
Sheng et al. / Front Inform Technol Electron Eng 2017 18(11):1773-1783 1773

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Mechanized semantics and refinement of
UML-Statecharts∗

Feng SHENG, Liang DOU‡, Zong-yuan YANG
(Department of Computer Science and Technology, East China Normal University, Shanghai 200241, China)

E-mail: fsheng1990@163.com; ldou@cs.ecnu.edu.cn; yzyuan@cs.ecnu.edu.cn

Received Apr. 24, 2016; Revision accepted June 30, 2016; Crosschecked Nov. 29, 2017

Abstract: The Unified Modeling Language (UML) is an industry standard for modeling analysis and design.
However, the semantics of UML is not precisely defined and the correctness of refinement relations cannot be
verified. In this study, we use the theorem proof assistant Coq to formalize and mechanize the semantics of UML-
Statecharts and the refinement relations between models. Based on the mechanized semantics, the desired properties
of both the semantics and the refinement relations can be described and proven as predicates and lemmas. This
approach provides a promising way to obtain certified fault-free modeling and refinement.

Key words: Unified Modeling Language (UML)-Statecharts; Coq; Refinement; Structured operational semantics
https://doi.org/10.1631/FITEE.1601196 CLC number: TP311.5

1 Introduction

Model-driven engineering (MDE) is a software
engineering paradigm based on the specification of
models of a system. In MDE, models are used as
primary artifacts to drive engineering. The Unified
Modeling Language (UML) has been developed as a
standard object-oriented modeling notation in MDE
and is well accepted in the industry. It offers differ-
ent types of diagrams to describe different aspects
of a system. UML-Statecharts, originally introduced
by Harel et al. (1990), are used mainly to describe
the dynamic behaviors of an object in its life cycle,
including the sequences of the states of the object,
the events that generate the transitions of the states,
and the actions caused by the transitions. However,
the syntax and semantics of notations are provided
in terms of natural language descriptions, UML no-
tations, and Object Constraint Language (OCL),
which are not sufficient to express the semantics of
‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (No. 61070226)

ORCID: Liang DOU, http://orcid.org/0000-0003-3044-3841
c©Zhejiang University and Springer-Verlag GmbH Germany 2017

UML notations precisely.

Moreover, the construction of MDE is driven
by model refinement, starting with an initial design
model, and a specification is often developed step-
by-step. First, an abstract model is designed, and
then the refinement takes place, introducing further
details. Such details can either add new parts of the
system or enhance its behaviors. This refinement
step is repeatedly applied until an adequate level
of description is obtained. As a result, the quality
of the whole process strongly depends on the qual-
ity of refinement. UML cannot provide the formal
specification of refinement in software design, which
makes it difficult to formalize the refinement rela-
tions and verify their desired properties. Although
formal methods and techniques that can promise the
correctness of the desired properties in design mod-
els, are expensive, it is worth exploring how formal
methods can be applied within MDE.

Coq (http://coq.inria.fr/) is an interactive the-
orem proof assistant for constructing programs and
machine checkable proof based on the calculus of in-
ductive constructions (CIC). CIC is a type theory

Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1601196&domain=pdf


1774 Sheng et al. / Front Inform Technol Electron Eng 2017 18(11):1773-1783

with dependent types, which allows us to write logi-
cal formulae of high order about objects of inductive
and functional types and about potentially infinite
structures of co-inductive types. The key to Coq
is the Curry-Howard isomorphism, which connects
types to logical propositions and well-founded func-
tional programs to proof in constructive logic. Due to
its very considerable expressive power and industrial-
strength support, there has been much effort in us-
ing Coq to perform verification, such as CompCert
(Leroy, 2015), JavaCard (Andronick et al., 2003),
and the four-color theorem (Gonthier, 2007).

In our previous work (Dou et al., 2013), we
demonstrated how to implement the mechanized
semantics and refinement of UML sequence dia-
grams and perform formal verification in Coq. In
this study, we use the Coq proof assistant to state
specifications, create implementations, and build
proofs for UML-Statecharts. The properties of
refinement relations are described as lemmas using
extra auxiliary functions, and the provability of
lemmas indicates the correctness of the proper-
ties. The main contributions are listed as follows
(source codes and the case study can be found at
https://github.com/shengfeng/mechanized-seman-
tics-of-statecharts):

1. The structured operational semantics (von
der Beeck, 2002) of the UML-Statecharts is mech-
anized as object languages in Coq. The seman-
tics includes entry and exit actions, a possibility to
model inter-level transitions, specifying different his-
tory types, and a description of the non-termination
situation. We redefine the potential configurations
and extend the guard condition to make semantics
more expressive.

2. We propose using Coq to formalize the refine-
ment relations about UML-Statecharts, which can
be mechanically proven to have the transitive, deter-
ministic, and behavior-preserving properties. Tran-
sitivity implies that the correctness of multi-step re-
finement can be decomposed to the correctness of
one-step refinement. The refinement relations should
be deterministic and not change the behavior of the
models.

2 Background

In this study, we focus on inductive data types,
functions, and inductive predicates. One way to de-

fine types in Coq is using inductive definitions. The
natural numbers are defined as follows:

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

The inductive type ‘nat’ denotes a natural number
by two constructors. First, the ‘O’ constructor states
that ‘O’ is a natural number which we will consider
as zero. The ‘S’ constructor states that, given any
number n, ‘S n’ is also a natural number, which is
the successor of n. We can use the same approach
to define inductive predicates. For example, we can
define an inductive predicate that tells whether a
number is even:

Inductive even : nat -> Prop :=
| Ezero : even O
| Esucc : forall n, even n -> even (S (S n)).

