
206 Wang et al. / Front Inform Technol Electron Eng 2017 18(2):206-219

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

FlowTrace: measuring round-trip time and

tracing path in software-defined networkingwith

low communication overhead∗

Shuo WANG†‡1,2, Jiao ZHANG†1, Tao HUANG1,2,3, Jiang LIU1,2, Yun-jie LIU1,3, F. Richard YU4

(1State Key Laboratory of Networking and Switching Technology,

Beijing University of Posts and Telecommunications, Beijing 100876, China)

(2Science and Technology on Information Transmission and

Dissemination in Communication Networks Laboratory, Shijiazhuang 050081, China)

(3Beijing Advanced Innovation Center for Future Internet Technology,

Beijing University of Technology, Beijing 100124, China)

(4Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada)
†E-mail: shuowang@bupt.edu.cn; jiaozhang@bupt.edu.cn

Received May 23, 2016; Revision accepted Sept. 14, 2016; Crosschecked Nov. 8, 2016

Abstract: In today’s networks, load balancing and priority queues in switches are used to support various
quality-of-service (QoS) features and provide preferential treatment to certain types of traffic. Traditionally, network
operators use ‘traceroute’ and ‘ping’ to troubleshoot load balancing and QoS problems. However, these tools
are not supported by the common OpenFlow-based switches in software-defined networking (SDN). In addition,
traceroute and ping have potential problems. Because load balancing mechanisms balance flows to different paths, it
is impossible for these tools to send a single type of probe packet to find the forwarding paths of flows and measure
latencies. Therefore, tracing flows’ real forwarding paths is needed before measuring their latencies, and path tracing
and latency measurement should be jointly considered. To this end, FlowTrace is proposed to find arbitrary flow
paths and measure flow latencies in OpenFlow networks. FlowTrace collects all flow entries and calculates flow paths
according to the collected flow entries. However, polling flow entries from switches will induce high overhead in the
control plane of SDN. Therefore, a passive flow table collecting method with zero control plane overhead is proposed
to address this problem. After finding flows’ real forwarding paths, FlowTrace uses a new measurement method to
measure the latencies of different flows. Results of experiments conducted in Mininet indicate that FlowTrace can
correctly find flow paths and accurately measure the latencies of flows in different priority classes.

Key words: Software-defined networking; Network monitoring; Traceroute
http://dx.doi.org/10.1631/FITEE.1601280 CLC number: TP393

‡ Corresponding author
* Project supported by the National High-Tech R&D Program
(863) of China (No. 2015AA016101), the National Basic Research
Program (973) of China (No. 2012CB315801-1), the Beijing Nova
Program, China (No. Z151100000315078), and the National Nat-
ural Science Foundation of China (No. 61302089)

ORCID: Shuo WANG, http://orcid.org/0000-0002-6350-6362
c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2017

1 Introduction

Software-defined networking (SDN) separates
the control plane of switches from their data plane
(McKeown et al., 2008), and uses a centralized con-
troller to control all switches. Specifically, net-
work control policies running on a controller are
translated into low-level flow entries. Therefore,

Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1601280&domain=pdf

Wang et al. / Front Inform Technol Electron Eng 2017 18(2):206-219 207

forwarding behaviors can be explicitly expressed
through centralized control policies. This enables op-
erators to efficiently schedule flows and design more
flexible quality-of-service (QoS) policies.

To provide QoS to applications, different types
of traffic are treated differently in networks. For ex-
ample, load balancing mechanisms (Al-Fares et al.,
2010; Curtis et al., 2011) balance flows to multiple
paths to guarantee QoS. Usually, long flows (more
than 10 MB) are forwarded to the path with the
maximum bandwidth (Al-Fares et al., 2010). In addi-
tion, some packet scheduling mechanisms (Alizadeh
et al., 2013; Bai et al., 2015) use the priority queues
in switches to provide preferential treatment to flows
according to their priorities. As a result, flows are
balanced to different paths and scheduled in various
priority queues.

However, it is hard to find out whether flows
meet their QoS demands, when network troubles oc-
cur. First, network troubles are caused by updates
(Reitblatt et al., 2012; Katta et al., 2013; Perešíni
et al., 2013). In SDN, policy updating usually takes
several steps to install all the flow entries. There-
fore, if flow entries are updated in a wrong order,
network troubles will occur. On the other hand, net-
work troubles can be caused by application bugs. A
bug occurs when controller applications are unable
to change their policies to adapt to different network
variations. These variations include network topolo-
gies, users’ demands, security concerns, and network
loads. For example, in Hedera (Al-Fares et al., 2010),
when network loads change, Hedera needs to resched-
ule flows between multiple paths and update flow en-
tries to optimize the network bandwidth utilization.
Therefore, if any one of these variations is not han-
dled correctly by applications, network troubles may
occur, and the QoS of flows cannot be guaranteed.

To find network troubles and application bugs,
many troubleshooting mechanisms have been pro-
posed (Table 1). However, these mechanisms all have
some limitations in helping operators find QoS con-
figuration problems.

First, the mechanisms proposed in Wundsam
et al. (2011), Handigol et al. (2012), and Scott et al.
(2014) are offline debugging tools, and cannot be
used to detect troubles in real networks. They can
be used only by application programmers to fix con-
troller application bugs when programmers develop
applications. For example, OFRewind (Wundsam
et al., 2011) and SDN Troubleshooting System (STS)
(Scott et al., 2014) enable programmers to record
and replay traffic to find troubles. Network Debug-
ger (NDB) (Handigol et al., 2012) is a prototype
network debugger, which provides breakpoints and
packet back-traces for programmers to rebuild the
sequence of events leading to forwarding errors.

Second, some real-time debugging tools, such
as VeriFlow (Khurshid et al., 2012) and NetPlumber
(Kazemian et al., 2013), are used mainly to automat-
ically check a network configuration’s correctness.
They can check limited network troubles, such as
black holes, loops, and reachability. Thus, they lack
the ability to provide operators with flow forwarding
paths.

Third, Agarwal et al. (2014), Chowdhury et al.
(2014), Zhang et al. (2014), Guo et al. (2015), and Yu
et al. (2015) separately considered path tracing and
latency measurement. In fact, existing path trac-
ing tools cannot measure path latencies, and flow
measurement tools are blind to the real paths of
flows. Therefore, we want to provide network op-
erators with a simple tool to help them find the real
forwarding paths of flows and measure flow-based
latencies in their paths.

