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Abstract:    Network function virtualization (NFV) is a newly proposed technique designed to construct and manage network 
functions dynamically and efficiently. Allocating physical resources to the virtual network function forwarding graph is a critical 
issue in NFV. We formulate the forwarding graph embedding (FGE) problem as a binary integer programming problem, which 
aims to increase the revenue and decrease the cost to a service provider (SP) while considering limited network resources and the 
requirements of virtual functions. We then design a novel regional resource clustering metric to quantify the embedding potential 
of each substrate node and propose a topology-aware FGE algorithm called ‘regional resource clustering FGE’ (RRC-FGE). After 
implementing our algorithms in C++, simulation results showed that the total revenue was increased by more than 50 units and the 
acceptance ratio by more than 15%, and the cost of the service provider was decreased by more than 60 units. 
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1  Introduction 
 

Most current network services are defined by 
statically combining a large number of network 
functions (NFs) such as network address translators 
(NATs), load balancers, firewalls, and intrusion de-
tection systems (IDSs). Traditionally, these functions 
are provided by dedicated hardware platforms, which 
are expensive and difficult to maintain and upgrade 
(Mehraghdam et al., 2014). 

Network function virtualization (NFV) (ETSI 
NFVISG, 2013) is a rising idea that offers more 
flexibility in network service delivery by imple-
menting NFs as virtual network function (VNF). Ex-
ploiting virtualization technologies, service providers 
(SPs) respond to network service requests from cus-
tomers by developing network services at an abstract  
 

 
 
 
 

level using a VNF forwarding graph (FG) and then 
deploy the developed FGs within their datacenters. 
Fig. 1 shows two VNF FGs which define the sequence 
of VNFs that packets traverse and the logical con-
nections between VNFs to fulfill corresponding 
network services. Network services are provided on 
demand as a service and are composed of one or 
multiple VNFs running on the top of virtual machines 
that are located on standard servers (Xia et al., 2014). 
Once a traffic flow arrives at an SP’s datacenter, it is 
steered through a number of VNFs in a specific order 
based on the SP’s provisioning policy and service 
level agreement (SLA) (Koh et al., 2007). 

How to map a VNF FG onto a substrate network 
in an SP’s datacenter efficiently is called the for-
warding graph embedding (FGE) problem. FGE is a 
critical issue that affects both the performance of the 
network service and the resource utilization of the 
substrate network. Specifically, each VNF is mapped 
to one of the substrate nodes (servers), and the logical 
connection between two VNFs is mapped to a sub-
strate path that connects the corresponding end nodes. 
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Network service requests arrive at different time in-
stances and demand to set up VNF FGs with different 
VNFs and lifetimes. 

 

 
 

Fig. 1  Mapping of forwarding graphs to a substrate net-
work for network service requests 

 
The FGE problem is similar to the virtual net-

work embedding (VNE) problem, which aims to map 
virtual nodes and virtual links onto a substrate net-
work. As a result, we know that the FGE problem is 
also NP-hard (Mehraghdam et al., 2014). In the rest of 
this paper, virtual machines on which VNFs are run-
ning are referred to as virtual nodes, and the logical 
connections between them as virtual links. However, 
directly applying VNE solutions to the FGE problem 
is not practical. Firstly, current virtualization tech-
niques do not have enough performance isolation 
between virtual machines on which VNFs are mapped. 
Hence, the behavior of one VNF can adversely affect 
the performance of another due to contention for 
shared physical resources (Pu et al., 2010; Mei et al., 
2013). Bellavista et al. (2015) found that in industry 
-relevant cloud platforms, there may be computing 
overhead due to the intense communication load of 
virtual machines (VMs) co-located on the same 
physical host, and they proposed a VM placement 
algorithm to take this factor into consideration. Shea 
et al. (2014) found that there is degradation and vari-
ation in VM communications in lightly used cloud 
networks. They showed that such variation and deg-
radation are due mainly to the dual-role of the CPU in 
both computation and network communication 
among VMs in the server. As a result, we conclude 

that VNFs with performance interference should be 
mapped to different substrate nodes. This is not the 
case in virtual network resource allocation areas. 
Secondly, virtual network (VN) embedding algo-
rithms usually avoid mapping multiple virtual nodes 
from the same VN request onto one substrate node, 
which is different from the FGE problem. As a result, 
the solution space in FGE problems is larger than in 
VNE problems. Previous VNE algorithms that also 
have some shortcomings in balancing performance 
and computational complexity; hence, an efficient 
FGE algorithm is needed. 

