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Abstract:    We propose a low complexity robust beamforming method for the general-rank signal model, to combat against 
mismatches of the desired signal array response and the received signal covariance matrix. The proposed beamformer not only 
considers the norm bounded uncertainties in the desired and received signal covariance matrices, but also includes an additional 
positive semidefinite constraint on the desired signal covariance matrix. Based on the worst-case performance optimization cri-
terion, a computationally simple closed-form weight vector is obtained. Simulation results verify the validity and robustness of the 
proposed beamforming method. 
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1  Introduction 
 

Adaptive beamforming has found numerous 
applications in radar, sonar, radio astronomy, wireless 
communications, medical imaging, and other areas 
(van Trees, 2002; Vorobyov, 2012). One of the most 
commonly used adaptive beamformers is the mini-
mum variance distortionless response (MVDR) 
beamformer, also known as the Capon beamformer 
(Capon, 1969). However, the MVDR beamformer is 
sensitive to model mismatches, such as the desired 
signal array response mismatch and the received 
signal covariance matrix mismatch, especially when 
the desired signal is present in the training snapshots. 
Over the last decades, many robust adaptive beam-
forming (RAB) methods (Cox et al., 1987; Li et al., 
2003; Vorobyov et al., 2003; Hassanien et al., 2008; 
Gu and Leshem, 2012) have been developed to im-

prove the robustness against various model mis-
matches. Although these methods are efficient for the 
point signal source model (i.e., rank-one model), most 
of them cannot be directly extended to the case in 
which the rank of the desired signal covariance matrix 
is higher than one. Recently, a class of general-rank 
RAB methods has been developed to overcome this 
difficulty (Shahbazpanahi et al., 2003; Chen and 
Gershman, 2008; Chen and Gershman, 2011; Zhang 
and Liu, 2012a; 2012b; Khabbazibasmenj and Voro-
byov, 2013). Based on the explicit modeling of un-
certainties in the desired and received signal covari-
ance matrices, Shahbazpanahi et al. (2003) proposed 
the general-rank RAB method for the first time and 
derived a closed-form solution. However, they ig-
nored the positive semidefinite (PSD) requirement for 
the desired signal covariance matrix, leading to an 
overly conservative beamformer design (Chen and 
Gershman, 2008). To address this problem, less con-
servative beamforming methods have been developed 
by imposing an additional PSD constraint on the de-
sired signal covariance matrix (Chen and Gershman, 
2008; Chen and Gershman, 2011; Khabbazibasmenj 
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and Vorobyov, 2013). The beamforming method in 
Khabbazibasmenj and Vorobyov (2013) is proven to 
be able to find the globally optimal solution, provided 
that the mismatch of the desired signal covariance 
matrix is sufficiently small. Although the beam-
forming methods in Chen and Gershman (2008), 
Chen and Gershman (2011), and Khabbazibasmenj 
and Vorobyov (2013) outperform the one in 
Shahbazpanahi et al. (2003), they all suffer from high 
computational complexity since iterative semidefinite 
programming (SDP) algorithms have to be employed 
to solve these beamforming problems. 

In this paper, the RAB problem is considered for 
the general-rank signal model. A low complexity 
RAB method is proposed to improve the beam-
former’s robustness. The proposed RAB method 
considers the PSD constraint on the desired signal 
covariance matrix, which is constructed by a product 
of a matrix and its conjugate transpose so that the 
PSD constraint can be met indirectly. Based on the 
explicit models, a simple closed-form expression for 
the beamforming weight vector is obtained by using 
the worst-case performance optimization criterion. 
Simulation results show that the proposed RAB 
method can achieve superior performance compared 
with state-of-the-art counterparts at a low computa-
tional cost. 
 