The type of even is ‘nat → Prop’. This is the type
of total functions from natural numbers to logical
propositions. Coq also provides a keyword ‘Defini-
tion’ to define new types as follows:

Definition pair_nat : Set := nat * nat.
Definition list_nat : Set := list nat.

The type ‘pair_nat’ defines the type of pairs of natu-
ral numbers. Using built-in Coq notations, the value
of ‘pair_nat’ can be written as (1, 3). The type
‘list_nat’ defines the type of a list of natural num-
bers. In Coq, the empty list is denoted as ‘nil’ while
the nonempty list can be connected by the ‘::’ nota-
tion. For example, the list ‘1, 3, 5’ can be written as
‘1 :: 3 :: 5 :: nil’.

Here, we use the keyword ‘Lemma’ or ‘Theo-
rem’ to signify proofs, though this is an alias for
‘Definition’.

Lemma zero_is_even : Prop := even O.
Theorem plus_ex : Prop := forall n m, n + m = m + n.

For the first lemma, it is easy to prove that this
lemma uses the tactic ‘apply’. For the second,
a tactic ‘induction’ divides the goal into two sub-
goals. This is the basic process for verifying lem-
mas in Coq. More information about Coq can
be found in the Coq website (https://coq.inria.fr/
distrib/current/stdlib/).



Sheng et al. / Front Inform Technol Electron Eng 2017 18(11):1773-1783 1775

3 Formalizing structured operational
semantics

In this section, we present the main concepts
and definitions for UML-Statecharts that we will use
in this study.

3.1 Abstract syntax

Let N, T , E , and A be countable sets of the
names of states, transitions, events, and actions, re-
spectively. We denote the events and actions by a,
b, c..., and α, β, γ... indicate the sequences. For a
set M , we define M∗ as the set of finite sequences
over M . G is a set of guard conditions that describe
the operations of logic and relation. Then the set
UML-SC is inductively defined to be the least set
satisfying the following three types of states, where
n ∈ N and en, ex ∈ A∗. For simplicity, s0, s1, ..., sk
can be abbreviated as s0...k.

1. Basic-state
Denote s = [n, (en, ex)] a basic-state, where

name(s) = n, type(s) = basic, and ‘en’ and ‘ex’ are
sequences of the entry and exit actions, respectively.

2. Or-state
If s0, s1, ..., sk are states for k > 0, ρ ={

0, 1, ..., k
}
, l ∈ ρ, HT is the history types in

{none, deep, shallow}, ℘(N) = 2N , and T :=

T × ρ × ℘(N) × E × G × A∗ × ℘(N) × ρ × HT,
then s = [n, (s0...k), l, T, (en, ex)] is an or-state with
type(s) = or. Note that s0, s1, ..., sk are the sub-
states of s, l is the index of current active substate,
and T is a set of transitions. For each transition
tr = (tn, i, sr, e, g, α, td, j, ht) ∈ T , we have functions
of transition ‘tr’ as follows:

name(tr)=tn, sou(tr)=si, souRes(tr)=sr,

ev(tr)=e, guard(tr)=g, actSeq(tr)=α,

tarDet(tr)=td, tar(tr)=sj, historyType(tr)=ht,

where ‘tn’ is the name of transition ‘tr’, i and j are
the indexes of source state and target state of ‘tr’,
respectively, e and α are the triggers (input events)
and actions of ‘tr’, respectively, and g is a guard con-
dition. When the guard condition is satisfied, the
transition will generate the set of actions α. Here, ‘sr’
and ‘td’ are the source restriction and target determi-
nator of ‘tr’, respectively, which provide a possibility
to perform an inter-level transition. Transition ‘tr’ is
an inter-level transition, if its source restriction ‘sr’

or its target determinator ‘td’ differs from the empty
set. Symbol ‘ht’ is the history type of ‘tr’.

3. And-state
If s0, s1, ..., sk are states for k > 0, then s =

[n, (s0...k), (en, ex)] is an and-state with type(s) =

and. Here, s0, s1, ..., sk are the parallel substates of
s with all of them being active substates.

We give the Coq notations for these three types
states as follows:

Definition seqact := list action.
...
Inductive history : Set :=
| none : history
| deep : history
| shallow : history.

...
Definition trans :=

tname * nat * set sname * event * guard *
seqact * set sname * nat * history.

...
Definition entryexit := seqact * seqact.
...
Inductive sc : Type :=
| basic_sc : sname -> entryexit -> sc
| or_sc : sname -> list sc -> nat ->

set trans -> entryexit -> sc
| and_sc : sname -> set sc -> entryexit -> sc.

This ‘seqact’ represents a list of ‘actions’. The in-
ductive type ‘history’ defines a set of history mecha-
nisms, in which ‘none’, ‘deep’, and ‘shallow’ are three
different types. The ‘trans’ indicates transitions in
the or-state, ‘entryexit’ is a pair of entry and exit ac-
tions, and inductive type ‘sc’ denotes the three types
of states.