This study presents an efficient topology-aware 
solution to the FGE problem and aims to increase an 
SP’s revenue while satisfying network service re-
quirements. The main contributions of this paper are 
as follows: (1) We formulate the FGE problem as a 
binary integer programming (BIP) problem, which 
takes resource capacity of the substrate network and 
resource constraints of FGs into consideration and 
aims to increase long-term revenue and decrease the 
cost of the SP simultaneously. (2) We design a re-
gional resource clustering metric to evaluate the em-
bedding potential of substrate nodes and propose an 
efficient topology-aware heuristic FG embedding 
algorithm based on that metric. The algorithm takes 
both regional topology information and the energy 
consumption of the substrate network into considera-
tion. (3) We propose a genetic algorithm based heu-
ristic algorithm to maximize the long-term economic 
benefits to the SP. 

 
 

2  Related work 
 

NFV is a newly proposed concept that is still 
under investigation. Standardization of the problem 
definition and applications is not yet completed. To 
the best of our knowledge, very few studies have 
focused on our area of research. Xia et al. (2014) 
formulated the VNF placement problem as a binary 
integer programming problem. They regarded CPU 
resource as a constraint and therefore aimed to min-
imize the number of substrate nodes used to host the 
required VNFs. However, they did not consider the 
bandwidth constraints of the substrate links, which 
are also an important factor. Mehraghdam et al. (2014) 
described the VNF placement problem as a mixed 



Hu et al. / Front Inform Technol Electron Eng   2017 18(11):1854-1866 1856 

integer quadratically constrained program. They 
considered the resource capacity and resource re-
quirements of both the substrate network and VNFs. 
However, they did not propose any heuristic algo-
rithm, since solving mixed-integer programming 
(MIP) problems is known to be computationally in-
tractable. Thus, using the above methods to solve the 
VNF placement problem is impracticable. Bellavista 
et al. (2015) found that in industry-relevant cloud 
platforms, there may be a computing overhead due to 
the intense communication load of VMs co-located 
on the same physical host. They proposed a VM 
placement algorithm that not only satisfies the pre-
dicted communication demands, but also takes into 
account the computing overhead due to resource 
contention of the co-located VMs. 

NFV provides an on-demand and per-flow net-
work service for customers’ network traffic, which 
significantly improves compatibility and flexibility, 
and introduces the FGE problem. Some previous 
studies have focused on the virtual network embed-
ding problem, which is similar to the FGE problem in 
some respects. In simple terms, in those studies the 
problem space was restricted by assuming that virtual 
network requests are known in advance (Fan and 
Ammar, 2006; Lu and Turner, 2006) and focused on 
the problem either in the absence of node or link 
constraints or presuming infinite resource capacity of 
the substrate networks (Fan and Ammar, 2006; Lu 
and Turner, 2006; Razzaq and Siraj Rathore, 2010). 

Dealing with the full problem space, in some 
studies node mapping and link mapping were solved 
separately to reduce the solution space (Lu and Turner, 
2006; Yu et al., 2008; Lischka and Karl, 2009; Su et 
al., 2012). However, two-stage algorithms can result 
in poor performance because of their ignorance of the 
relationship between node mapping and link mapping. 
To overcome the shortcomings introduced by 
two-stage embedding algorithms, Chowdhury et al. 
(2009) and Cheng et al. (2011) conducted node 
mapping and link mapping at the same stage, thereby 
producing one-stage embedding algorithms. Alt-
hough they achieve better performance, these algo-
rithms also increase computational complexity. 

In recent studies (Bhatia et al., 2008; Zhang et al., 
2012; Gong et al., 2014) topology-aware ranking 
metrics have been presented to identify the bottleneck 
nodes and links in substrate networks, and a set of 

algorithms have been proposed based on those met-
rics. Although solving node mapping and link map-
ping separately, these algorithms consider link map-
ping constraints in the node mapping stage and 
achieve a better tradeoff between performance and 
computational complexity. 