 
2  Signal model 
 

The narrowband signal received by an array 
consisting of M sensors at time instant k can be writ-
ten as 

 
( ) ( ) ( ) ( ),k k k k  x s i n                  (1) 

 
where s(k), i(k), and n(k) are the statistically inde-
pendent M×1 vectors of the desired signal, interfer-
ence, and noise, respectively. The beamformer output 
is given by 

 
H( ) ( ),y k k w x                         (2) 

 
where w=[w1, w2, …, wM]T is a complex weight vector, 
and (·)T and (·)H denote the transpose and complex 
conjugate transpose, respectively. The output signal- 
to-interference-plus-noise ratio (SINR) of the beam-
former is defined as 

H

H
+

SINR= ,s

i n

w R w

w R w
                       (3) 

 
where Rs=E{s(k)sH(k)} and Ri+n=E{[i(k)+n(k)][i(k)+ 
n(k)]H} are the desired signal covariance matrix and 
interference-plus-noise covariance matrices, respec-
tively, and E{·} denotes the statistical expectation. 
Note that the desired signal matrix can be of arbitrary 
rank, i.e., 
 

1 rank{ } ,s M R                        (4) 

 
where rank{·} represents the rank operator. In the 
particular case of point signal source, the rank of 
matrix Rs is one. However, in many practical situa-
tions, the rank of matrix Rs is always higher than one, 
for example, in the scenarios with incoherently scat-
tered signal sources or signals with fluctuating 
waveforms (Shahbazpanahi et al., 2003). 
 
 
3  Problem formulation 

 
The problem of maximizing formula (3), known 

as MVDR beamforming, is mathematically equiva-
lent to 
 

H Hmin s.t. 1,x s 
w

w R w w R w                (5) 

 
where Rx=E{x(k)xH(k)} is the received signal covar-
iance matrix. If Rs and Rx are known exactly, the 
optimal solution can be found as (Shahbazpanahi et 
al., 2003) 
 

1
opt { },x sP w R R                        (6) 

 
which is the MVDR beamformer for the general-rank 
signal model. Herein, P{·} denotes the principal ei-
genvector of a matrix. 

In practice, the true values of Rs and Rx are un-
available, and they are often replaced by their esti-

mates. So, Rs and Rx can be modeled as 1s s 


R R Δ  

and 2x x 


R R Δ , respectively, where s


R  and x


R  are 

the estimates of Rs and Rx, respectively, and Δ1 (or Δ2) 
is the corresponding estimation uncertainty. It is 
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known that these uncertainties will lead to a signifi-
cant loss in the performance of the MVDR beam-
former (Shahbazpanahi et al., 2003). To alleviate the 
performance degradation, Shahbazpanahi et al. (2003) 
introduced the explicit models of uncertainty, i.e., 
||Δ1||≤ε and ||Δ2||≤γ, where ||·|| denotes the Fresenius 
norm, and ε and γ are the uncertainty bounds on Δ1 
and Δ2, respectively. Consequently, problem (5) is 
transformed into (Shahbazpanahi et al., 2003) 
 

2

1

H
2

|| ||

H
1|| ||

min max ( )

s.t. min ( ) 1.

x

s











 




w Δ

Δ

w R Δ w

w R Δ w
              (7) 

 
Using the worst-case performance optimization cri-
terion, the solution can be derived by 
 

1{( ) ( )},x sP    
 

w R I R I               (8) 

 
where I is the identity matrix. 

Obviously, 1s s 


R R Δ  is PSD, since it is a 

covariance matrix. However, the PSD requirement for 

matrix 1s 

R Δ  is not considered in the RAB problem 

(7), which may easily cause the worst-case desired 

signal matrix s 

R I  to be indefinite or negative 

definite (Chen and Gershman, 2008). Note that the 

worst-case sample covariance matrix x 

R I  is 

always positive definite. If constraint 1 0s 

R Δ   is 

added in problem (7) to ensure matrix 1s 

R Δ  being 

PSD, the optimization problem will be hard to solve. 
In Chen and Gershman (2008), the PSD constraint 

1 0s 

R Δ   was achieved by first factorizing s


R  into 

H ,s 

R Q Q  and then constructing matrix 1s 


R Δ  

such that H
1 ( ) ( )s    


R Δ Q Δ Q Δ , where Δ is a 

norm bounded mismatch uncertainty in the square- 
root matrix Q with ||Δ||≤η. Accordingly, the RAB 
problem for the general-rank signal model becomes  

 

2

H
2

|| ||

H H

|| ||

min max ( )

s.t. min ( ) ( ) 1.

x









  


w Δ

Δ

w R Δ w

w Q Δ Q Δ w
       (9) 