Table 1 Comparison of FlowTrace with several prior mechanisms

Mechanism Online Measuring latency Path visibility Overhead

OFRewind (Wundsam et al., 2011), No No No NA
NDB (Handigol et al., 2012), and STS (Scott et al., 2014)

VeriFlow (Khurshid et al., 2012) and Yes No No High
NetPlumber (Kazemian et al., 2013)

PathletTracer (Zhang et al., 2014) and Yes No Yes Medium
SDN traceroute (Agarwal et al., 2014)

SLAM (Yu et al., 2015), PingMesh (Guo et al., 2015), Yes Yes No Medium
and OpenNetMon (Chowdhury et al., 2014)

FlowTrace Yes Yes Yes Low

NA: not available

208 Wang et al. / Front Inform Technol Electron Eng 2017 18(2):206-219

We introduce FlowTrace, a network path trac-
ing and latency measurement mechanism in SDN.
To implement flow-based measurement, FlowTrace
combines path tracing and latency measurement by
making full use of the benefits of SDN.

To accurately trace a path, FlowTrace needs to
monitor all the flow tables (http://archive.openflow.
org/documents/openflow-spec-v1.1.0.pdf) through a
centralized controller. However, monitoring all the
flow tables will cause high overhead to the control
plane of SDN. Accordingly, we propose a passive
flow table collecting method to reduce the control
plane overhead. After obtaining all the flow tables,
we design a path tracing algorithm with low over-
head, which simulates forwarding behaviors of phys-
ical switches to find flow paths.

In addition, an accurate latency measurement
approach is proposed to measure the latency in the
flow level. After obtaining real flow paths, FlowTrace
will send crafted probe packets to measure the delays
of flows when applications need to find out whether
their QoS is guaranteed.

FlowTrace has been implemented in Floodlight
controller (https://github.com/floodlight/floodlight)
and its performance has been evaluated in Mininet
(http://mininet.org/). The evaluation results show
that the passive flow table collecting method has
good performance and can greatly reduce the control
plane overhead. By removing packet processing
delays of switches, our path tracing algorithm is
faster than SDN traceroute (Agarwal et al., 2014).
More importantly, FlowTrace can measure the
latency as accurately as ping.

The three contributions of this paper are listed
as follows:

1. A passive flow table collecting method with
zero control plane overhead is proposed.

2. A path tracing algorithm is presented, which
supports network operators in finding arbitrary for-
warding paths.

3. A latency measurement method is introduced
in OpenFlow-based networks.

2 Related work

Tracing path and measuring latency are two
main functions of FlowTrace. There is much related
work, and we summarize only some which are closely
related to our approach.

2.1 Path tracing in SDN

Path tracing mechanisms in SDN-enabled net-
works fall into mainly two categories (Agarwal
et al., 2014), i.e., model-driven and active probe
approaches. Both methods have their advantages
and disadvantages. For example, model-driven ap-
proaches are faster, but active probe approaches are
more accurate.

PathletTracer (Zhang et al., 2014) and SDN
traceroute (Agarwal et al., 2014) both use data plane
probe packets to find flow paths. PathletTracer re-
uses fields in the IP header to record path IDs, and
looks up flow paths according to path IDs received
by the destination hosts. This approach makes sure
that PathletTracer finds flow forwarding paths with-
out any ambiguity. However, it needs to know all the
paths between source hosts and destination hosts in
advance, which makes it hard to apply in real data-
center topologies (Clos, 1953; Al-Fares et al., 2008;
Greenberg et al., 2009; Liu et al., 2011; Qi et al., 2014;
Ding et al., 2015). This is because these topologies
usually contain a lot of different paths, and the num-
ber of path IDs needed is not enough for thousands
of concurrent flows.

SDN traceroute uses the existing flow entries in
switches to trace a path. It sends a probe packet from
the controller to a switch, and this probe packet is
forwarded to the next hop switch according to the
existing flow entries. The controller then records the
next hop to determine the flow path. This approach
works well when flow paths change frequently. How-
ever, in huge networks, it will impose large traffic to
the control plane due to the large number of probe
packets. In addition, both PathletTracer and SDN
traceroute are unable to measure delays and this is
important for network operators to find link conges-
tions and QoS problems.

2.2 Delay measurement in SDN

NetFlow (http://www.cisco.com/c/en/us/pro
ducts/ios-nx-os-software/ios-netflow/index.html)
and sFlow (http://www.sflow.org/about/index.php)
use agents on a switch to collect flows. Then agents
send information about flows to the collector. After
that, the collector analyzes the information to
obtain the delays. Because NetFlow and sFlow rely
on agents on switches to send information, they
need special hardware switches.

Wang et al. / Front Inform Technol Electron Eng 2017 18(2):206-219 209

Phemius (Phemius and Bouet, 2013) uses probe
packets sent by the controller to estimate the latency
of each link. It is a simple method, but the accuracy
of this method is affected mainly by the period of
sending probe packets.

Similar to Phemius, SLAM (Software-defined
LAtency Monitor) (Yu et al., 2015) sends probe pack-
ets from the controller to estimate latencies. Besides
the latency of a single link, it can measure the la-
tency of a flow path. However, it needs to measure
the latency between the controller and switches, and
this latency has a large influence on the final mea-
surement results.

Jarschel et al. (2013) inserted temporary flow
rules into switches to send all or a sample of the
packets to the controller to calculate the latency. It
will consume a large control plane bandwidth, when
there are a lot of flows in networks. Although Chowd-
hury et al. (2014) and Su et al. (2014) proposed a new
polling scheme to reduce the control plane traffic, it
still needs to poll flow entries periodically. Yu C et al.
(2013) and Yu M et al. (2013) designed new measure-
ment tools that are used to measure the bandwidth
instead of latency.

3 Objectives

Today, the majority of network operators use
‘traceroute’ and ‘ping’ to find network bugs. By
displaying flow paths on a terminal, traceroute pro-
vides network operators and end-users with an easy
way to determine whether packets are forwarded
correctly. However, traceroute cannot work in
OpenFlow-based networks (McKeown et al., 2008).
In traditional networks, traceroute sends a sequence
of packets to a destination host; then each router
decrements the time-to-live (TTL) value; finally,
routers return ICMP error messages (ICMP Time
Exceeded) when TTL reaches zero (https://tools.
ietf.org/html/rfc792). However, switches using the
OpenFlow protocol (http://archive.openflow.org/
documents/openflow-spec-v1.1.0.pdf) cannot return
the ICMP error messages when the TTL value
reaches zero, because OpenFlow-based switches can
apply actions only according to the OpenFlow action
list.