The existing VNE algorithms cannot be applied 
directly to the FGE problem for the following reasons: 
(1) Current virtualization techniques do not have 
enough performance isolation between virtual ma-
chines, so different VNFs may have performance 
interference. Hence, VNFs contending for the same 
type of physical resources cannot be co-located on 
one substrate node, which is not considered in VNE 
algorithms. (2) In VNE problems, virtual nodes from 
the same virtual network request cannot be mapped to 
one substrate node. However, the FGE problem does 
not have such a constraint and has a larger solution 
space. As a result, the FGE problem needs more effi-
cient mapping algorithms. 

 
 

3  Key concepts and preliminaries 
 
The FGE problem is similar to the virtual net-

work embedding problem in the following three re-
spects: (1) In the FGE problem, the requested VNFs 
should be mapped onto physical/substrate nodes, and 
logical connections between VNFs should be mapped 
to physical/substrate paths, where nodes/links re-
source requirements should be satisfied. In the virtual 
network embedding problem, virtual nodes and vir-
tual links should also be mapped onto physical servers 
and links, ensuring certain constraints are met. (2) 
The objectives of the FGE problem and virtual net-
work embedding problem are to increase the 
long-term revenue of SPs, and reduce the cost of 
embedding each forwarding graph and virtual net-
work. (3) Both of these problems are NP-hard. 

3.1  Substrate network 

We consider a substrate network consisting of 
multiple commodity servers connected by a network. 
Each commodity server is able to perform computing 
tasks and forward packets. In the rest of this paper, we 
use substrate node (SN) and substrate link (SL) to 
represent the commodity server and physical links 
between two servers, respectively. 
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Definition 1 (Substrate network)    Similar to previ-
ous work (Chowdhury et al., 2009; Lischka and Karl, 
2009), an SN is modeled as a weighted undirected 
graph denoted by Gs=(Vs, Es), where Vs and Es refer to 
the sets of substrate nodes and links, respectively. 
Each substrate node vs∈Vs is associated with a CPU 
capacity value cs(vs). Each substrate link es is associ-
ated with a bandwidth capacity value bs(es) and a link 
delay value ds(es). Fig. 2c shows an example of an SN. 
The numbers over the nodes and links indicate the 
available CPU and bandwidth resources, respectively. 
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Fig. 2  Resource allocation of forwarding graphs: (a) for-
warding graph 1; (b) forwarding graph 2; (c) substrate 
network 
 

3.2  Virtual network function forwarding 

A VNF FG defines the sequence of VNFs pack-
eting traverse and the logical connection between 
VNFs. Each VNF runs on one VM. In the rest of this 
paper, we refer to a VM as a VN and the connections 
between VMs as virtual links (VLs). 
Definition 2 (Virtual network function forwarding 
graph)    A VNF FG Fr=(Gr, Ta, Td) is a three tuple, 
similar to that described by Yu et al. (2008). Gr=(Vr, 
Er) is a weighted undirected graph indicating the to-
pology of the FG, where Vr and Er refer to the set of 
virtual nodes (VNs) and virtual links (VLs), respec-
tively. Suppose there are n types of VNFs and each 
virtual node vr∈Vr has a VNF type in those n types. 
Each VNF type i has an interference vector ri=(r(1), 
r(2), …, r(n)), where ri(j)∈{0, 1} has value 1 if the 
VNF is with type i and the VNF with type j can be 
collocated on the same SN; otherwise, its value is set 
to 0. A virtual node is also associated with a CPU 
constraint cr(vr). Each virtual link er∈Er is associated 
with a bandwidth constraint br(er) and a link delay 
constraint dr(er). Ta indicates the arriving time and Td 
the duration of the FG. Figs. 2a and 2b present two 
FGs with node and link requirements. 

The notations used in this paper (Table 1) is 
similar to those used by Gong et al. (2014). The 
subscript indicates the substrate network/forwarding 
graph. 