3.2 Semantic auxiliary functions

In this subsection, we will introduce some se-
mantic auxiliary functions for defining the structured
operational semantics (SOS), including configura-
tions, the set of all possible configurations, history
mechanism, the entry and exit actions, and comput-
ing the next state. Because of the limited space, here
we introduce only the configurations. Table 1 lists
the main auxiliary functions that we will use in this
study. The configuration of a state is used to denote
the current active substate, which is a set of states.
Function conf: SC → ℘(N), which is inductively
defined along the structure of states, computes the
current configuration of a given state s:

conf([n, (en, ex)]) = {n},
conf([n, (s0...k), l, T, (en, ex)]) = {n} ∪ conf(sl),



1776 Sheng et al. / Front Inform Technol Electron Eng 2017 18(11):1773-1783

Table 1 Semantic auxiliary functions in UML-Statecharts

Name Purpose

conf: SC → ℘(N) ‘configuration’ of a state is the set of the names of all current active substates.
conf_all: SC → (℘(℘(N))) ‘all configuration’ of a state is the set of all potential configurations, which

can be complete or incomplete.
default: SC → SC ‘default’ allows reentry of an or-state, such that the same substate becomes the

current active substate as it has been the case.
entry: SC → ℘(A∗) ‘entry’ is the set of all sequences of entry actions.
exit: SC → ℘(A∗) ‘exit’ is the set of all sequences of exit actions.
next: HT ×N× SC → SC If a transition is executed, ‘next’ is used to compute the next state according to

its history mechanism and target determinator.

conf([n, (s0...k), (en, ex)]) = {n} ∪
k⋃

i=0

conf(si).

Obviously, the configuration of the basic-state is it-
self, the configuration of the or-state is the union of
itself and the configuration of the set of its active
substate, and the configuration of the and-state is
the union of itself and all the configurations of its
substates.

3.3 Semantic definitions

First, we define an auxiliary semantics that
deals with only processing single input events. A
labeled transition system (LTS) is taken as the se-
mantic domain to deal with processing a single input
event.

The auxiliary semantics �s�aux of a state s is
given by the labeled transition system (SC, L,→
, s0) ∈ LTS, where SC is the set of states, L =

E × G × A∗ × {true, false} is the set of labels,
→⊆ SC × L × SC is the transition relations, and
s0 is the initial state. For the sake of simplicity, we

use s
e[g]−−→
α f

s′ instead of (s, (e, g, α, f), s′) ∈→, and

s
e[g]
�

f
instead of �s′ α, s

e[g]−−→
α f

s′, where s and s′

are the source and target states of these (semantic)
transition rules, respectively. For an input event e,
if the guard condition g is satisfied, the state s may
perform a transition with output α and flag f to
state s′. Intuitively, stuttering flag f states whether
a semantic transition is performed, where f = true

denotes as a positive flag that at least one transition
is taken (non-stuttering transition), while f = false

denotes as a negative flag without taking any tran-
sition (stuttering transition), just ‘consumed’ input
event e. SOS rules → are defined in Fig. 1.

The explanation of the SOS rules is as follows:
1. basic: a basic state may perform a stutter-

ing transition with an arbitrary input event e, and
generate an empty action, a negative flag, and an
identical state if the guard condition g is satisfied;
i.e., the input event is just consumed.

2. or1: if tr = (tn, l, sr, e, g, α, td,m, ht) is a
transition of an or-state s, the source restriction ‘sr’
of ‘tr’ is the configuration of the current active sub-
state sl, and the input event e cannot trigger a transi-
tion whose priority is higher than ‘tr’, s will perform
a non-stuttering transition with input event e and
guard condition g.

3. or2: if the current active substate of an or-
state can perform a non-stuttering transition with a
‘positive flag’, then the or-state may perform a non-
stuttering transition with the same label.

4. or3: if the current active substate of an or-
state can perform a stuttering transition with a ‘neg-
ative flag’, and the or-state cannot conduct a non-
stuttering transition with a ‘positive flag’ with input
event e and guard condition g, then the or-state may
perform a stuttering transition with a ‘negative flag’.

5. and: if each substate sj of and-state s can
perform a transition with input event e, output αj ,
and flag fj , then and-state s can perform a transition
with the same input event e, the output is αj in an
arbitrary order, and the flag ∨k

j=0fj is given by the
logical disjunction of all flag fj.

In our work, the proposition ‘priority’ is defined
to determine whether an event can trigger a transi-
tion of substates:

Inductive priority : event -> sc -> Prop :=
| p_or : forall l lsc lt n tn i s e g a ee sr td h,

set_In (tn, l, sr, e, g, a, td, i, h) lt ->
(forall st, set_In st sr ->
set_In st (conf (nth l lsc s))) ->



Sheng et al. / Front Inform Technol Electron Eng 2017 18(11):1773-1783 1777

basic
true

[n,_]
e[g]−−→
<> false

[n,_]
,

or1
(tn, l, sr, e, g, α, td,m,ht) ∈ T, sr = conf(sl), sl

e[g]
�

true

[n, (s0...k), l, T,_]
e[g]−−−−−→

ex::α::en true
[n, (s0...k)[sm/next(h,N,sm)],m, T,_]

(
ex ∈ exit(sl),

en ∈ entry(next(ht, td, sm))

)
,

or2
sl

e[g]−−→
α true

s′l

[n, (s0...k), l, T,_]
e[g]−−→
α true

[n, (s0...k)[sl/s′l], l, T,_]
,

or3
sl

e[g]−−→
<> false

sl, [n, (s0...k), l, T ]
e[g]
�

true

[n, (s0...k), l, T,_]
e[g]−−→
<> false

[n, (s0...k), l, T,_]
,

and

∀j ∈ {0, 1, ..., k}, sj
e[g]−−→
αj fj

s′j

[n, (s0...k),_]
e[g]−−→
α ∨k

j=0fj

[n, (s′0...k),_]

(
α ∈ {αb(0) :: ... :: αb(k)|

∃bijection b : {0, 1, ..., k} → {0, 1, ..., k}}

)
.

Fig. 1 Structured operational semantic rules

priority e (or_sc n lsc l lt ee)
| p_and : forall n lsc e ee,

(exists s, set_In s lsc -> priority e s) ->
priority e (and_sc n lsc ee).

We define the inductive predicate ‘sred’ to describe
the operational semantics with the single input
event, in which each constructor of the inductive
predicate ‘sred’ denotes a semantic rule in Fig. 1.

