to the processing of color 
images, like the Canny operator for edge detection. 
Other applications include monochrome printing and 

photograph rendering. All these applications have 
prompted the development of various color-to-gray 
conversion methods in the past decade. Unfortunately, 
since color-to-gray conversion involves mapping a 
three-dimentional (3D) vector to a 1D scalar, it is 
essentially a dimensionality-reduction process, and 
hence inevitably suffers from information loss. As a 
result, advanced algorithms have been developed to 
exploit the limited range in gray scales to present the 
contrasts and details of the input color image. 

If the source image is in a red, green, and blue 
(RGB) format, the most well-known method to de-
colorize an input image is to linearly sum its R, G, and 
B channels with a fixed weight (e.g., the rgb2gray() in 
Matlab). Nevertheless, using a luminance channel 
image alone cannot faithfully represent structures and 
contrasts in some color images, such as those having 
iso-luminant regions. In recent years, significant ad-
vances have been made in theories and algorithms for 
perception-driven decolorization, resulting in a large 
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number of new methods. These methods can be clas-
sified broadly into two categories: (1) local adjust-
ment methods exploiting the local distribution of 
color pixel values (Bala and Eschbach, 2004; Neu-
mann et al., 2007; Smith et al., 2008); (2) global ad-
justment methods, including objective minimization 
methods using differences between the original color 
values and mapped gray values.  

In the first category, color-to-gray mapping usu-
ally treats pixels of the same color differently to en-
hance local contrast, according to different attributes 
such as local chrominance edges. Although they may 
have advantages in accurately preserving local fea-
tures, constant color regions could be converted ho-
mogeneously if the mapping changes in the regions. 
Bala and Eschbach (2004) presented a method to 
enhance chromatic edges, adding high-frequency 
components of chromaticity to the luminance channel. 
Neumann et al. (2007) reconstructed a grayscale im-
age from the gradients of a color image by measuring 
the color and luminance contrasts as a gradient con-
trast of the coloroid space. Smith et al. (2008) de-
composed the image into several frequency compo-
nents and adjusted combination weights using chro-
matic channels. These methods can preserve local 
features; however, they might occasionally distort the 
appearance of constant color regions, which will not 
happen in global mapping. 

Unlike local adjustment methods, global color- 
to-gray conversion methods consider the image as a 
whole, and apply some consistent mapping functions 
to all the pixels in the image. Thus, pixels of the same 
color will be converted to the same grayscale values. 
Gooch et al. (2005) proposed the color2gray algo-
rithm to generate grayscale values that best match the 
differences between pixel values of the input color 
image. Rasche et al. (2005) minimized a linear color 
mapping function to achieve an optimal conversion. 
The function was defined by constraints imposed 
directly on different color pairs. Grundland and 
Dodgson (2007) proposed a fast algorithm to compute 
a linear mapping that adds the chromatic channel 
information to that of the luminance channel. Kim 
et al. (2009) proposed a fast color-to-gray conversion 
algorithm which preserves the color ordering ac-
cording to the original lightness of colors. Kuk et al. 
(2010) extended the method proposed by Gooch et al. 
(2005) by considering both local and global contrasts. 

Ancuti et al. (2010) proposed a decolorization strat-
egy based on image fusion principles and using three 
different weight maps to control saliency, exposure, 
and saturation. To maximize the variance of the output 
grayscale image, Jin et al. (2014) presented a regu-
larization term to make the resulting objective func-
tion convex and obtained a stable combination of R, G, 
and B pixel values. Wang and Yau (2014) used image 
decolorization to enhance the color contrast when 
preserving the grayscale in a real-time moustache 
detection. 