 
Table 1  Notations of the forwarding graph model 

Notation Meaning 
Gs Topology of the substrate network 
Vs Set of substrate nodes 
Es Set of substrate links 
cs(vs) CPU capacity of substrate node vs 
bs(vs) Bandwidth capacity of substrate link es 
ds(es) Link delay of substrate link es 
RCs Set of residual CPU resources 
RBs Set of residual bandwidth resources 
Ps Set of loop-free substrate paths 
Fr Virtual network function forwarding graph 
Gr Topology of the forwarding graph 
Vr Set of virtual nodes 
Er Set of virtual links 
cr(vr) CPU constraints of virtual node vr 
br(er) Bandwidth of virtual link er 
dr(er) Delay constraint of virtual link er 
ri Interference vector of VNF type i 

 

3.3  Forwarding graph embedding 

When an FG is developed, the SP has to decide 
whether to accept it. If the FG is accepted, the SP then 
allocates a proper amount of resources to satisfy the 
FG’s constraints. Once the FG expires, the resources 
assigned to that FG are released. 
Definition 3 (Forwarding graph embedding)    Simi-
lar to previous work (Chowdhury et al., 2009; 
Lischka and Karl, 2009), a forwarding graph embed-
ding of an FG to the substrate network is defined as a 
mapping M from Gr to a subset of Gs, M: Gr→Gs′ (Vs′, 
Es′), where Vs′⊆Vs, Es′⊆Es. The embedding process 
can be decomposed into two major components: node 
embedding Mn and link embedding Ml. 

Node embedding Mn maps a virtual node to a 
substrate node with enough available computing re-
sources to meet its demands. Multiple virtual nodes of 
an FG can be co-located on the same substrate node as 
long as they do not have performance interference. 
Mathematically, the node mapping can be described 
as a many-to-one mapping, i.e., 

 

n r s:M V V ′→ , subjected to: 
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The link embedding Ml maps a virtual link to 

a loop-free substrate path in a substrate network con-
sisting of at least one substrate link. Similar to node 
embedding, the link embedding can be described as  

 
l r s:M E P→ , subjected to: 
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where Ps is the set of loop-free paths between sub-
strate nodes hosting the end nodes of the virtual link. 
Fig. 2c shows that FG1 and FG2 can be mapped onto 
the substrate network. For FG1, we have 
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3.4  Objectives 

As FG embedding is done by an SP, the main 
objective of FG embedding is to increase revenue and 
decrease the cost of embedding the forwarding graph. 
A customer is willing to pay only for the resources 
he/she requires. As a result, the revenue of embedding 
an FG at time t can be defined as 

 

r r r r

r d c r r b r rRvn( , ) ( ( ) ( )),
v V e E

F t T w c v w b e
∈ ∈

= +∑ ∑    (1) 

 
where wc and wb are the unit prices of CPU and 
bandwidth resources, respectively. 

Since the SP maps FGs to the substrate network, 
there is also a mapping cost, consisting of a deploy-
ment cost and an operation cost at time t, which can 
be defined as follows: 
 

r d r o rCos t( , ) Cos t ( , ) Cos t ( , ),F t F t F t= +         (2) 

where Costd(Fr, t) refers to the deployment cost and 
Costo(Fr, t) to the operation cost for mapping FG Fr at 
time t. Similar to Chowdhury et al. (2009), the de-
ployment cost of successfully embedding an FG is 
defined as being proportional to the sum of the total 
resources assigned to that FG: 
 

r r r r

d r d r r r r l rCos t ( , ) ( ) ( ) | ( ) | ,
v V e E

F t T c v b e M e
∈ ∈

 
= + 

 
∑ ∑  

(3) 
 

where |Ml(er)| is the length of the substrate path which 
carries the virtual link er. 

In this study, we consider the operation cost for 
mapping the FG Fr to be the energy consumed by the 
substrate nodes to host the virtual nodes of that FG, 
and the energy consumed to run the substrate server. 
For simplicity, we assume that the servers are ho-
mogeneous with regard to their energy consumption. 
The operation cost is defined as  

 

[ ] [ ]r r

o r

b r r
d a r r

s n r s n r

Cos t ( , )

( )
( ) ,

( ) RC ( )v V

F t

p c vT p c v
c M v M v∈

=

 ⋅ ⋅ + ⋅ 
−  

∑
(4) 

 
where pb is the baseline energy consumption in each 
time unit of each substrate node if it is in the ‘on’ state, 
and pa is the energy consumption of each unit of CPU 
requirement. According to Eq. (4), if a substrate node 
has no virtual nodes on it, it will contribute no energy 
consumption to the operation cost. 

From the above definitions, the revenue is fixed 
if an FG is given. Therefore, the SP should try to 
accept more FGs and allocate proper resources to 
them, decreasing the cost of embedding each FG and 
increasing profits. 