Inductive sred (st : state) : sc -> label -> sc -> Prop :=
| or1 : forall e g a n lsc l lt i tn s ee en ex tr sr td h s’,
beval st g = true ->
set_In (tn, l, sr, e, g, a, td, i, h) lt ->
(forall sta, set_In sta sr ->
set_In sta (conf (nth l lsc s))) ->
~ priority e (nth l lsc s) ->
exit (nth l lsc s) ex ->
entry (nth i lsc s) en ->
tr = ex ++ a ++ en ->
s’ = subst_or (or_sc n lsc i lt ee) (nth i lsc s)
(next h td (nth i lsc s)) ->
sred st (or_sc n lsc l lt ee) (e, g, tr, true) s’
...

with reconstruct_action (st : state) : event -> list sc ->
list (list string) -> list sc -> bool -> Prop :=

| r_action_true : forall lsc ltr lsc’ e g,
(exists sj, exists a, exists sj’,
set_In sj lsc /\ sred st sj (e, g, a, true) sj’) ->
(forall sj sj’, set_In sj lsc ->
subst_and_r lsc sj sj’ lsc’ ->
(exists tr’, exists f,
set_In tr’ ltr /\ sred st sj (e, g, tr’, f) sj’)) ->
(forall tr’ sj’, set_In tr’ ltr ->
(exists sj, exists f, subst_and_r lsc sj sj’ lsc’ ->

set_In sj lsc /\ sred st sj (e, g, tr’, f) sj’)) ->
reconstruct_action st e lsc ltr lsc’ true
...

3.4 Complete semantics

To specify the UML-Statecharts in a more com-
plete way, we describe the complete semantics with
a sequence of input events based on the auxiliary se-
mantics. The complete semantics can be divided into
two parts: the input event is consumed and removed
from the sequence, and the output action is added to
the tail of actions to be used in the following steps.

The Kripke structure is applied for the seman-
tic domain for dealing with the sequences of input
events, as it is appropriate for modeling the output
of one step serving as the input of the next steps. The
complete semantics �s� of a state s ∈ SC is given by
the Kripke structure (S, st,=⇒), where S = SC×E∗

is the set of Kripke states K, st = (s, t0) ∈ S is the
start state of K with t0 ∈ E∗, and =⇒⊆ S×S is the
transition relation of K.

For the sake of simplicity, we use (s, t) =⇒
(s′, t′) instead of (s, t, s′, t′) ∈=⇒. The following
rules define the complete semantics using the auxil-
iary semantics:

self (s, t) =⇒ (s, t),



1778 Sheng et al. / Front Inform Technol Electron Eng 2017 18(11):1773-1783

trans

s
e[g]−−→
α f

s′

(s, t) =⇒ (s′, t′)
,where

(
∃e = head(t)

t′ = tail(t) :: α

)
.

The complete semantics of the UML-Statecharts is
given by the inductive predicate ‘sstar’ based on
‘sred’:

Inductive sstar (st : state) :
sc -> trace -> sc -> trace -> Prop :=

| sstar_self : forall s t, sstar st s t s t
| sstar_trans :

forall s t s’ t’ s’’ t’’ a b e g,
sstar st s t s’ t’ ->
sred st s’ (hd e t’, g, a, b) s’’ ->
t’’ = (tl t’) ++ a -> sstar st s t s’’ t’’.

3.5 Desired properties

In this subsection, we will present some proofs of
the desired properties of the UML-Statecharts using
the theorem proof assistant Coq.

1. Determinacy: for an arbitrary state s1, the
next state of s1 after performing a transition is
deterministic.

2. Transitivity: for arbitrary states s1, s2, and

s3, if (s, t) =⇒ (s2, t2), s2
e2[g2]−−−−→
α2 f2

s3, and e2 =

(head true t2) are all satisfied, then (s, t) =⇒ (s3, t3)

can be derived, where t3 = (tail t2) + α2.

3. Reflexivity: for an arbitrary state ‘st’, st
e[g]−−→
α f

st should satisfy the reflexivity, where (e, g, α, f) is
empty.

Theorem deterministic: forall st s1 s2 s3 l,
sred st s1 l s2 -> sred st s1 l s3 -> s2 = s3.

Theorem transitive : forall st s t s’ t’ s’’ t’’ a b e g,
sstar st s t s’ t’ ->
sred st s’ (hd e t’, g, a, b) s’’ ->
t’’ = (tl t’) ++ a -> sstar st s t s’’ t’’.

Theorem reflexivity : forall st s, sred st s nil s.

4 Refinement relations

In general, we can refine a UML-Statechart by
adding new parallel or sequential states, adding a
new transition between two states, adding actions
within the sequence of entry and exit, adding actions
in transitions, etc. The incremental refinement in
software modeling must be behavior-preserving.

4.1 Definitions

If s is a substring of t, we denote as s � t,
described by the inductive predicate ‘sub_seqact’ in
Coq:

Inductive sub_seqact : list action -> list action -> Prop :=
| subnil : forall l, sub_seqact nil l
| subcons1 :

forall l1 l2 x, sub_seqact l1 l2 ->
sub_seqact l1 (x :: l2)

| subcons2 :
forall l1 l2 x, sub_seqact l1 l2 ->
sub_seqact (x :: l1)(x :: l2).

If transition ‘tr’ is a well-formed transition
of the list of states s0...k, we define it
wellformed_tran({s0...k}, tr), which satisfies the fol-
lowing rules:

• sou(tr) ∈ {s0...k},
• tar(tr) ∈ {s0...k},
• (souRes(tr) = ∅)∨ (souRes(tr) ∈ conf_all(sou(tr))),

• (tarDet(tr) = ∅)∨ (tarDet(tr) ∈ conf_all(tar(tr))).