Unfortunately, all these approaches suffer from 
two disadvantages: lack of robustness and high 
computational cost. To alleviate these difficulties, 
researchers have revisited the simple and conven-
tional rgb2gray model. This model assumes that the 
grayscale output g is a constrained linear combination 
of the R, G, and B channels of the color image I, i.e., 
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Ir, Ig, Ib stand for the R, G, and B channels, respec-
tively. In the classical rgb2gray() in Matlab, the 
weights are fixed as (wr, wg, wb)=(0.2928, 0.5870, 
0.1140) for all images. Recently, a few researchers 
have adaptively chosen the channel weights by ap-
plying some measures to the discretized candidate 
images. Real-time contrast preserving (RTCP) de-
colorization proposed by Lu et al. (2012b) discretizes 
the solution space of a linear parametric model with 
66 candidates, and then identifies one candidate that 
achieves the smallest gradient error based energy 
value as the optimal solution. This is currently the 
fastest algorithm. Song et al. (2013) discussed the 
robustness of the existing methods, and investigated 
multi-scale contrast preservation on the discretized 
candidate images by taking advantages of the (joint) 
bilateral filter. Liu et al. (2015) presented a gradient 
correlation similarity (Gcs) model, and identified the 
solution with the maximum Gcs from the linear 
parametric model induced discretized candidate  
images.  

All the three methods described by Lu et al. 
(2012b), Song et al. (2013), and Liu et al. (2015) are 
based on the rgb2gray model, yet apply different 
measures to identify the ‘good’ results from finite 
candidate images. Motivated by their impressive 
performance, we aim to extend the parametric discrete 
searching technique from the linear model to a 



Lu et al. / Front Inform Technol Electron Eng   2017 18(11):1874-1882 1876 

two-order multivariance polynomial model. In this 
paper, we present a two-stage strategy to achieve this 
goal: after dividing the whole space into three sub-
spaces, Gcs measures are used to obtain an immediate 
image from the first subspace (i.e., the linear para-
metric model). Then, based on the immediate image, 
we select the final image by using the Gcs measures 
again to determine the parameter weights in the sec-
ond subspace. 
 
 
2  The proposed model 

 
In this section, we first investigate the two-order 

multivariance polynomial model based on subspace 
modeling. Then the differences between the three 
subspaces are revealed. Finally, a discrete-searching 
solver is presented for a real-time and effective color- 
to-gray conversion. 

2.1  Two-order multivariance polynomial model 

To retain a better feature discrimination in a 
color-to-gray conversion, we aim to extend the 
rgb2gray model used by Lu et al. (2012b), Song et al. 
(2013), and Liu et al. (2015) to a two-order multi-
variance polynomial model. As in the CP model of Lu 
et al. (2012a), we assume that grayscale g is a  
two-order multivariate polynomial function for  
mapping: 
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which is a parametric color-to-gray model. A major 
drawback in the RTCP work of Lu et al. (2012b) is 
that they treated all bases in Z equally. Also, they used 
an iterative optimization technique to solve the de-
rived model, leading to  high execution time. In this 
study, we view Eq. (1) as the sum of three subspaces:  
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where Z1, Z2, and Z3 are the subspaces spanned by a 
family of monomials. Since they are predefined by the 
linear combination of channel images, the pursuit of 
the mapping function in Eqs. (1) and (2) turns to be 
the determining of weight parameters {wc}. Sec-
tion 2.2, the differences among the three subspaces 
will be revealed. 

2.2  Survey of the three subspaces 

The differences among the three subspaces are 
enormous. On one hand, the weight combination in 
subspace Z1 provides impressive results (Lu et al., 
2012b; Song et al., 2013; Liu et al., 2015). On the 
other hand, if we search the candidate images from all 
three subspaces, the search time is huge. Therefore, an 
alternative strategy is needed for a tradeoff between 
the effectiveness and the computation cost. Basis 
images in subspace Z1 are whiter, while those in 
subspace Z2 (which contain cross channels) and those 
in subspace Z3 are darker and more similar (Fig. 1). 