 
In problem (9), the maximum of the quadratic 

term H
2( )x 


w R Δ w  in the objective function with 

respect to Δ2 can be easily derived as H ( )x 


w R I w  

by using the Lagrange multiplier. After some alge-
braic simplifications, the minimum of the quadratic 
term wH(Q+Δ)H(Q+Δ)w in the constraint with respect 
to Δ can be obtained as (||Qw||−η||w||)2 with the con-
dition of ||Qw||>η||w||. For a detailed derivation, see 
Appendix I-A in Khabbazibasmenj and Vorobyov 
(2013). Thus, the constraint in problem (9) can be 
equivalently replaced by ||Qw||−η||w||≥1. Based on the 
results described above, problem (9) is equivalent to  
 

Hmin ( )

s.t. || || || || 1.

x 





 


w

w R I w

Qw w
                (10) 

 
It is obvious that this optimization problem is non- 
convex because of the non-convex constraint. Many 
iterative SDP algorithms have been developed to 
solve problem (10) (Chen and Gershman, 2008; Chen 
and Gershman, 2011; Khabbazibasmenj and Voro-
byov, 2013). However, high computational cost 
makes the online and real-time processing difficult to 
achieve. A computationally efficient algorithm is 
required to solve problem (10). 
 
 
4  The proposed algorithm 

 

In this section, a low-complexity RAB approach 
is proposed for the general-rank signal model with the 
PSD constraint. Specifically, a closed-form solution 
to the considered beamforming problem is derived in 
the following. 

It is obvious that problem (10) can be rewritten 
as 
 

H

2

min ( )

s.t. (|| || || ||) 1,

|| || || || .

x 






 



w

w R I w

Qw w

Qw w

               (11) 

 
To solve this non-convex problem, we temporarily 
drop constraint ||Qw||>η||w||, and then problem (11) 
reduces to 
 

H

2

min ( )

s.t. (|| || || ||) 1.

x 





 


w

w R I w

Qw w
             (12) 

 
Applying the Cauchy-Schwarz inequality to the con-
straint in problem (12), we have 
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    (13) 

 

where the property H|| ||Q Q Q  and the definition 
H

s 

R Q Q  are used, and tr(·) denotes the trace oper-

ator. Involving a worst-case problem approximation 
in the constraint, problem (12) can therefore be ap-
proximated as 
 

H

H 2

min ( )

s.t. ( 2 tr( )) 1.

x

s s



 



   
 



 
w

w R I w

w R R I w
  (14) 

 
Problem (14) is equivalent to problem (12) only when 
||Qw||=||w||. Otherwise, problem (14) will be an ap-
proximation of problem (12) by shrinking the feasible 
region, and thus it may not provide a globally optimal 
solution to problem (12). In problem (14), the ine-
quality constraint is satisfied by equality if the opti-
mal solution is achieved, which can be proved by 
contradiction (see Appendix A). Thus, problem (14) 
can be further recast as 
 

H

H 2

min ( )

s.t. ( 2 tr( )) 1.

x

s s



 



   
 



 
w

w R I w

w R R I w
  (15) 

 
The optimal solution to problem (15) can be 

obtained by using the Lagrange multiplier method, 
based on the following function: 
 

  
H

H 2

( , ) ( )

1 2 tr( ) .

x

s s

G  

  

 

      

w w R I w

w R R I w



   

(16) 
 
Nulling the derivative of Eq. (16) with respect to w 
results in 
 

 2( ) 2 tr( ) .x s s         
R I w R R I w
  

  (17) 

 
It follows that problem (15) can be viewed as a 

generalized eigenvalue problem, where the variable 
vector w is the generalized eigenvector of matrix 

pencil  2, ( 2 tr( ))x s s    
  
R I R R I  (λ is the 

corresponding generalized eigenvalue). 
Premultiplying both sides of Eq. (17) with wH 

yields 
 

 H H 2( ) 2 tr( ) .x s s         
w R I w w R R I w

  
 

(18) 
 

Based on constraint H 2[ ( 2 tr( )) ] 1s s   w R R I w
 

, 

we can obtain H ( )x   w R I w


. Thus, the optimal 

solution minimizing the objective function of prob-
lem (15) is actually the generalized eigenvector of 

 2, ( 2 tr( ))x s s    
  
R I R R I  corresponding to 

the smallest positive generalized eigenvalue.  
Eq. (17) can be easily reshaped as 

 

 1 2 1
( ) 2 tr( ) ,x s s  


     