On the other hand, traceroute has some poten-
tial problems, and it may display wrong flow paths
that do not match the real paths of flows when net-

work policies are complex. For example, in Fig. 1a,
there are two paths between the source host (H1) and
the destination host (H2), and packets of different
flows are randomly balanced between the two paths
by S1. As a result, ICMP packets sent by traceroute
and the packets sent by the flow are most likely to
be balanced into two different paths, and traceroute
cannot trace the real path of the flow. Since the SDN
controller has all the forwarding entries, this prob-
lem can be easily solved in an SDN-based network.
For example, in Fig. 1b, the SDN controller installs
flow entries for all the flows, and then it can directly
and easily find the path of the flow by analyzing flow
entries without any confusion.

Flow path

Load balance at S1

ICMP path

H1 H2S1

S2

S3

S4

(a)

Flow path

Load balance at S1

H1 H2S1

S2

S3

S4

Flow

path

 Flow

packets

Controller (b)

Fig. 1 Switches using equal-cost multi-path (ECMP)
routing to balance traffic to multiple links: (a) ICMP
packets being balanced to a different path; (b) tracing
path using the SDN approach

4 Design

We elaborate the architecture of FlowTrace in
Fig. 2. There are three modules in FlowTrace: a
collector, a path calculator, and a latency monitor.
The collector collects flow entries and then builds
the virtual flow tables. Thus, the virtual flow ta-
bles have the same flow entries of physical switches.
According to the virtual flow tables, the path calcula-
tor simulates the forwarding behaviors of switches to

210 Wang et al. / Front Inform Technol Electron Eng 2017 18(2):206-219

calculate paths. After knowing flow paths, the la-
tency monitor will insert temporary flow entries
along the flow paths when users need to measure
the latencies of flows.

Other APPs

Latency monitor Path calculator

Controller

Collector

Controller I/O

SDN network

Fig. 2 FlowTrace architecture

4.1 Collector

To collect flow entries, a simple idea is that
the controller periodically polls flow entries from
switches and updates the virtual flow tables. How-
ever, this simple method will induce large traffic to
the control plane and increase overhead. In addition,
if the updating rate of flow entries is larger than the
polling rate, virtual flow tables will no longer have
the same entries as the flow tables in switches. In-
stead of using the polling method, the FlowTrace
collector uses a passive collecting method to collect
flow tables with zero cost, and the virtual flow tables
can be updated as soon as flow entries change.

In our design, the collector is a layer between
the controller I/O (input/output) and upper layers,
and it monitors the sending of FLOW_MOD and
the receiving of FLOW_REMOVED messages. We
fully use the fact that the controller controls switch
flow tables, and switches are unable to add any flow
entry without the controller’s instructions. Flow ta-
bles can be modified in two situations. First, the
controller sends FLOW_MOD messages to modify
flow tables, such as adding or deleting entries. By
monitoring every message sent from the controller,
the collector knows which entry is added or modified.
Second, switches send FLOW_REMOVED mes-
sages to notify the controller which flow entry is re-
moved. In the standard OpenFlow protocol, there is
an optional bit (OFPF_SEND_FLOW_REM) in a

FLOW_MOD message. When the OFPF_SEND_
FLOW_REM bit is set, the switch must send a
FLOW_REMOVED message to the controller when
a flow entry is removed. Thus, the collector rewrites
FLOW_MOD messages to set this bit, and monitors
FLOW_REMOVED messages to determine which
flow is removed.

4.2 Path calculator

Inspired by Kazemian et al. (2013), the path
calculator imitates physical switches to obtain the
tracing path. When network operators query a flow
path from FlowTrace, they need to specify the packet
header fields of the flow that they want to trace
and identify the flow’s injection switch and port.
Then the path calculator looks up which flow entry
matches the operator’s requests in the virtual flow
table of the first attachment switch, and simulates
the forwarding process of switches according to the
actions of the matched entries.

Before introducing how to calculate a flow’s for-
warding path, we show that there are some poten-
tial relations between the flow entries of adjacent
switches along a packet’s forwarding path, and our
algorithm leverages these relations. For instance,
Fig. 3 shows a network with four switches. A flow
entry in OpenFlow usually has several match fields
and an action list. We use ‘X-X-X-X-X-X’ to rep-
resent the match fields of an entry. As we know an
entry’s match fields and its action list, we can de-
termine the header fields of egress packets. In our
algorithm, we use the red and green packets, shown
in Fig. 3, to denote the header fields of egress packets

Fig. 3 Relationships between switch 1 and the other
three switches. Arrows represent entries’ relations;
dotted lines between switches represent link failures;
dotted arrows represent the processing of a probe
packet. Red and green packets represent the header
fields of egress packets. References to color refer to
the online version of this figure

Wang et al. / Front Inform Technol Electron Eng 2017 18(2):206-219 211

(also called ‘color packets’). Egress packets are cal-
culated by applying a flow entry’s actions to a flow
entry’s match fields. We define that two entries have
a relation only if the intersection (Kazemian et al.,
2013) between the first entry’s color packets and the
second entry’s match fields is not empty. For exam-
ple, there is a relation between entry 1 in flow table 1
(rule 1.2) and entry 1 in flow table 4 (rule 4.1), be-
cause their intersection (2-3-1-3-1-X) is not empty.

Algorithm 1 shows how FlowTrace finds the flow
path of a flow. The collector first builds flow rela-
tions. Then the path calculator finds flow paths ac-
cording to flow entry relations. Each entry in our
algorithm has two color packet lists (i.e., an egress

Algorithm 1 Calculating path
1: procedure CalculatePath(probPacket)
2: Entries ← table of the first attachment switch
3: sort(Entries)
4: for entry in Entries do
5: if entry matches probePacket then
6: searchqueue.put(entry, probPacket)
7: break
8: end if
9: end for

10: while searchqueue �= ∅ do
11: (matchedEntry, packet) = searchqueue.pop()
12: if packet has been searched before in the same

InPort then
13: continue
14: end if
15: for p in matchedEntry.EnabledOutPackets do
16: nextHopPacket = p & packet
17: sort(p.nextHopEntries)
18: for entry in p.nextHopEntries do
19: if entry matches nextHopPacket then
20: searchqueue.put(entry, nextHopPacket)
21: break
22: end if
23: end for
24: end for
25: end while
26: BuildPathAccordingMatchedEntries()
27: end procedure

packet list and a blocked packet list). The egress
packet list recodes the green packets whose egress
links work well, while the blocked packet list recodes
red packets whose egress links have failures. First, we
obtain the first attachment switch of the probePacket
(defined by a user’s request) and find the highest pri-
ority entry which matches probePacket (lines 1–5).
Second, we put the matched entry and probePacket
in a matching entry search-queue (line 6). Third,
we look up entries in the search-queue, and obtain a
nextHopPacket (lines 15–17). If entries in the search-
queue have relations with entries in the next hop
switches, we match nextHopPacket with those en-
tries (lines 18–20). Finally, we can know all the en-
tries that match the probePacket, thus building the
flow path.