 
 
 
 
 
 
 
 
 
 
 

 
 

First, we investigated the importance of the three 
subspaces. We took 24 color images from Ĉadík’s 
dataset (Ĉadík, 2008) as examples for illustration. 
Quantitatively, the average gradient entropy of the 
basis images from subspaces Z1, Z2, and Z3 are 1.0005, 
0.9627, and 0.9147, respectively. The results of the 24 
test images are shown in Fig. 2a. Except for the 15th 
image of the dataset, the images from subspace Z1 
contain more information than those in the other two 
subspaces. From a visual comparison, even the 15th 
image looks better (the third line in Fig. 1). 

Second, we compare the similarities of the three 
subspaces. The average structure similarity (SSIM) 
(Wang et al., 2004) between subspaces Z1 and Z3 is  

(c) (b) (a) (d) (e) (f) (g) (h) (i)  
Fig. 1  Demonstration of the nine channels of three color 
images from Ĉadík’s dataset (Ĉadík, 2008) 
(a)–(i) refer to Ir, Ig, Ib, IrIg, IrIb, IgIb, Ir2, Ig2, and Ib2 channel 
images, respectively 
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0.5813, and that between subspaces Z2 and Z3 is 
0.7470. The results from the 24 images are shown in 
Fig. 2b. Note that Z2 and Z3 are better corrected. 

In summary, the above discussions yield two 
conclusions: (1) The first subspace is the most im-
portant, followed by the second and then the third; (2) 
Subspaces Z2 and Z3 are better corrected. 

2.3  Two-stage parametric subspace derived dis-
crete searching solver 

Based on the fact that the first subspace Z1 in the 
two-order linear parametric model is the most im-
portant and subspaces Z2 and Z3 are secondary im-
portant and similarly related, we propose a method 
applying a two-step approach to decolorization: 
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An overview of the two-stage parametric sub-

space (TPS) method is shown in Fig. 3. In the TPS 
method, a measure is applied to the first subspace to 
obtain the immediate grayed image. Then the measure 
is applied again to select the optimal result from the 
immediate grayed image plus the second subspace- 
induced candidate images. Intuitively, this approach 
can be recognized as a refinement method. Clearly, 
model (3) provides a set containing only the possible 
grayscale intensity images. To optimize the decolor-
ization process, a criterion should be built such that 
the optimal solution g, which preserves as much color 
image contrast as possible, can be determined. In this 
study, we use a discrete searching strategy to deter-
mine parameters {wc}.  

Liu et al. (2015) proposed a novel Gcs measure 
in the rgb2gray model as follows: 
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where ε is a positive constant that supplies numerical 
stability, gx−gy denotes the difference in grayscale 
value between pixels gx and gy, P stands for a pixel 
pair pool which contains the local and nonlocal can-
didates. Liu et al. (2015) used the discrete searching 
strategy to find the approximate minimization solu-
tion of Eq. (4). Recognizing that slightly varying the 
weights would not change the grayscale appearance 
too much, they discretized the solution space of {wr, 
wg, wb} in the range of [0, 1] with an interval of 0.1, 
giving a searching space of 66. Therefore, they re-
duced the solution space and searched the possible 
optimal solution in a discrete range consisting of 66 
candidates. This strategy greatly reduces the number 
of candidate value sets and saves executable time. 
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Fig. 2  The average gradient entropies of basis images in 
Z1, Z2, and Z3 from Ĉadík’s dataset (Ĉadík, 2008) (a) and  
the average structure similarities between Z1 and Z2, and 
Z2 and Z3 (b) 
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In this study, we employ a modified Gcs measure 
in a two-stage fashion as follows: In the first step, g1 is 
determined by 
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Then the final result of g is chosen by solving 
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Comparing Eqs. (5) and (6) with Eq. (4), we 

observe that both parameters ε1 and ε2 exist only in the 
denominator. This modification prefers to treat the 
differences between grayed image |gx−gy| and color 
image |Ic,x−Ic,y| in an equal manner. According to the 
discrete searching rule that discretizes the solution 
space of {wc} with an interval of 0.1 and the range 
constraints for Eqs. (5) and (6), we first select the 
immediate result from 1Ẑ  consisting of 66 candidates,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

and then the final result from 2Ẑ  consisting of 231 
candidates. Clearly, this greatly lowers the computa-
tion time, since if we simultaneously search 1Ẑ  and 

2Ẑ , or parameter spaces of all six, the total computa-
tion time would be huge. 
 