 
R I R R I w w
  

 (19) 

 
which indicates that problem (15) can also be viewed 
as an eigenvalue problem, where w is the eigenvector 

of matrix 1 2( ) ( 2 tr( ))x s s      
 

  
R I R R I  and 

1/λ is the corresponding eigenvalue. Since the small-
est positive λ leads to the maximum value of 1/λ, the 
optimal solution to problem (15) is given by the 

principle eigenvector of matrix 1( )x  R I


 

2
s s( ( 2 tr( )) )   
 
R R I , i.e., 

 

  1 2
rob ( ) 2 tr( ) .x s sP          

w R I R R I
  

 

 (20) 
 
This means that problem (12) has a closed-form so-
lution given by Eq. (20). Note that problem (12) is a 
relaxed version of problem (11) without considering 
the constraint ||Qw||>η||w||. Fortunately, the weight 
vector wrob is proved to satisfy constraint ||Qw||>η||w|| 
(see Appendix B), and therefore it is also the solution 
to problem (11) or (10).  

Here, we compare the computational complexi-
ties of the proposed beamforming method with that of 
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the iterative SDP beamforming methods in Chen and 
Gershman (2008), Chen and Gershman (2011), and 
Khabbazibasmenj and Vorobyov (2013) for the  
general-rank signal model. In the batch processing 
mode, it can be seen from Eq. (20) that the computa-
tional complexity of the proposed beamforming 
method is dominated mainly by the matrix inversion 
and eigen-decomposition. For an M×M matrix, these 
two operations both require O(M 3) computations. 
Hence, the overall complexity of the proposed 
beamforming method is O(M 3). The algorithms 
proposed in Chen and Gershman (2008), Chen and 
Gershman (2011), and Khabbazibasmenj and Voro-
byov (2013) are all iterative algorithms, and each 
iteration involves solving an SDP problem. Usually, 
the SDP problems are solved numerically using inte-
rior point methods with the computational complexity 
of O(M 3.5log(1/ς)) (de Maio et al., 2010), where ς is a 
prefixed accuracy. Therefore, if K iterations are in-
volved, the complexity of the iterative algorithms in 
Chen and Gershman (2008), Chen and Gershman 
(2011), and Khabbazibasmenj and Vorobyov (2013) 
will be O(KM 3.5log(1/ς)). Apparently, the proposed 
method is more computationally efficient than its 
counterparts. 
 
 
5  Simulation results  
 

A uniform linear array with M isotropic sensors 
spaced half a wavelength apart is considered in sim-
ulation. An interference source, which presents in-
terference in each sensor with a 20 dB interference- 
to-noise ratio (INR), is assumed to impinge on the 
array. Both the desired and interference sources are 
locally incoherently scattered sources with the same 
angular spread of 4°. The desired and interference 
sources have Gaussian and uniform angular power 
densities characterized by the central angles of 30° 
and −30°, respectively. We assume that the presumed 
desired source also has a Gaussian shaped angular 
power density, but the central angle and angular 

spread are 32°  and 6°, respectively. The estimate of 
the desired signal covariance matrix is calculated as 

H( ( ) ( )) ( , )s    R a a B
     (Trump and Ottersten, 

1996), where 


 and 
  are the presumed central 

angle and angular spread, respectively, ( )a


 is the 

steering vector associated with direction 

, the kth 

row and lth column element of matrix ( , ) B
 

 is 

Bkl=
2 2 2exp{ 2[π ( )] cos }k l    


 (Δ is the separation 

between two adjacent sensors in wavelengths), and 
  is the Schur-Hadamard inner product. The per-
formance of the proposed beamforming method is 
compared with that of the general-rank RAB methods 
in Shahbazpanahi et al. (2003), Chen and Gershman 

(2008), and Khabbazibasmenj and Vorobyov (2013). 
As suggested in Shahbazpanahi et al. (2003), the 
diagonal loading parameter γ=30 is chosen for all the 
tested RAB methods, and the value ε=9tr(Rs)/M is 
used for the RAB method in Shahbazpanahi et al. 

(2003). We select 0.75 tr( )s  R  for the proposed 

RAB method and the RAB methods in Chen and 
Gershman (2008) and Khabbazibasmenj and Voro-
byov (2013). For each scenario in the simulation, 200 
independent Monte-Carlo trials are performed. 