As in Zhang et al. (2012), the long-term average 
revenue is defined by 

 

r
0

1lim Rvn( , ).
T

T t
F t

T→∞
=
∑                       (5)  

 
The FG acceptance ratio of the substrate network 

can be defined by 
 

s
0 0

lim FG ( ) FG( ),
T T

T t t
t t

→∞
= =
∑ ∑                  (6) 
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where FGs is the number of FGs successfully ac-
cepted by the substrate network at time t, and FG is 
the total number of arrival FGs at time t. 

The long-term revenue to cost ratio is also con-
sidered in measuring the efficiency of resource  
utilization in the substrate network: 

 

r r0 0
lim Rvn( , ) Cos t( , ).T T

t tT
F t F t

= =→∞∑ ∑        (7) 

 
Higher FG acceptance and R/C ratios are pre-

ferred if the long-term average revenues of the FG 
embedding solution are about the same. 

 
 

4  Binary integer programming formulation 
for forwarding graph embedding 

 
In this section we formulate the forwarding 

graph problem as a binary integer programming 
problem (BIP), in which each virtual node must be 
mapped to exactly one substrate node. Each substrate 
node is able to host multiple virtual nodes from the 
same FG if these virtual nodes do not have perfor-
mance interference. We consider a situation where 
virtual links are unsplittable and therefore cannot be 
embedded to multiple substrate paths. We present the 
following BIP formulation. 

 
FGE_ILP 

1. Variables 
{0,1}ij

uvf ∈ : A binary variable denoting whether 
the substrate path hosting virtual link (i, j) passes 
substrate link (u, v). If the substrate path passes  
the substrate link, the variable is set to 1 and 0 oth-
erwise. 

{0,1}i
ux ∈ : A binary variable, which has the 

value 1 if virtual node i is mapped to substrate node u, 
and 0 otherwise. 

2. Objectives 
Minimize 
 

r s

s rs

b r

s s s

( )
[ ( ) RC ( )] RC ( )

1 .
RB ( )

uv ij

i V u V

ij
uv

l E l Euv

p c i
c u u u

f
l

δ

δ

∈ ∈

∈ ∈

⋅
− ⋅ +

+
+

∑∑

∑ ∑
            (8) 

3. Constraints 
Capacity constraints: 

 

r

r s s r( ) RB ( ), , , , .
ij

ij
uv ij uv

l E
f b l l u v V i j V

∈

⋅ ≤ ∀ ∈ ∀ ∈∑    (9) 

r

r s s r( ) RC ( ), , .i
u

i V
x c i u u V i V

∈

⋅ ≤ ∀ ∈ ∀ ∈∑      (10) 

 

Flow-related constraints: 
 

s s

s r, , , .
uk kv

ij ij i i
uk vk u v

l E l E
f f x x u V i j V

∈ ∈

− = − ∀ ∈ ∀ ∈∑ ∑  

(11) 
 

Link delay constraints:   
 

s

s r s r( ) ( ), , , , .
uv

ij
uv uv ij

l E
d l f d l u v V i j V

∈

⋅ ≤ ∀ ∈ ∀ ∈∑ (12) 

 
Constraints to ensure that a virtual node is 

mapped to exactly one substrate node: 
 

s

r s1, , .i
u

u V
x i V u V

∈

= ∀ ∈ ∀ ∈∑                  (13) 

 

Performance interference constraints: 
 

s r, , , .i j
u u ijx x r u V i j V⋅ ≤ ∀ ∈ ∀ ∈                (14) 

 
4. Explanations of the formulation 
The objective function of the BIP in Eq. (8) tries 

not only to minimize the cost of embedding the FG 
but also to balance the load. In the first part of the 
formulation, the virtual node operation cost is divided 
by the product of the residual CPU capacity and al-
located CPU capacity of the substrate node to which 
the virtual node is mapped. This ensures that substrate 
nodes with more residual CPU capacity and to which 
more CPU capacity has already been allocated are 
preferred. Similarly, the second part of the formula-
tion ensures that substrate links with more residual 
bandwidth are preferred. We ignore the deployment 
cost of the virtual nodes in the formulation as it is 
fixed once the virtual nodes are given. δ  is a small 
positive constant to avoid being divided by zero in 
computing the objective function. 

Constraints in Eqs. (9) and (10) ensure that the 
bandwidth and CPU resources allocated from the 
substrate network remain within their limitations. 