 
3  Experimental results 
 

In this section, the performance of the proposed 
method is compared with those of different state- 
of-the-art algorithms for a variety of image styles, 
including those in conventional user experiments 
from Ĉadík’s dataset and the Complex Scene Decol-
orization Dataset (CSDD) (Du et al., 2015). In ex-
periments, parameters ε1 and ε2 were empirically se-
lected as 0.01 and 0.05, respectively. 

3.1  Qualitative evaluation 

The comparison results with Ĉadík’s dataset 
(Ĉadík, 2008) are shown in Fig. 4. Color images and 
their corresponding grayscale images obtained by the 
Gooch05 method (Gooch et al., 2005) and the 
Smith08 method (Smith et al., 2008) are shown in 
Figs. 4b and 4c. Figs. 4d and 4e show in sequence the 
results of the algorithms developed by CP (Lu et al., 
2012a) and RTCP (Lu et al., 2012b). The results ob-
tained using our previous method GcsDecolor2 (de-
noted as Gcs2) (Liu et al., 2015) are shown in Fig. 4f. 
Results for saliency-guided decolorization obtained 

(a) (b) (c) (d) 

I g1

wr

g2

wg

wb

gg1

wrg

wrb

wgb

+

 
Fig. 3  An overview of the proposed two-stage method: (a) the original input; (b) the first stage: using gradient correlation 
similarity (Gcs) on the parameter space {wr, wg, wb}; (c) the second stage: using Gcs on the parameter space {wrg, wrb, 
wgb} combined with the intermediate result; (d) final output g=g1+g2 (References to color refer to the online version of 
this figure) 



Lu et al. / Front Inform Technol Electron Eng   2017 18(11):1874-1882 1879 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

using region-based optimization and our TPS are 
shown in Figs. 4g and 4h, respectively. Methods 
Gooch05 and Smith08 do not sufficiently consider the 
salient stimulus, and may generate flat results for 
some images. For CP and RTCP, the points and edges 
perceived in a color image cannot be seen in the 
converted grayscale image (rows 1 and 4 of  
Fig. 4). The Du15 method (Du et al., 2015) also loses 
part of the color contrast information, although it uses 
a region-based optimization. Our methods Gcs2 and 
TPS use the normalized correlation and preserved the 
salient features of the color image. In particular, the 
results of TPS are impressive. It has not only a good 
feature preservation, ensuring that features in the 
color image can still be discriminated in the grayscale 
image, but also an excellent ordering preservation, 
preserving a desired color ordering in color-to-gray 
conversion (as indicated by the red circles). 

In contrast to some images in Ĉadík’s dataset that 
are relatively simple and contain only a few colors, 
the CSDD dataset includes 22 different images with 
abundant colors and patterns. We compared the pro-
posed method with three state-of-the-art methods 
using CSDD. The results (Fig. 5) show that TPS con-
sistently outperforms the other methods in these 
complex scenes. The CP method shown in Fig. 5b  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tends to produce grayscale artifacts in some regions of 
the images, causing higher local contrasts than that of 
the original images. A loss of contrast can be seen in 
Fig. 5c (rows 1–3). In addition, the Du15 method does 
not preserve the local contrast well (rows 3 and 4 of 
Fig. 5d). TPS produces better results in terms of per-
ceptual accuracy and color order. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) (c) (d) (e) (f) (g) (h)  
 