We use inductive predicate ‘wellformed_tran’ to de-
scribe well-formed transitions:

Inductive wellformed_tran : list sc -> trans -> Prop :=
| wellformed : forall lsc t a,

set_In (name (nth (sou t) lsc a)) (names lsc) ->
set_In (name (nth (tar t) lsc a)) (names lsc) ->
((souRes t = nil) \/
set_In (souRes t) (conf_all (nth (sou t) lsc a))) ->
((tarDet t = nil ) \/
set_In (tarDet t) (conf_all (nth (tar t) lsc a))) ->
wellformed_tran lsc t.

Note that ‘name’ and ‘names’ indicate an acquired
name of the states and its set in the list of states,
respectively. ‘SouRes’ and ‘tarDet’ denote the source
restriction and the target determinator, respectively.

Now we can define the one-step refinement rela-
tions of the UML-Statecharts.
Definition 1 Assuming s1, s2 ∈ SC, if s2 and s1
satisfy the one-step refinement rules in Fig. 2, then
s2 is a one-step refinement of s1, noting s1 � s2.

Some explanations of the one-step refinement
relations are as follows:

1. and/or: and/or-add1 refines a basic-state to
an and/or-state; and/or-add2 adds a new substate
to an and/or-state; and/or-subst means that if s′1 is
a one-step refinement of s1, then we can refine an
and/or-state by replacing s1 with s′1.

2. trans: trans-add adds transition ‘tr’ to T if it
is a well-formed transition for a list of states s0...k;



Sheng et al. / Front Inform Technol Electron Eng 2017 18(11):1773-1783 1779

and− add1
type(s0)...type(sk) = basic, ∀i �= j, name(si) �= name(sj), ∀i, n �= name(si)

[n,_] � [n, (s0...k),_]
,

and− add2
type(s′) = basic, ∀i, name(si) �= name(s′), name(s′) �= n

[n, (s0...k),_] � [n, (s0...k, s′),_]
,

and− subst
si � s′i, ∀j = 0, ..., i− 1, i+ 1, ..., k, name(s′i) �= name(sj)

[n, (s0...k),_] � [n, (s0...k)[si/s′i]
,_]

,

or− add1
type(s′) = basic, name(s′) �= n

[n,_] � [n, s′, 0, ∅,_]
,

or − add2
type(s′) = basic, ∀i, name(si) �= name(s′), name(s′) �= n

[n, (s0...k), l, T,_] � [n, (s0...k , s′), l, T,_]
,

or− subst
si � s′i, ∀j = 0, ..., i− 1, i+ 1, ..., k, name(s′i) �= name(sj)

[n, (s0...k), l, T,_] � [n, (s0...k)[si/s′i]
, l, T,_]

,

trans− add
tr ∈ T, wellformed_tran({s0...k}, tr)

[n, (s0...k), l, T,_] � [n, (s0...k), l, T ∪ {tr},_]
,

trans− imp
g′ |= g, tr = (tn, i, sr, e, g, α, td, j,ht) ∈ T, tr′ ∈ T

[n, (s0...k), l, T,_] � [n, (s0...k), l, T[tr/tr′],_]
,

where tr′ = (tn, i, sr, e, g′, α, td, j,ht),

act − add
α � α′, tr = (tn, i, sr, e, g, α, td, j,ht) ∈ T, tr′ ∈ T

[n, (s0...k), l, T,_] � [n, (s0...k), l, T[tr/tr′],_]
,

where tr′ = (tn, i, sr, e, g, α′, td, j,ht),

en − add1
en � en′

[n, (en, ex)] � [n, (en′, ex)]
,

en− add2
en � en′

[n, (s0...k), l, T, (en, ex)] � [n, (s0...k), l, T, (en′, ex)]
,

en− add3
en � en′

[n, (s0...k), (en, ex)] � [n, (s0...k), (en′, ex)]
,

ex − add1
ex � ex′

[n, (en, ex)] � [n, (en, ex′)]
,

ex− add2
ex � ex′

[n, (s0...k), l, T, (en, ex)] � [n, (s0...k), l, T, (en, ex′)]
,

ex− add3
ex � ex′

[n, (s0...k), (en, ex)] � [n, (s0...k), (en, ex′)]
.

Fig. 2 One-step refinement relations



1780 Sheng et al. / Front Inform Technol Electron Eng 2017 18(11):1773-1783

trans-imp indicates that if g′ can imply to g, notation
g′ |= g, transition tr = (tn, i, sr, e, g, α, td, j, ht) can
be refined as tr′ = (tn, i, sr, e, g′, α, td, j, ht).

3. act: act-add means that if α is a sub-
string of α′, tr = (tn, i, sr, e, g, α, td, j, ht), and tr′ =
(tn, i, sr, e, g, α′, td, j, ht), then we can refine an or-
state by replacing ‘tr’ with ‘tr′’.

4. en/ex: en/ex-add1, en/ex-add2, and en/ex-
add3 mean that if en′/ex′ is the refinement of en/ex,
then we can refine en/ex with en′/ex′ in a basic-state,
an or-state, and an and-state respectively.