More specifically, in Fig. 3, a probe packet (4-3-
1-3-32-80) is sent to port 1 of switch 1, and we find it
matches rule 1.2. One action of rule 1.2 is to output
a packet to port 4. Now, we just replace the header
fields of the probe packet with green packet’s header
fields of rule 1.2 and obtain a nextHopPacket (2-3-1-
3-32-80). Instead of comparing the nextHopPacket
with all entries in switch 4, we compare it only with
rule 4.1 which has relations with rule 1.2.

4.3 Latency monitor

To measure delays along a flow path, Flow-
Trace inserts each switch with one default flow
entry, and inserts some temporary flow entries
when needed. The first entry (rule 1 in Ta-
ble 2) is the default entry of each switch. Each
default entry will swap the source MAC, IP ad-
dress with the destination MAC, and the IP ad-
dress of packets, and output packets to their ingress
port. F represents a field, such as VLAN (http://
www.ieee802.org/1/pages/802.1Q.html) and TOS
(https://tools.ietf.org/html/rfc1349), in the packet
header. We use TOS in our implementation. Flow-
Trace will assign each switch a unique F value. The
temporary entries are also shown in Table 2. These

Table 2 Flow tables of three switches connecting in line (left: switch 1; right: switch 2)

Rule Priority Entries Rule Priority Entries

1 65 536 Match: F=1; swap: src and dst; 1 65 536 Match: F=2; swap: src and dst;
output: InPort output: InPort

2 2 Match: a to b; output: 2 2 2 Match: a to b; output: 2
3 2 Match: b to a; output: 1 3 2 Match: b to a; output: 1

212 Wang et al. / Front Inform Technol Electron Eng 2017 18(2):206-219

entries are used to forward probe packets.

We use Table 2 to illustrate the steps to mea-
sure latencies between hosts A and B. We first send
a probe packet from host A whose F field equals the
F value of S1. The probe packet carries a sending
timestamp in its payload, and then it will reach S1
and match the default entry (rule 1 of S1). This en-
try sets our probe packet’s source as B, sets its des-
tination as A, and outputs it from the ingress port.
Then the probe packet will return to host A, and we
calculate the round-trip time (RTT) by reading the
timestamp from the payload. After the first round
measurement, we send a new probe packet with a
new timestamp, and the F filed of this new probe
packet is set to the F value of S2. The new probe
packet is forwarded by S1 according to the second
entry (rule 2 of S1). Then this packet reaches S2,
and it will also match the default entry and return.
In this way, we can obtain each hop delay round by
round.

Note that temporary entries are not always
needed. If we want to measure an active flow that
is sending data, these flow-related forwarding entries
can be used as our temporary entries, and we do
not have to install any other entry. Therefore, when
users are going to measure the latencies of active
flows, FlowTrace does not need to install any addi-
tional flow entry.

To achieve flow-level latency measurement, ex-
cept for the F field, the probe packets have the same
packet header fields as the flows that we want to
measure. The F field is set to zero for normal pack-
ets, and is set to a none-zero value for probe packets.
Therefore, the probe packets will be treated as nor-
mal packets by switches and experience the same
delays when queuing. This ensures that FlowTrace
has a high measurement accuracy.

5 Analysis

We now present an in-principle approach to an-
alyze the performance of FlowTrace and show how to
improve its performance according to our model. If
we use a queuing model, flows arrive at a switch ac-
cording to a Poisson process of λ, having living time
T ∼ F (t) (F (t) is the cumulative distribution func-
tion (CDF)), E(t) =

∫∞
0

tdF (t) = 1/μ, Var(t) =

1/σ, and the load ρ = λ/μ. Thus, the average num-

ber of flows in networks is

l̃ = ρ+
ρ2 + λ2σ2

2(1− σ)
. (1)

5.1 Control plane traffic

Periodical polling (Chowdhury et al., 2014) is
a popular method for collecting flow entries. Com-
pared to the periodical polling method, FlowTrace
imposes zero control plane traffic, because FlowTrace
monitors only the messages between the controller
and switches and does not generate any traffic.

We can assume that there are l̃ active entries in
one switch and that there are n switches. Let lreply
denote the length of the reply message of a single
flow entry. For a switch with l̃ entries, the total
traffic ntraffic generated by replying to a request is

ntraffic = l̃ · lreply · n. (2)

Therefore, given a network with n switches, the
traffic for replying to a request is a quadratic func-
tion of λ. In a real environment, a datacenter with
6000 servers and 300 ToRs (top of rack switchs, each
ToR has approximately 120 flow entries) (Tavakoli
et al., 2009), if the polling interval is 0.1 s, it will
produce a traffic rate of 30 MB/s.

5.2 Overhead of collector

The collector needs to maintain virtual flow ta-
bles and build flow relations for the path calcula-
tor. When a new flow entry of a switch is added or
deleted, the collector will search all adjacent switches
to build relations. Let sadj denote the number of ad-
jacent switches of one switch. Then the newly added
flow entry needs to compare with sadj · l̃ flow entries
to build relations. If the controller installs p entries
along a flow forwarding path and one ‘comparison’
operation takes tcost to complete, the total overhead
of flow table updating will be

updateonce = sadj · l̃ · p · tcost. (3)

If the collector updates the flow table as soon
as a new flow arrives, the average overhead is
λ · updateonce. Actually, the collector does not need
to update flow tables when a flow entry is added. Be-
cause operators do not trace every flow path, the flow
table updating process can be delayed to the time
when a request occurs. As shown in Algorithm 2, the

Wang et al. / Front Inform Technol Electron Eng 2017 18(2):206-219 213

collector uses a queue to store messages. When a new
Flow_MOD message arrives, the controller puts the
message in the queue; when a FLOW_REMOVED
message arrives, the controller just needs to remove
the related FLOW_MOD message in the message
queue.

We assume that the average request interval is
δr, and δr is larger than some flows’ duration. There-
fore, during the interval, there will be several flows
finished, and we do not handle messages related to
these flows.

For example, in Fig. 4, between request 1 and
request 2, three new flows arrive. Flow 1 and flow 2
finish before request 2 arrives. Therefore, when re-
quest 2 arrives, we have to handle messages only
related to flow 3.

Now, as we have to handle only (1 − F (δr)) · λ
flows, the overhead of the collector will be

updatedelayed = (1− F (δr)) · λ · updateonce. (4)

Therefore, if a user’s request rate is very small, the
overhead of the collector is near zero.