Fig. 4  Color-to-gray conversion comparison of images from Ĉadík’s dataset: input color images (a), and the comparison 
results using Gooch05 (b), Smith08 (c), contrast preserving (CP) (d), real-time CP (RTCP) (e), Gcs2 (f), Du15 (g), and 
two-stage parametric subspace (TPS) (h). References to color refer to the online version of this figure 

(a) (b) (c) (d) (e)

 
Fig. 5  Decolorization comparison of images from the 
CSDD dataset: input color images (a), and the comparison 
results using contrast preserving (CP) (b), real-time CP 
(RTCP) (c), Du15 (d), and two-stage parametric subspace 
(TPS) (e) (References to color refer to the online version of 
this figure) 
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3.2  Quantitative evaluation 

The color contrast preserving ratio (CCPR) is 
based on the observation that if color difference δx, y is 
smaller than a threshold τ, it becomes nearly invisible 
in human vision. The aim of contrast-preserving de-
colorization is therefore to maintain the color change 
which is perceivable by humans. CCPR is defined as 
 

{ }( , ) ( , ) ,CCPR # |,x yx y x y Ω g g | Ωτ∈ − ≥=     (7) 

 
where Ω is the set containing all neighboring pixel 
pairs with their original color difference δx, y≥τ, and |Ω| 
is the number of pixel pairs in Ω. #{(x, y)|(x, y)∈Ω, 
|gx−gy|≥τ} is the number of pixel pairs in Ω that are 
still distinctive after decolorization. 

To evaluate the decolorization algorithms quan-
titatively in terms of contrast preservation, we show 
the actual data of CCPR from Ĉadík’s dataset and the 
CSDD dataset to illustrate the significant improve-
ment (Table 1). We present the quantitative CCPR 
(CP) (Lu et al. 2012a) for Ĉadík’s dataset in Fig. 6a. 
For each method (TPS, Gooch05, Smith08, CP, RTCP, 
Gcs2, and Du15), we calculated the average CCPR for 
the whole dataset by varying τ from 1 to 15. Our 
method outperforms the other approaches at almost all 
different threshold levels. The quantities indicate that 
Gcs measure used in Gcs2 and TPS can better reflect  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                           

the structural similarity between color and grayscale 
images, and the two-step technique improves decol-
orization. Although both Gooch05 and Du15 use the 
saliency prior information to prompt feature- 
preserving decolorization, the results of Du15 seem 
better because of the use of a two-stage strategy and 
regional saliency. 

A quantitative comparison based on the CSDD 
dataset is shown in Fig. 6b. The recently reported 
saliency-guided region-based optimization method 
Du15 generally outperforms the two gradient error- 
guided methods CP and RTCP. Nevertheless, our TPS 
that employs a two-step discrete searching strategy 
can attain comparable or even better results than Du15. 
Note that although both CP and TPS determine the 
weight parameters from the two-order model, CP 
obtains an iterative solver with the gradient error 
measure, and TPS uses a two-step discrete search 
strategy with a gradient correction measure. 

3.3  Algorithm complexity 

A good color-conversion model is expected to be 
not only effective but also computationally efficient. 
For the computational time, Ancuti et al. (2011) 
proposed a saliency-based strategy for video decol-
orization. Its runtime is linearly dependent on the 
image resolution and therefore computationally ef-
fective and suitable for real-time applications.  
 
 
 
 
                                                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Average CCPR obtained by different methods using Ĉadík’s dataset and the CSDD dataset 

Threshold 
τ 

CCPR using Ĉadík’s dataset  CCPR using CSDD dataset  
TPS Du15 Gcs2  RTCP CP Smith08 Gooch05 TPS RTCP Du15 CP 