Constraint in Eq. (11) refers to the flow  
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conservation conditions. 
Constraint in Eq. (12) ensures that the total delay 

of the path to which the virtual link is mapped does 
not violate its constraint. 

Constraint in Eq. (13) denotes that a virtual node 
is mapped to exactly one substrate node and con-
straint in Eq. (14) ensures that a virtual node does not 
affect the performance of other virtual nodes mapped 
to the same substrate node. 

 
 
5 Topology-aware heuristic forwarding graph 
embedding algorithm based on a regional 
resource clustering metric 
 

As solving BIP is NP-hard (Chen et al., 2012), it 
is not practical to solve this problem when the prob-
lem is large. Hence, we propose a topology-aware 
heuristic FG embedding algorithm called RRC-FGE 
(regional resource clustering FGE), which aims to 
decrease deployment and operation costs by taking 
both the regional topology information and the degree 
of resource aggregation into consideration. First, to 
evaluate the embedding potential of substrate nodes, 
we design a regional resource clustering metric R, 
which quantifies the embedding potential of substrate 
nodes. Second, to decrease further the embedding 
cost, we propose a comprehensive measurement NM 
to make a balance between the regional resource 
clustering metric and the operation cost of substrate 
nodes. We then conduct a greedy node mapping based 
on NM and a shortest-path based link mapping. 

5.1  Regional resource clustering metric 

Motivations: Some earlier studies considered 
link mapping constraints in the node mapping stage 
by proposing metrics to measure topology infor-
mation and the global resource capacity of the sub-
strate nodes (Bhatia et al., 2008; Zhang et al., 2012; 
Gong et al., 2014). However, these metrics have the 
following disadvantages: 

1. The adjacency limitation problem. These 
proposed global resource metrics quantify the em-
bedding potential value of the substrate node by its 
available resources together with embedding potential 
values transferred by its incident links from other 
nodes. For example, as shown in Fig. 3, the nodes 
filled in grey in Figs. 3a and 3b have the same value in 

the above global resource metrics. However, the 
grey-filled node on the right has more available re-
sources around it than that on the left, as there are 
links between the adjacent nodes of the grey-filled 
node in the figure on the right. 
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Fig. 3  An example of disadvantages of global resource 
metrics: (a) a network where the white nodes are not ad-
jacent to each other; (b) a network where the white nodes 
are adjacent to each other 
 

2. The regional pertinence absence problem. The 
proposed metrics in the above studies measured the 
embedding potential of a substrate node by consid-
ering resource information from all the other substrate 
nodes. In practice, virtual networks often have a much 
smaller size than substrate networks and should be 
compactly mapped to a small part of the substrate 
network. However, the metrics above lack the ability 
to measure the embedding potential of a node in  
relation to the topology information in its regional 
area. 

Definition: To overcome the problems of the 
above mentioned metrics, we propose a regional re-
source clustering metric (RRC) to quantify the em-
bedding potential of the nodes in substrate networks. 
This metric was inspired by semi-local centrality 
(Fagiolo, 2007) and the clustering coefficient 
(Eppstein, 1998) of a node. Specifically, given a 
network topology G(V, E), the CPU capacity c(u), 
u∈V, and the bandwidth resource b(u, v), (u, v)∈E, 
the RRC value R(u) of node u  are formulated as 

 
( ) Rf ( ) ln[Cf ( )],R u u u= ⋅                  (15) 

 
where Rf(u) is a resource factor and ln[Cf(u)] is a 
clustering factor of node u. We use ln[Cf(u)] instead 
of Cf(u) for two reasons: (1) The value of the clus-
tering factor is reduced. Thus, the resource factor 
contributes more to R(u). (2) Using the logarithm can 
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still guarantee a right result because a larger Cf(u) 
leads to a larger ln[Cf(u)]. 
 

Nei( )

( , )Rf ( ) ( ) (1 ) ( ),
( )v u

b u vu d c u d Q v
b v∈

= ⋅ + − ⋅∑  (16) 

Nei( )

( , )( ) ( ) (1 ) ( ),
( )w v

b v wQ v d c v d c w
b w∈

= ⋅ + − ⋅∑   (17) 

( )( ) ,
( )

v V

c uc u
c v

∈

=
∑

                           (18) 

Nei
( ) ( , ),

v
b u b u v

∈

= ∑                         (19) 

 
where Nei(u) is the node set containing all the adja-
cent nodes of u, and d∈(0, 1) is a constant number. 
 