Algorithm 2 Updating flow entries
1: procedure MessageMonitor(message)
2: if message is FLOW_MOD then
3: messagequeue.put(message.match, message)
4: end if
5: if message is FLOW_REMOVED then
6: messagequeue.remove(message.match)
7: end if
8: end procedure
9: procedure Update // called when there is a request

10: for message in messagequeue do
11: BuildRelation(message)
12: end for
13: end procedure

Time line

T
ra

c
in

g
 r

e
q

u
e

s
t
1

F
lo

w
 1

 a
d

d
e

d

F
lo

w
 2

 a
d

d
e

d

F
lo

w
 3

 a
d

d
e

d

T
ra

c
in

g
 r

e
q

u
e

s
t
2

F
lo

w
 2

 r
e

m
o

v
e

d

F
lo

w
 1

 r
e

m
o

v
e

d

Fig. 4 Three flows arriving between two tracing path
requests

5.3 Overhead of measurement

The latency monitor will insert in each switch
a default flow entry to swap the source and destina-
tion of packets. The number of temporary entries
depends on the users’ requests. We also assume that
the average request interval of measurement is δr.
Thus, there are 1/δr measurement requests per sec-
ond. If all measurement requests want to measure
the latency of active flows, we will not install any
temporary entry, and the number of measurement
entries is n. If all measurement requests want to mea-
sure the latency of inactive flows, the upper bound
of the number of measurement entries is n + 2p/δr.
Therefore, the number of measurement entries is

n ≤ entrymeasurement ≤ n+ 2 · p

δr
. (5)

However, network operators usually measure
the latency of active flows. Thus, the number of
measurement flow entries in networks is very close to
n most of the time.

The payload length of probe packets is 28 bytes,
the IP and TCP header length is usually 20 bytes,
and the total length of a probe packet is under
100 bytes. If the measurement interval is rm s, the
maximum measurement traffic is 2(1/rm) · p · 100 =

200p/rm (bytes/s) for a flow with p hops. Therefore,
the traffic of measurement is

trafficmeasurement =
200p

δr · rm (bytes/s). (6)

6 Evaluation

In this section, we evaluate the perfor-
mance and functionality of FlowTrace in Mininet
(http://mininet.org/). FlowTrace is implemented
as a module for the Floodlight controller (http://
www.projectfloodlight.org/). First, we show the per-
formance of the path tracing function. Second, we
evaluate the measurement accuracy of the latency
monitor. Finally, we use two simple scenarios to
show how path tracing helps improve the measure-
ment accuracy.

6.1 Evaluation of path tracing

6.1.1 Control plane overhead

To assess how FlowTrace reduces the control
plane overhead, we compare the passive collecting

214 Wang et al. / Front Inform Technol Electron Eng 2017 18(2):206-219

scheme with periodical polling methods. In this ex-
periment, the periodical polling methods collect all
the flow tables per second. Our passive collecting
method only passively monitors the modifications of
flow entries. We build a tree topology (depath=3,
fanout=4) with 21 switches. First, we let the con-
troller install some flow entries to each switch, and
the number of flow entries in each switch varies from
100 to 900. Then we record the traffic generated in
the control plane during polling these flow entries.
Thus, the main metric is the traffic that is induced
when the controller collects all the flow entries from
switches. In addition, we show the traffic of periodi-
cal polling if there is only one switch in the network.

As shown in Fig. 5, the periodical polling
method (the third bar) produces a large control plane
traffic that is nearly linearly related to the number
of flow entries (about 13 000 kb/s for 21 switches,
700 bits/s per flow entry). In contrast, the pas-
sive collecting mechanism maintains an average low
throughput (35 kb/s) which is too small to see in
the figure. Therefore, the periodical polling method
which consumes more control plane bandwidth will
increase the overhead of the controller (Phemius and
Thales, 2013) when it is deployed in datacenter net-
works, campus networks, or other large-scale net-
works. In contrast, our passive collecting algorithm
has no relation to the number of flow entries and
produces near-zero control plane traffic.

Number of flow entries per switch

100 200 300 400 500 600 700 800 900

T
ra

ff
ic

 (
k
b
/s

)

0

5 000

10 000

15 000
FlowTrace
Periodical polling, 1 switch

Periodical polling

Fig. 5 Control plane traffic by varying the number of
flow entries in each switch

6.1.2 Average lookup latency

In this experiment, we show the response time
of the path tracing function. We compare FlowTrace
with linear search and SDN traceroute (Agarwal
et al., 2014) in a linear topology with five switches.
FlowTrace uses our proposed relation lookup algo-
rithm, while linear search looks up flow entries one

by one. SDN traceroute is implemented in Flood-
light, and it sends probe packets to trace flow paths.
We generate five flows, and each flow is forwarded
by a different number of switches varying from 1 to
5. Then we record the time spent on obtaining the
flow paths of five flows. In addition, we insert 1000
flow entries per switch to evaluate the performance
of the relational table lookup algorithm when there
are many flow entries.

Fig. 6 shows the average response latencies of
obtaining a network path by varying the path length
from one to five hops. The results show that the re-
sponse latency of FlowTrace is almost a standard line
(about 0.7 ms), and the response latency of the SDN
traceroute is nearly linearly related to the number of
switch hops, which increases approximately 2 ms per
hop. However, different from our initial idea, the re-
lational lookup algorithm has a similar performance
to the linear search algorithm when the network size
is small. This is because the modern Java program
can process thousands of loops in less than 1 ms. We
also find that the load of the controller influences the
performance of FlowTrace. For example, a high load
may increase the response latency to 4 ms. We find
a way to improve the performance of lookup, which
may have a good performance in a real network con-
sisting of thousands of switches.

Number of switch hops

L
a

te
n

c
y
 (

m
s
)

0

5

10

15
FlowTrace
Linear search
SDN traceroute

1 2 3 4 5

Fig. 6 Response latencies of different methods by
varying the number of switch hops

6.2 Evaluation of latency monitor

In this subsection, we evaluate the measurement
accuracy of FlowTrace, and compare FlowTrace with
the following schemes:

1. ping (the default ping program in the Linux
system): To let switches return ICMP messages, we
attach a host to each switch, and let the host return
ICMP for its attached switch. Therefore, we can use
ping to measure link delays in SDN.

Wang et al. / Front Inform Technol Electron Eng 2017 18(2):206-219 215

2. SLAM: we implement SLAM (Yu et al.,
2015) in a Floodlight controller, and SLAM mea-
sures packet latencies by sending probe packets from
the controller.