According to the refinement relations we pro-
pose, we define the one-step refinement relations with
the inductive predicate ‘refineone’ in Coq:

Inductive refineone (st : state) : sc -> sc -> Prop :=
| and_add1 : forall lsc ee n, all_basic lsc ->

refineone st (basic_sc n ee) (and_sc n lsc ee)
...

| or_add1 : forall n s’ ee, all_basic (s’ :: nil) ->
refineone st (basic_sc n ee)
(or_sc n (s’ :: nil) 0 nil (nil,nil))
...

| trans_add : forall n lsc l lt ee t’,
wellformed_tran lsc t’ ->
refineone st (or_sc n lsc l lt ee)
(or_sc n lsc l (set_add trans_dec t’ lt) ee)
...

| act_add : forall tn s1 sr e a a’ g td s2 h lt ee lsc n l,
set_In (tn, s1, sr, e, g, a, td, s2, h) lt ->
sub_seqact a a’ ->
refineone st (or_sc n lsc l lt ee)
(or_sc n lsc l
(set_add trans_dec (tn, s1, sr, e, g, a’, td, s2, h)
(remove trans_dec (tn, s1, sr, e, g, a, td, s2, h) lt)) ee)
...

Definition 2 Assuming s1, s2 ∈ SC, if s2 and s1
both satisfy the following rules, s2 is the multi-step
refinement of s1, noting s1 ↪→ s2:

one
s1 � s2
s1 ↪→ s2

,

reflex
s ∈ SC

s ↪→ s
,

tran
s ∈ SC, s1 ↪→ s, s ↪→ s2

s1 ↪→ s2
.

The inductive type ‘refine’ indicates the defini-
tion of the multi-step refinement relations:

Inductive refine(st : state) : sc -> sc -> Prop :=
| one : forall sc1 sc2,

refineone st sc1 sc2 -> refine st sc1 sc2

| reflex : forall sc, refine st sc sc
| tran : forall sc1 sc0 sc2,

refine st sc1 sc0 -> refine st sc0 sc2 ->
refine st sc1 sc2.

4.2 Properties

In this subsection, we will present some invari-
ant properties of the refinement relations. The cor-
rectness of the refinement relations are verified in
Coq. For the sake of simplicity, we give only three
theorems. All proofs are omitted because of limited
space.

First of all, the one-step refinement relations
preserve the elements in ‘conf’.
Theorem 1 (conf_preserve) If s1 � s2, then
conf(s1) ⊆ conf(s2).

Then the one-step refinement relations must
maintain the semantic transitions in Section 3. Note
that the priority of the inner transition is higher than
that of the outer transition. If a new transition with
the same input event is added, the model must keep
the priority of the semantic transitions.
Theorem 2 (behavior_pre) ∀s1, s′1, s2 ∈
SC, ∀e ∈ E, if (s1

e[g]−−→
α true

s′1) ∧ (s1 � s2), then

∃s′2, (s2
e[g]−−→
α true

s′2) ∧ (s′1 � s′2).
Finally, the reflexivity and transitivity should

be satisfied in the refinement relations.
Theorem 3 (refine_ref and refine_trans) The
refinement relations are reflexive and transitive.

Theorem conf_preserve:
forall st s1 s2 n, refineone st s1 s2 ->
(set_In n (conf s1) -> set_In n (conf s2)).

Theorem behavior_pre: forall st s1 s1’ s2 e g a,
sred st s1 (e, g, a, true) s1’ ->
refineone st s1 s2 ->
(exists s2’, sred st s2 (e, g, a, true) s2’ /\
refineone st s1’ s2’).

Theorem refine_refl :
forall st : state, reflexive _ (refine st).

Theorem refine_trans :
forall st : state, transitive _ (refine st).

5 Case study

In this section, we will show how to describe and
refine a UML-Statechart using Coq in Fig. 3. Only
a part of codes are given because of space limita-
tion. According to the abstract syntax, the syntax
in Fig. 3a is as follows:



Sheng et al. / Front Inform Technol Electron Eng 2017 18(11):1773-1783 1781

Definition t1: trans :=
("t1", 0, nil, "a", g1, ("m" :: nil), nil, 1, none).

Definition t3: trans :=
("t3", 0, nil, "a", g1, ("l" :: nil), nil, 1, none).

Definition t4: trans :=
("t4", 0, ("n4" :: "n7" :: nil), "c", BTrue, nil, nil, 1, none).

Definition t5: trans :=
("t5", 1, nil, "d", BTrue, ("p" :: nil), nil, 0, shallow).

Definition t6: trans :=
("t6", 0, nil, "e", BTrue, nil, nil, 1, none).

Definition s3 : sc := basic "n3" (nil, nil).
Definition s5 : sc := basic_sc "n5" ("p" :: nil, "q" :: nil).
Definition s6 : sc := basic_sc "n6" (nil, nil).
Definition s7 : sc := basic_sc "n7" (nil, nil).
Definition s10 : sc := basic_sc "n10" (nil, "s" :: nil).
Definition s4 : sc :=
or_sc "n4" (s6 :: s7 :: nil) 0 (t3 :: nil) (nil, nil).

Definition s2 : sc :=
or_sc "n2" (s4 :: s5 :: nil) 0 (t1 :: t4 :: t5 :: nil)(nil, nil).

Definition s1 : sc := and_sc "n1" (s2 :: s3 :: nil) (nil, nil).
Definition s0 : sc :=
or_sc "n0" (s1 :: s10 :: nil) 0 (t6 :: nil) (nil, nil).

Note that s1 is an and-state, s0, s2, and s4 are or-
states, and others are basic-states. The current ac-
tive state is the first substate in the substate list
in default. State s5 has entry p and exit q ac-
tions. Transition t4 is an inter-level transition where
souRes(t4) = {n4, n7}; i.e., the set of the source re-
striction is not empty, in which s7 is the real transi-

n0

n0

n1

n2

n4

n10n3

n6 n7 t4:c
t5:d/<p>

t1:a[g1]/<m> t6:e/<>

t3:a[g1]/<|> H n5
entry/<p>
exit/<q>

n1

n2

n4

n10n3

n6 n7 t4:c
t5:d/<p>

t1:a[g1]/<m> t6:e/<>

t3:a[g1]/<|> H n5
entry/<p>
exit/<q>

n8 n9t2:b[g2]/<n>

(a)

(b)

Fig. 3 An example of UML-Statechart: (b) is the
refinement of (a)

tion source state. The other transitions are inner-
level transitions as ‘sr’ and ‘td’ are both empty.
Transition t5 is a transition with a shallow history
mechanism, which means that, when the transition
performs, the target state will recover the active state
as it has been active last time.