[1 3] 3
| || |[ ]

Cf ( ) ,
( 1)

u u

u u

W
u

d d
=

−
                    (20) 

[1 3] 3{ }, , ,ijW w i j V= ∀ ∈                (21) 

( , ) , ( , ) ,
max( )ij

b i jw u v E
bw

= ∈               (22) 

 
where  [1 3] 3

| || |[ ]u uW  is the uth element of the main di-

agonal of [1 3] 3[ ]W [1 3] [1 3] [1 3]W W W= , du is the degree 

of node u, [1 3]W  is the matrix obtained from W by 
taking the 3rd root of each entry, and max(bw) is the 
largest bandwidth in the network. 

Physical meaning: Eqs. (15)–(19) indicate that 
the resource factor of any node u V∈  is a weighted 
summation of the resource of its two-tier neighbors; 
i.e., other nodes in that region also contribute to the 
resource factor of node u. Eqs. (20)–(22) indicate that 
the clustering coefficient factor of any node u V∈  
measures the bandwidth resources between its 
neighbors. The RRC metric combines the above two 
factors to overcome the drawbacks of previous  
metrics. 

Calculation: The complexity of calculating the 
RRC is 2(| | ( ))O V D V⋅ , where |V| and D(V) are the 
number and average degree of the nodes in the net-
work, respectively. We propose the algorithm for 
calculating the regional resource clustering metric as 
Algorithm 1. 

Algorithm 1  Calculation of the regional resource 
clustering metric vector  

1  0R ← ; 
2  Rf ( )i d c i= ⋅ ; 
3  for each j∈neighbour(i) do 
4   ( )jq d c j= ⋅ ; 
5   for each k∈neighbour(j) do 
6        if k==1 
7             continue; 
8        end if 

9        ( , )(1 ) ( )
( )j

b j kq d c k
b k

+ = − ; 

10   end for 

11   ( , )Rf (1 )
( )i j

b i jd q
b j

+ = − ; 

12   Rf ln Cf ( )i iR i= ⋅ ; 
13  end for 

 
In Algorithm 1, the input is network topology 

G(V, E) and output is an RRC vector R. 
However, as illustrated in Eq. (4), the operation 

cost for a substrate node to perform a unit computing 
task is inversely proportional to its allocated re-
sources. Hence, to decrease the operation cost we 
should map virtual nodes to substrate nodes which 
have more allocated resources. 

Let σ∈(0, 1) be a constant number. To trade off 
between these two potentially conflicting goals, we 
measure the substrate nodes comprehensively as 

 
NM( ) ( ) (1 )[ ( ) RC( )].u R u c u rσ σ= ⋅ + − −      (23) 

 

5.2  Greedy node mapping 

We adopt a greedy mapping method in the node 
mapping stage. After calculating the NM value of the 
substrate node, we sort virtual nodes in ascending 
order according to the number of virtual nodes with 
which each has performance interference. Then, we 
sort the virtual nodes that have the same interference 
number in descending order according to their CPU 
demands. For each virtual node, the algorithm selects 
a set of substrate nodes with enough available CPU 
resources to meet the virtual node’s CPU demand and 
does not host any virtual node that has performance 
interference with it. The algorithm maps the virtual 
node to the substrate node with the highest NM value 
in that set. If there is no qualified substrate node in the 
set, the FG is blocked. 
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Algorithm 2 shows the details of the greedy node 
mapping algorithm. The time complexity of the al-
gorithm is O(|Vs||Vr|). The inputs are FG topology 
Gr(Vr, Er), substrate network Gs(Vs, Es) , and the RRC 
vector rs for substrate network. The output is the node 
mapping Mn. 
 
Algorithm 2  Greedy node mapping 

1      Sort virtual nodes according to their interference 
number and CPU demand to obtain sort

rV ; 

2   for each sort
rv V∈  do 

3        Φv←∅; 
4        for each u∈Vs do 
5             if qualified_host(u, v)=true 
6                  Φv←Φv∪u; 
7             end if 
8        end for 
9        if Φv=∅ 
10           block Gr; 
11      else 
12           s( ) arg max { ( )}

vzNM v r zΦ∈= ; 
13      end if 
14 end for 

 
Function qualified_host(u, v) checks whether 

substrate node u is qualified to the host virtual node v. 
If RCs≥cs(v) and u does not host any virtual node that 
has performance interference with v, the function 
returns true; otherwise, it returns false. 