6.2.1 Impact of link delays

To evaluate how the accuracy of FlowTrace is
influenced by the delays of links, we measure packet
latencies with three levels of delays (low, medium,
and high). For low-level delays, we use a 1-Gb/s link
between two switches with zero traffic, and we mea-
sure the latencies using different mechanisms. For
medium-level delays, we limit the link bandwidth to
100 Mb/s, and generate a 100-Mb/s flow in the link.
For high-level delays, we limit the link bandwidth to
10 Mb/s, and generate a 10-Mb/s flow in the link.
Each simulation lasts 300 s. We measure the latency
at 0.5 s intervals from the flow start time to its fin-
ish time, and plot measurement results against time.
In addition, we plot the latency CDF of different
mechanisms.

The evaluation results of the link with low-level
delays are shown in Fig. 7. Compared to the ping
scheme, FlowTrace has almost the same measure-
ment results. In Fig. 7a, the measured latencies of
FlowTrace are very close to those of ping. However,
SLAM has about 0.5 ms more latency than ping.

0 100 150 200 250 300

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

L
a
te

n
c
y
 (

m
s
)

ping

SLAM

FlowTrace

50

(a)

0.0

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

ping

SLAM

FlowTrace

0.2 0.4 0.6 0.8 1.0 1.2 1.4

(b)

Fig. 7 Latencies in the low-level delay link (a) and
the corresponding CDF (b)

This is caused mainly by the latency between the
controller and switches. In fact, when the link de-
lay is small, the latency between the controller and
switches is greater than the link delay and dominates
the result. In Fig. 7b, we can see that FlowTrace and
ping are very stable and that they have no tails in
the CDF, while SLAM has a small tail. This also
indicates that the control plane latency has a great
impact on the measurement results when the link
delay is small.

Fig. 8 shows the evaluation results of the link
with medium-level delays. First, from Fig. 8a, we
can see that the measured latencies of all schemes
have about 5 ms variation at each time point. For
example, at 100 s, the latency varies from 5 ms to
9 ms. This indicates that the flow rate of the gener-
ated flow is very unstable during its lifetime in the
bandwidth limited link. Second, the value of latency
is nearly linearly proportional to time in Fig. 8a.
This is because the queue length increases with time,
when the flow rate is a little greater than the band-
width. Third, compared to Fig. 7, SLAM has better
performance. This is because compared to the flow
latency, the control plane latency is marginal and can
be ignored in this experiment. Finally, all schemes
have very long tails in Fig. 8b. However, FlowTrace
still has a similar accuracy to ping.

0 50 100 150 200 250 300

Time (s)

0

5

10

15

20

L
a
te

n
c
y
 (

m
s
)

ping

SLAM

FlowTrace

(a)

0

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

ping

SLAM

FlowTrace

2 4 6 8 10 12 14 16

(b)

Fig. 8 Latencies in the medium-level delay link (a)
and the corresponding CDF (b)

216 Wang et al. / Front Inform Technol Electron Eng 2017 18(2):206-219

Fig. 9 shows the evaluation results of the link
with high-level delays. In Fig. 9a, the latencies of
all schemes are about 110 ms at 300 s, and the slope
of the curve is greater than that in Fig. 8a. This is
because the bandwidth is smaller in this experiment
and thus the queue length increases more quickly.
Also, the three schemes have similar performance.
However, there is one outstanding point at about
260 s in the SLAM scheme. This is caused mainly by
the delay variation of the control plane.

0 50 100 150 200 250 300

Time (s)

0

20

40

60

80

100

120

L
a
te

n
c
y
 (

m
s
)

ping

SLAM

FlowTrace

(a)

0

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

ping

SLAM

FlowTrace

20 40 60 80 100 120

(b)

Fig. 9 Latencies in the high-level delay link (a) and
the corresponding CDF (b)

6.2.2 Impact of traffic variation

We evaluate the performance of FlowTrace when
traffic changes in the network. We generate five flows
at 5 s intervals at the same link with 1-Gb/s band-
width, and each flow continues for 30 s without rate
limitation. The measurement results are shown in
Fig. 10. The latency of the link begins to increase
after 10 s, and stops increasing at about 30 s. This
is because multiple flows complete bandwidth at the
same link. After 30 s, the latency begins to decrease
at 5 s intervals due to the finishing of flows. During
this process, we can see that the curve of FlowTrace
matches the curve of ping very well. This indicates
that FlowTrace can measure the latency variations
of flows very well.

Time (s)

0

50

100

150

200

250

300

L
a
te

n
c
y
 (

m
s
)

ping

SLAM

FlowTrace

0 10 20 30 40 50 60

Fig. 10 Five flows generated at 5 s intervals at the
same link

6.2.3 Impact of control plane traffic

We repeat the previous traffic variation exper-
iment but induce traffic to the control plane. Our
control plane bandwidth is 1 Gb/s, and we generate
a flow with 20-Mb/s traffic between the controller
and switches. Fig. 11 shows the measurement re-
sults. Compared to Fig. 10, the measurement results
of SLAM match poorly those of ping and FlowTrace
from 0 to 10 s. In addition, the measurement results
have some deviations at the point where the flow
finishes, such as 35, 45, and 55 s. Because SLAM di-
rectly sends measurement probes from the controller,
the control plane traffic has more influence on the
accuracy of SLAM. In contrast, the measurement re-
sults of FlowTrace match very well those of ping, and
FlowTrace can accurately measure the latency.

Time (s)

0

50

100

150

200

250

300

L
a
te

n
c
y
 (

m
s
)

ping

SLAM

FlowTrace

0 10 20 30 40 50 60

Fig. 11 The control plane having 20-Mb/s traffic
when five flows are generated at 5 s intervals at the
same link

6.2.4 Impact of throughput

In this experiment, we generate a flow with var-
ious throughputs and the boxplot of measurement
results is shown in Fig. 12. With the increase of
throughput, the variation of latency becomes large.
FlowTrace has a similar average value to ping, while

Wang et al. / Front Inform Technol Electron Eng 2017 18(2):206-219 217

the average value of SLAM is a little larger than that
of ping. This small difference is induced mainly by
the control plane delay.

0 0 0 20 20 20 40 40 40 60 60 60 80 80 80 10
0
10

0
10

0

Throughput (%)

−1

0

1

2

3

4

5

6

7

8

L
a
te

n
c
y
 (

m
s
)

ping

SLAM

FlowTrace

Average value

Fig. 12 Latency measurement results by varying
throughput

6.2.5 Impact of hop

We build a linear topology with 10 switches, and
set the link delay to 1 s. Fig. 13 shows the measure-
ment results when varying the number of switch hops
that the flow passes. We can see that the latency is
increased by almost 1 ms per hop. The measure-
ment results of FlowTrace are the same as those of
ping, while SLAM has an additional 0.2 ms latency
compared to ping. This indicates that FlowTrace
has very good measurement accuracy when the flows
pass through many switches.