In the first simulation, the effects of SNR and the 
number of snapshots on the array output SINR are 
respectively investigated, where the number of sen-
sors (M) is set to 20. Fig. 1a shows the output SINRs 
of the tested beamforming methods versus the input 
signal-to-noise ratio (SNR) for a fixed number of 
snapshots (N=50). The general-rank RABs in Chen 
and Gershman (2008), Khabbazibasmenj and Voro-
byov (2013), and the proposed beamforming method 
all achieve higher output SINRs than that in 
Shahbazpanahi et al. (2003). This is mainly due to the 
consideration of the PSD constraint on the desired 
signal covariance matrix. Moreover, the output SINRs 
of the proposed beamformer are very close to to that 
of the general-rank RAB in Khabbazibasmenj and 
Vorobyov (2013). Interestingly, according to the 
analysis in Section 4, the computation cost of the 
proposed closed-form beamforming method is much 
lower than that of the general-rank RAB in Khabba-
zibasmenj and Vorobyov (2013) (i.e., iterative SDP 
formulation). Fig. 1b shows the output SINRs versus 
the number of snapshots for a fixed SNR of 15 dB. 
The results are similar to those in Fig. 1a, which also 
validates the analysis above. 

In the second simulation, the influence of the 
number of sensors on algorithm complexity is con-
sidered. The computational complexities of the algo-
rithms are measured in terms of average CPU time per 
Monte-Carlo run. The simulation has been conducted 
using MATLAB (version 2012b) on a PC with a 
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3.40 GHz Intel Core i5 processor and 4 GB RAM. 
Besides, the Matlab software, CVX (Grant et al., 
2015), is used to solve the iterative SDP algorithms in 
Chen and Gershman (2008) and Khabbazibasmenj 
and Vorobyov (2013). Fig. 2 shows the CPU time 
against the number of sensors, where SNR=10 dB and 
N=20. The complexity of the proposed algorithm is 
comparable to that in Shahbazpanahi et al. (2003), but 
it is far less than those in Chen and Gershman (2008) 
and Khabbazibasmenj and Vorobyov (2013). 
 
 
6  Conclusions 

 
In this paper, we proposed a low-complexity 

robust beamformer for the general-rank signal model 
with the PSD constraint. Using the worst-case 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

performance optimization criterion, a computation-
ally simple closed-form weight vector was obtained. 
Simulation results demonstrated the superiority of the 
proposed method over its counterparts. 
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Appendix A: Proof by contradiction 

 
Assume that the objective function 

H ( )x w R I w


 in problem (14) is minimized under 

the constraint H 2[ ( 2 tr( )) ] 1s s     w R R I w
 

. 

Then, replacing w with / w , we can decrease the 

objective function H ( )x w R I w


 by a factor of κ, 

which is contrary to our assumption. Therefore, the 
minimum of the objective function is achieved at κ=1; 
i.e., the optimal solution to problem (14) is achieved 
when the inequality constraint is satisfied by equality. 

 
 

Appendix B: Property of wrob 
 
Before proceeding, we prove that 0<η< 

max ( )s R


, where λmax(·) stands for the maximum 

eigenvalue of a matrix. From the constraint in prob-
lem (10), we have 
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Since η>0, 1+η||w||>0. Then, the following relation-
ship holds: 
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where we have used the definition H

s R Q Q


 and the 

result of the Rayleigh quotient in the second inequal-
ity (Cirrincione et al., 2002). Therefore, we can obtain 

0<η< max ( )s R


. Turn now to display the property of 

wrob. 
From Eq. (18), we can obtain that 
 

 
H

H
2 2( )

2 tr( ) || || .

s

x
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w R w

w R I w
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   (B4) 

 
Thus, 

 

 
H 2 2

H
2 2

|| ||

( )
2 tr( ) || || .

s

x
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w R w w

w R I w
R w


   (B5) 

 

Since x R I


 is positive and 0<η< max ( )s R


≤ 
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tr( )sR


, it follows that 
 

H ( ) 0x  w R I w


                    (B6) 
 
and 
 

 2 2tr( ) || || 0.s  R w


             (B7) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Applying λ>0 and inequalities (B6) and (B7) to 
Eq. (B5) leads to 
 

H 2 2|| || 0.s  w R w w


                 (B8) 

 
Therefore, the weight vector wrob obtained from 
Eq. (18) satisfies constraint ||Qw||>η||w||. 