We can compute all the configurations of state
s2 using the auxiliary function ‘conf_all’:

Eval compute in conf_all s2.

The result is

("n2" :: nil) :: ("n2" :: "n5" :: nil) ::
("n2" :: "n4" :: nil) :: ("n2" :: "n4" :: "n6" :: nil) ::
("n2" :: "n4" :: "n7" :: nil) :: nil.

Then we will perform refinement in Fig. 3a to
Fig. 3b by processing a list of refinement relations,
including changing a basic-state n3 to an or-state
containing n8, adding a substate n9 in n3 and a
transition t2 between n8 and n9, and adding an exit
action for n9. Additional syntax in Fig. 3b is given
as follows:

Definition s8 : sc := basic_sc "n8" (nil, "r" :: nil).
Definition s9 : sc := basic_sc "n9" (nil, nil).
Definition s3_2 : sc :=
or_sc "n3" (s8 :: s9 :: nil) 0 (t2 :: nil) (nil, nil).

Definition t2: trans :=
("t2", 0, nil, "b", g2, ("n" :: nil), nil, 1, none).

To demonstrate that Fig. 3b is the refine-
ment of Fig. 3a, we need to prove only the fol-
lowing theorems, where refine_s0_0_to_s0_1, re-
fine_s0_1_to_s0_2, refine_s0_2_to_s0_3, and
refine_s0_3_to_s0 are auxiliary theorems. The key
part of proving process is the rules of the one-step re-
finement such as or_add1, trans_add, and ex_add1.

Lemma refine_s0_0_to_s0: forall st, refine st s0_0 s0.
Proof.
intro st.
apply tran with (sc0:=s0_1).
apply refine_s0_0_to_s0_1.
apply tran with (sc0:=s0_2).
apply refine_s0_1_to_s0_2.
apply tran with (sc0:=s0_3).
apply refine_s0_2_to_s0_3.
apply refine_s0_3_to_s0.
Qed.

The process of structured operational semantics
can be described and verified in Coq. Beginning
with the initial state in Fig. 3b, if the events are
< a, c, b, d, e >, the UML-Statechart will perform a
list of transitions with target state n10. The the-
orem ‘tranexmp’ presents the mentioned execution



1782 Sheng et al. / Front Inform Technol Electron Eng 2017 18(11):1773-1783

processes with the inductive predicate ‘sstar’. We
can also prove that some transitions cannot occur.
For instance, when guard condition g1 is satisfied,
the input event can trigger state n6 to state n7 or
n5. According to the low-first priority in UML, the
target state should be n7, while the transition from
n6 to n5 should not occur as theorem ‘t1false’.

Theorem tranexmp: forall st,
sstar st s6 ("a"::"c"::"b"::"d"::"e"::nil) s10 nil.

Theorem t1flase : ~ sstar s6 s5.

If the proof fails for two particular models, then
the refinement relations do not hold between the
models. This process can help designers correct the
system design.

6 Related work

In this section, we discuss the related work deal-
ing with the formal semantics and refinement rela-
tions of UML-Statecharts.

Latella et al. (1999) proposed a formal transi-
tion from the UML-Statecharts to the PROMELA
language in model checker SPIN. They presented the
correctness verification of the transition and proved
the security of the system in SPIN. Simons (2000)
defined the denotational semantics of the UML-
Statecharts with set theory. They used the terms
of set theory to describe the states, events, and
guard conditions of an object, providing the hier-
archy of the models to support verification and test-
ing. Börger et al. (2000) used abstract state machine
to denote the formal semantics of UML-Statecharts.
Broy et al. (2007) proposed that the formal seman-
tics of the UML-Statecharts is attached to the state
transition system. A state transition system consists
of state space and state transition functions. Jür-
jens (2005) presented the formal semantics of UML-
Statecharts using UML machines and UML machine
systems, trying to establish the standard of the exe-
cutable UML. Liu et al. (2013) presented a formal se-
mantics of complete UML state machines with com-
munications with LTS as its semantic domain.

Much work has dealt with the refinement rela-
tions of Harel statechart (Klein et al., 1997; Scholz,
2001; Prehofer, 2013). UML-B (Snook and Butler,
2008) is a graphical front end for Event-B. UML-B
is similar to UML but is essentially a new notation
based on a separate meta-model. It also provides

the tools to support drawing tools and a translator to
generate Event-B models. Sun et al. (2004) discussed
a co-algebraic description of UML-Statecharts, di-
rectly derived from their operational semantics. In
particular, such an approach induces suitable no-
tions of equivalence and (behavioral) refinement for
statecharts. Lano and Clark (2008) presented an
axiomatic semantics for UML 2.0 behavior state ma-
chines, and gave transformation rules to establish re-
finements of behavior state machines, together with
proofs of the semantic validity of these rules, based
on a unified semantics of UML 2.0. Said et al. (2009)
introduced the concept of class and state machine re-
finement to support refining class and state machine
in UML-B. Hallerstede and Snook (2011) defined two
kinds of refinements for a state machine: node refine-
ment and edge refinement.

In this study, we provide a formalization of the
semantics of the UML-Statecharts and the refine-
ment relations. The advantage of our approach is
an intuitive and graph-based representation of the
structured operational semantics and the refinement
relations. We also prove that the one-step refine-
ments are behavior-preserving, and multi-step re-
finements are reflexitive and transitive. All these
studies strongly ensure the correctness of modeling
and refinements of UML-Statecharts.