Number of switch hops

0

2

4

6

8

10

L
a

te
n

c
y
 (

m
s
)

ping

SLAM

FlowTrace

0 1 2 3 4 5 6 7 8 9

Fig. 13 Latency measurement results by varying the
number of switch hops

6.2.6 Measurement overhead

In this experiment, to show that FlowTrace in-
curs zero measurement traffic on the control plane,
we simultaneously measure the latencies of different
numbers of flows. The number of flows varies from
1 to 10 000, and the results are shown in Fig. 14.

In Fig. 14a, FlowTrace has the best performance,
and the average rate of the measurement traffic on
the control plane is less than 1 kb/s. Note that the
average rate of the measurement traffic of SLAM is
about 4.2 Mb/s for 10 000 flows. Therefore, com-
pared to SLAM, when there are a large number of
measurement tasks, FlowTrace greatly reduces the
measurement cost and has very low overhead. In
Fig. 14b, all schemes have similar performance, and
the small difference in performance is caused mainly
by the difference of probe packet size. In addition,
as the number of flows increases, the rate of the mea-
surement traffic on the data plane increases.

100 101 102 103 104

Number of flows

10-1

100

101

102

103

104

T
ra

ff
ic

 (
k
b

/s
)

ping

SLAM

FlowTrace

(a)

100 101 102 103 104

Number of flows

10-1

100

101

102

103

104

T
ra

ff
ic

 (
k
b
/s

)

ping

SLAM

FlowTrace

(b)

Fig. 14 The control plane traffic (a) and data plane
traffic (b)

6.3 User cases

In this subsection we use two simple scenarios
to show how the path tracing function helps improve
the measurement performance.

6.3.1 Impact of load balancing

Load balancing is used in most datacenter net-
works to provide large bandwidth for applications.
Therefore, two flows are usually forwarded in differ-
ent paths even if they start from the same source
and are going to the same destination. In this

218 Wang et al. / Front Inform Technol Electron Eng 2017 18(2):206-219

experiment, we build a topology that has two hosts
and two switches. Each switch is connected to one
host, and the two switches are connected by two links
with 0 and 1 ms delays, respectively. At the begin-
ning, we generate a flow that is forwarded in link 1
with 1 ms delay. After detecting the congestion, the
controller will balance the flow to another link with
0 ms delay.

We plot the measurement results in Fig. 15. We
can see that ping, SLAM, and FlowTrace success-
fully measure the 1 ms delay on link 1 before 10 s.
However, when the controller balances the flow to
another link after 10 s, the measurement results of
ping and SLAM are still at about 1 ms, and only
FlowTrace gets about 0.1 ms latency of the flow on
the new path. This is because ping and SLAM do
not know the real flow path and send only one type
of probe packet.

0 10 15 20

Time (s)

0.0

0.5

1.0

1.5

2.0

L
a
te

n
c
y
 (

m
s
)

ping

SLAM

FlowTrace

5

Fig. 15 Measurement results in two paths when the
flow is balanced at 10 s

6.3.2 Impact of queueing

Priority queues are used to guarantee the band-
width of flows with different priorities. Usually, short
flows have deadlines, such as web search (Alizadeh
et al., 2013), and thus these flows have a higher prior-
ity than long flows. In this experiment, we generate
two flows with rates of 1 Gb/s and 200 Mb/s respec-
tively, and let them pass through the same link. The
link has two priority queues: Q0 and Q1. We limit
the upper rate of each queue to 500 Mb/s, and the
two flows are forwarded in the two queues.

The measurement results are shown in Fig. 16.
First, we can see that the latency of Q1 is about
140 ms and that the latency of Q0 is about 0.1 ms.
This is because the rate of the first flow is 1 Gb/s,
which is greater than the maximum queue rate, while
the rate of the second flow is less than the rate of

Q0. Second, ping and SLAM can measure only the
latency of one queue, because they send only one
type of probe packets and Q1 is the default queue for
all the flows. FlowTrace sends two different packets
to measure flow-level latencies, which can accurately
measure the latencies in different queues.

0 10 15 20

Time (s)

−20

0

20

40

60

80

100

120

140

160

L
a
te

n
c
y
 (

m
s
)

ping

SLAM

FlowTrace (Q1)

FlowTrace (Q0)

5

Fig. 16 Measurement results in two queues

7 Conclusions

We have introduced FlowTrace as a real-time
network path tracing and latency measurement tool
for SDN. Unlike earlier works that use data plane
probe packets to obtain a path, FlowTrace calculates
a path with zero cost and has a shorter response time
by using a relational table query algorithm. By in-
stalling temporary measurement rules in switches,
FlowTrace enables users to measure their packets’
real-time transit delays. Furthermore, FlowTrace
uses the OpenFlow protocol, which means that Flow-
Trace can be directly deployed in a real network with-
out modifying physical switches. Our fundamental
design idea is to provide network operators a handy
path tracing and measurement tool to enable them to
more conveniently manage the network. This design
principle is also the purpose of the SDN technology.

References
Agarwal, K., Rozner, E., Dixon, C., et al., 2014. SDN

traceroute: tracing SDN forwarding without changing
network behavior. Proc. 3rd Workshop on Hot Topics
in Software Defined Networking, p.145-150.
http://dx.doi.org/10.1145/2620728.2620756

Al-Fares, M., Loukissas, A., Vahdat, A., 2008. A scalable,
commodity data center network architecture. ACM
SIGCOMM Comput. Commun. Rev., 38(4):63-74.
http://dx.doi.org/10.1145/1402958.1402967

Al-Fares, M., Radhakrishnan, S., Raghavan, B., et al., 2010.
Hedera: dynamic flow scheduling for data center net-
works. Proc. 7th USENIX Conf. on Networked Sys-
tems Design and Implementation, p.19.

Wang et al. / Front Inform Technol Electron Eng 2017 18(2):206-219 219

Alizadeh, M., Yang, S., Sharif, M., et al., 2013. pFabric:
minimal near-optimal datacenter transport. ACM SIG-
COMM Comput. Commun. Rev., 43(4):435-446.
http://dx.doi.org/10.1145/2534169.2486031

Bai, W., Chen, L., Chen, K., et al., 2015. Information-
agnostic flow scheduling for commodity data centers.
Proc. 12th USENIX Conf. on Networked Systems
Design and Implementation, p.455-468.