1 0.79 0.79 0.78 0.75 0.76 0.70 0.69 0.77 0.72 0.74 0.72 
2 0.78 0.75 0.77 0.72 0.73 0.66 0.66 0.72 0.65 0.67 0.65 
3 0.78 0.75 0.77 0.72 0.72 0.64 0.64 0.69 0.61 0.65 0.62 
4 0.77 0.74 0.76 0.71 0.72 0.62 0.63 0.68 0.60 0.62 0.59 
5 0.77 0.73 0.75 0.7 0.72 0.61 0.63 0.66 0.58 0.61 0.57 
6 0.76 0.72 0.74 0.69 0.70 0.59 0.61 0.64 0.57 0.59 0.55 
7 0.75 0.71 0.73 0.68 0.69 0.58 0.60 0.63 0.56 0.58 0.53 
8 0.74 0.70 0.72 0.67 0.68 0.57 0.58 0.61 0.55 0.56 0.51 
9 0.73 0.69 0.71 0.66 0.67 0.56 0.57 0.60 0.54 0.55 0.49 
10 0.72 0.68 0.71 0.65 0.66 0.55 0.55 0.58 0.53 0.54 0.48 
11 0.71 0.67 0.69 0.64 0.65 0.54 0.54 0.57 0.52 0.52 0.46 
12 0.70 0.66 0.69 0.63 0.64 0.53 0.53 0.55 0.52 0.51 0.45 
13 0.69 0.65 0.68 0.62 0.63 0.52 0.52 0.54 0.50 0.50 0.44 
14 0.68 0.64 0.67 0.61 0.62 0.52 0.51 0.52 0.49 0.49 0.42 
15 0.67 0.63 0.67 0.60 0.61 0.51 0.50 0.51 0.49 0.48 0.41 

Bold number refers to the the highest CCPR value. CCPR: color contrast preserving ratio; TPS: two-stage parametric subspace; CP: 
contrast preserving; RTCP: real-time CP 
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Furthermore, as far as we know, both the discrete 
searching methods of RTCP and Gcs2 are currently 
the fastest. Compared with Gcs2, the extended TPS 
uses the Gcs2 measure in the first stage to obtain an 
immediate grayed image. Then, TPS applies the Gcs2 
method again to select the optimal result from the 
immediate grayed image plus the second subspace 
induced candidate images, leading to a 2–3-fold 
longer computation time than that with the Gcs2 
method. However, implementation on graphics pro-
cessing units (GPUs) can be exploited to achieve 
significant reductions in computation time. The 
computational cost performance using a 550×717 
color image as the input is shown in Table 2. The color 
image was processed on an Intel Core i7 CPU  
@2.40 GHz with our Matlab implementation (Matlab 
7.10.0 with 64 bits). Although the proposed method is 
slower than RTCP and Gcs2, it still achieves a fa-
vorable performance in terms of both accuracy and 
efficiency. 

 
 
 
 
 
 
 
 
 
4  Conclusions and future work 
 

In this paper, we presented a two-stage color- 
to-gray conversion model employing a discrete 
searching strategy with gradient correlation similarity 
measures. The two-step model and the discrete 
searching criterion enhance both the performance and 
computational efficiency. A comparative study using 
a wide variety of images indicated that the proposed 
method provides perceptually more plausible results 
than most other recent algorithms. Nevertheless, since 
the proposed method can be seen as a refinement of 
the previous Gcs method, the improvement of TPS 
over Gcs2 may be slight or even absent for some 
images (for instance, the 8th test image in the CSDD 
dataset, which is not shown here due to space limita-
tions). Besides the Gcs measure, applying this 
two-stage strategy to the two-order multivariance 
polynomial model with other measures will be inves-
tigated in the future. 

In this study, we studied only single-image de-
colorization. One direction for research extension is 
video decolorization. An important consideration is 
that video decolorization can yield better results by 
imposing temporal coherence. For our model, a pos-
sible solution to the extension is to extend the pixel 
difference defined in Eqs. (5) and (6) to the spatio- 
temporal dimension, as in the total variation video 
restoration model described by Chan et al. (2011). We 
could treat a video sequence as a space-time volume 
and pose a space-time volume difference to enhance 
the contrast of decolorization. This may be an inter-
esting topic for future study. 
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