7 Conclusions and future work

The refinement relations of UML-Statecharts
are an important task in MDE. In this paper, we
have proposed the use of the theorem proof assistant
Coq to mechanize the structured operational seman-
tics of UML-Statecharts, as well as the refinement
relations. Then we have verified the desired proper-
ties or the correctness of refinement relations based
on the formal semantics. We have developed a tool
which can automatically transform models to induc-
tive definitions in Coq (http://www.kermeta.org/).
This work provides a way to possibly obtain certified
fault-free modeling and refinements.

Our future work will be directed toward the
extension of the semantics and refinement relations
considering the initial state, final state, and data de-
pendencies during transitions. Besides, we will use
integrated proof tactics as UML library to reduce
proof code size and improve automation.



Sheng et al. / Front Inform Technol Electron Eng 2017 18(11):1773-1783 1783

References
Andronick, J., Chetali, B., Ly, O., 2003. Using Coq to verify

Java CardTM applet isolation properties. Proc. Int.
Conf. on Theorem Proving in Higher Order Logics,
p.335-351. https://doi.org/10.1007/10930755_22

Börger, E., Cavarra, A., Riccobene, E., 2000. Modeling the
dynamics of UML state machines. Proc. Int. Workshop
on Abstract State Machines, p.223-241.
https://doi.org/10.1007/3-540-44518-8_13

Broy, M., Cengarle, M., Rumpe, B., et al., 2007. Towards
a System Model for UML: the Structural Data Model.
http://rzbl04.biblio.etc.tu-bs.de:8080/docportal/servlets/
MCRFileNodeServlet/DocPortal_derivate_00003898/
Document_00018887.pdf

Dou, L., Lu, L., Yang, Z., et al., 2013. Towards mechanized
semantics of UML sequence diagrams and refinement
relation. Proc. 24th IASTED Int. Conf. on Modelling
and Simulation, p.262-269.
https://doi.org/10.2316/P.2013.802-021

Gonthier, G., 2007. The four colour theorem: engineering of
a formal proof. Proc. 8th Asian Symp. on Computer
Mathematics, p.333.
https://doi.org/10.1007/978-3-540-87827-8_28

Hallerstede, S., Snook, C., 2011. Refining nodes and edges
of state machines. Proc. Int. Conf. on Formal
Engineering Methods, p.569-584.
https://doi.org/10.1007/978-3-642-24559-6_38

Harel, D., Lachover, H., Naamad, A., et al., 1990. STATE-
MATE: a working environment for the development of
complex reactive systems. IEEE Trans. Softw. Eng.,
16(4):403-414. https://doi.org/10.1109/32.54292

Jürjens, J., 2005. Secure Systems Development with UML.
Springer-Verlag Berlin Heidelberg, Germany.
https://doi.org/10.1007/b137706

Klein, C., Prehofer, C., Rumpe, B., 1997. Feature specifi-
cation and refinement with state transition diagrams.
Proc. 4th IEEE Workshop on Feature Interactions
in Telecommunications Networks and Distributed Sys-
tems, p.284-297.

Lano, K., Clark, D., 2008. Semantics and refinement of
behavior state machines. Proc. 10th Int. Conf. on
Enterprise Information Systems, p.42-49.

Latella, D., Majzik, I., Massink, M., 1999. Automatic veri-
fication of a behavioural subset of UML statechart di-
agrams using the SPIN model-checker. Form. Aspec.
Comput., 11(6):637-664.
https://doi.org/10.1007/s001659970003

Leroy, X., 2015. The CompCert C verified compiler: docu-
mentation and user’s manual. Inria, 16(5):563-576.

Liu, S., Liu, Y., André, E., et al., 2013. A formal semantics
for complete UML state machines with communications.
Proc. Int. Conf. on Integrated Formal Methods, p.331-
346. https://doi.org/10.1007/978-3-642-38613-8_23

Prehofer, C., 2013. Behavioral refinement and compatibility
of statechart extensions. Electron. Notes Theor. Com-
put. Sci., 295:65-78.
https://doi.org/10.1016/j.entcs.2013.04.006

Said, M., Butler, M., Snook, C., 2009. Language and tool
support for class and state machine refinement in UML-
B. Proc. Int. Symp. on Formal Methods, p.579-595.
https://doi.org/10.1007/978-3-642-05089-3_37

Scholz, P., 2001. Incremental design of statechart specifica-
tions. Sci. Comput. Program., 40(1):119-145.
https://doi.org/10.1016/S0167-6423(00)00026-5

Simons, A., 2000. On the compositional properties of UML
statechart diagrams. Proc. Rigorous Object-Oriented
Methods Conf., p.1-12.

Snook, C., Butler, M., 2008. UML-B and Event-B: an
integration of languages and tools. Proc. IASTED Int.
Conf. on Software Engineering, p.336-341.

Sun, M., Zhang, N., Barbosa, L., 2004. On semantics
and refinement of UML statecharts: a coalgebraic view.
Proc. 2nd Int. Conf. on Software Engineering and
Formal Methods, p.164-173.
https://doi.org/10.1109/SEFM.2004.1347517

von der Beeck, M., 2002. A structured operational semantics
for UML-statecharts. Softw. Syst. Model., 1(2):130-
141. https://doi.org/10.1007/s10270-002-0012-8


	Introduction
	Background
	Formalizing structured operational semantics
	Abstract syntax
	Semantic auxiliary functions
	Semantic definitions
	Complete semantics
	Desired properties

	Refinement relations
	Definitions
	Properties

	Case study
	Related work
	Conclusions and future work