Chowdhury, S.R., Bari, M.F., Ahmed, R., et al., 2014. Pay-
Less: a low cost network monitoring framework for
software defined networks. Proc. Network Operations
and Management Symp., p.1-9.
http://dx.doi.org/10.1109/noms.2014.6838227

Clos, C., 1953. A study of non-blocking switching networks.
Bell Syst. Tech. J., 32(2):406-424.
http://dx.doi.org/10.1002/j.1538-7305.1953.tb01433.x

Curtis, A.R., Kim, W., Yalagandula, P., 2011. Mahout:
low-overhead datacenter traffic management using end-
host-based elephant detection. Proc. IEEE INFOCOM,
p.1629-1637.
http://dx.doi.org/10.1109/infcom.2011.5934956

Ding, J., Huang, T., Liu, J., et al., 2015. Virtual network
embedding based on real-time topological attributes.
Front. Inform. Technol. Electron. Eng., 16(2):109-
118. http://dx.doi.org/10.1631/fitee.1400147

Greenberg, A., Hamilton, J.R., Jain, N., et al., 2009. VL2:
a scalable and flexible data center network. ACM
SIGCOMM Comput. Commun. Rev., 39(4):51-62.
http://dx.doi.org/10.1145/1592568.1592576

Guo, C., Yuan, L., Xiang, D., et al., 2015. Pingmesh:
a large-scale system for data center network latency
measurement and analysis. ACM SIGCOMM Comput.
Commun. Rev., 45(4):139-152.
http://dx.doi.org/10.1145/2785956.2787496

Handigol, N., Heller, B., Jeyakumar, V., et al., 2012. Where
is the debugger for my software-defined network? Proc.
1st Workshop on Hot Topics in Software Defined Net-
works, p.55-60.
http://dx.doi.org/10.1145/2342441.2342453

Jarschel, M., Zinner, T., Hohn, T., et al., 2013. On the
accuracy of leveraging SDN for passive network mea-
surements. Proc. Telecommunication Networks and
Applications Conf., p.41-46.
http://dx.doi.org/10.1109/atnac.2013.6705354

Katta, N.P., Rexford, J., Walker, D., 2013. Incremental con-
sistent updates. Proc. 2nd ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking, p.49-54.
http://dx.doi.org/10.1145/2491185.2491191

Kazemian, P., Chang, M., Zeng, H., et al., 2013. Real time
network policy checking using header space analysis.
Proc. 10th USENIX Conf. on Networked Systems
Design and Implementation, p.99-112.

Khurshid, A., Zhou, W., Caesar, M., et al., 2012. VeriFlow:
verifying network-wide invariants in real time. Proc. 1st
Workshop on Hot Topics in Software Defined Networks,
p.49-54. http://dx.doi.org/10.1145/2342441.2342452

Liu, J., Huang, T., Chen, J., et al., 2011. A new algorithm
based on the proximity principle for the virtual network
embedding problem. J. Zhejiang Univ.-Sci. C (Com-
put. & Electron.), 12(11):910-918.
http://dx.doi.org/10.1631/jzus.c1100003

McKeown, N., Anderson, T., Balakrishnan, H., et al., 2008.
OpenFlow: enabling innovation in campus networks.
ACM SIGCOMM Comput. Commun. Rev., 38(2):69-
74. http://dx.doi.org/10.1145/1355734.1355746

Perešíni, P., Kuzniar, M., Vasić, N., et al., 2013. OF.CPP:
consistent packet processing for OpenFlow. Proc. 2nd
ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, p.97-102.
http://dx.doi.org/10.1145/2491185.2491205

Phemius, K., Bouet, M., 2013. Monitoring latency with
OpenFlow. Proc. 9th Int. Conf. on Network and
Service Management, p.122-125.
http://dx.doi.org/10.1109/cnsm.2013.6727820

Phemius, K., Thales, B.M., 2013. OpenFlow: why latency
does matter. Proc. IFIP/IEEE Int. Symp. on Inte-
grated Network Management, p.680-683.

Qi, H., Shiraz, M., Liu, J., et al., 2014. Data center network
architecture in cloud computing: review, taxonomy, and
open research issues. J. Zhejiang Univ.-Sci. C (Com-
put. & Electron.), 15(9):776-793.
http://dx.doi.org/10.1631/jzus.c1400013

Reitblatt, M., Foster, N., Rexford, J., et al., 2012. Abstrac-
tions for network update. ACM SIGCOMM Comput.
Commun. Rev., 42(4):323-334.
http://dx.doi.org/10.1145/2377677.2377748

Scott, C., Wundsam, A., Raghavan, B., et al., 2014. Trou-
bleshooting blackbox SDN control software with mini-
mal causal sequences. Proc. ACM SIGCOMM Conf.,
p.1-12.

Su, Z., Wang, T., Xia, Y., et al., 2014. FlowCover: low-cost
flow monitoring scheme in software defined networks.
Proc. IEEE Global Communications Conf., p.1956-
1961. http://dx.doi.org/10.1109/glocom.2014.7037094

Tavakoli, A., Casado, M., Koponen, T., et al., 2009. Applying
NOX to the datacenter. Proc. 8th ACM Workshop on
Hot Topics in Networks, p.1-6.

Wundsam, A., Levin, D., Seetharaman, S., et al., 2011.
OFRewind: enabling record and replay troubleshoot-
ing for networks. Proc. USENIX Annual Technical
Conf., p.29.

Yu, C., Lumezanu, C., Zhang, Y., et al., 2013. FlowSense:
monitoring network utilization with zero measurement
cost. Proc. 14th Int. Conf. on Passive and Active
Measurement, p.31-41.
http://dx.doi.org/10.1007/978-3-642-36516-4_4

Yu, C., Lumezanu, C., Sharma, A., et al., 2015. Software-
defined latency monitoring in data center networks.
Proc. 16th Int. Conf. on Passive and Active Mea-
surement, p.360-372.
http://dx.doi.org/10.1007/978-3-319-15509-8_27

Yu, M., Jose, L., Miao, R., 2013. Software defined traffic
measurement with OpenSketch. Proc. 10th USENIX
Conf. on Networked Systems Design and Implementa-
tion, p.29-42.

Zhang, H., Lumezanu, C., Rhee, J., et al., 2014. Enabling
layer 2 pathlet tracing through context encoding in
software-defined networking. Proc. 3rd Workshop on
Hot Topics in Software Defined Networking, p.169-174.
http://dx.doi.org/10.1145/2620728.2620742

	Introduction
	Related work
	Path tracing in SDN
	Delay measurement in SDN

	Objectives
	Design
	Collector
	Path calculator
	Latency monitor

	Analysis
	Control plane traffic
	Overhead of collector
	Overhead of measurement

	Evaluation
	Evaluation of path tracing
	Control plane overhead
	Average lookup latency

	Evaluation of latency monitor
	Impact of link delays
	Impact of traffic variation
	Impact of control plane traffic
	Impact of throughput
	Impact of hop
	Measurement overhead

	User cases
	Impact of load balancing
	Impact of queueing

	Conclusions