5.3  Link mapping 

In the link mapping stage, our algorithm maps 
virtual links to substrate paths. For each virtual link, 
the algorithm first cuts off all the substrate links that 
violate its bandwidth constraint. Since virtual links 
are unsplittable, the algorithm finds the shortest path 
by searching the k-shortest paths (Wang et al., 2014) 
on values of k, until a path is found to satisfy the delay 
requirement of the virtual link. 

 
 

6  Genetic algorithm based forwarding graph 
embedding algorithm 
 

In this section, we propose a genetic algorithm 
based heuristic (Goldberg, 2009), FGR-GA, to solve 
the NP-hard forwarding graph embedding problem. 
FGR-GA works as follows. Once the forwarding 
graph request arrives, forwarding graph regional- 
genetic algorithm (FGR-GA) randomly generates an 

initial population of feasible virtual node embedding 
solutions (i.e., chromosomes). During each iteration, 
the population evolves through a set of chromosome 
operators: selection, crossover, and mutation. After a 
given number of iterations, an optimal solution is 
selected to satisfy the request’s demands. 

6.1  Chromosome coding and initial population 

In this study, we encode a virtual node embed-
ding solution as a chromosome. The number of genes 
in the chromosome equals that of virtual nodes in the 
FG, and the value of each gene denotes the substrate 
node to which this virtual node is mapped. A chro-
mosome is expressed as follows: 

 

1 2[ , ,..., ],lC g g g=                    (24) 
 

where l=|Vr|, and gk∈{0, 1, ..., |Vs|−1} (k=1, 2, …, l). 
FGR-GA generates randomly a large initial 

population of chromosomes. However, some of these 
chromosomes may not be feasible due to performance 
interference and substrate node capacity limitations. 
We propose a feasibility check method to make sure 
that all the chromosomes are feasible solutions to the 
node mapping problem. If a chromosome fails to pass 
the feasibility check, the gene that violates the con-
straints will select randomly another substrate node 
until the constraints are satisfied. 

6.2  Crossover and mutation 

In this study, we adopt the multi-point crossover 
method. In each iteration, the algorithm selects sev-
eral chromosomes to be the parent chromosomes 
according to the crossover probability Pc. The genes 
denoted by the crossover point in each pair of parent 
chromosomes are swapped to generate child chro-
mosomes. 

The mutation operation is applied to avoid a lo-
cal optimum; the goal is obtained by introducing a 
small percentage of randomness according to the 
mutation probability Pm. 

After crossover and mutation operations, a fea-
sibility check method similar to the feasibility check 
mentioned above is needed. 

6.3  Fitness evaluation and chromosome selection 

The fitness of a chromosome is an indicator of 
the quality of the virtual node mapping solution. We 
use the objective function in Eq. (8) as a fitness metric. 
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For each chromosome, we solve the link mapping 
problem using the link mapping algorithm mentioned 
in Section 5.3, and calculate the fitness of the entire 
mapping solution. 

The algorithm selects the chromosomes with the 
top N fitness values to be the parent population for the 
next iteration after calculating the fitness value of all 
the chromosomes in the population. The detailed 
process of FGR-GA is presented in Algorithm 3. 
 
Algorithm 3    FGR-GA algorithm 

1   Set iteration number i←0; 
2   Generate the initial population and do feasibility 

checking to obtain Groupinit; 
3   Do link mapping and evaluate the fitness of each 

chromosome in the population and record the  
solution with the best fitness value Sbest; 

4   Select parent chromosomes according to the fitness 
metric, conduct crossover and mutation operation  
and check feasibility; 

5   while i<I do 
6   Map virtual links and evaluate the fitness value of 

each chromosome in the population, and record  
the solution with the best fitness value bestS′ ; 

7        if bestS′  has a higher fitness value than Sbest 

8            Sbest← bestS′ ; 
9        end if 
10      i++; 
11  end while 
12  return Sbest; 

 
In Algorithm 3, the inputs are FGR topology 

Gr(Vr, Er), substrate network Gs(Vs, Es), population 
size M, maximum iteration count I, crossover proba-
bility Pc, and mutation probability Pm. The output is 
the FG embedding solution. 

 
 

7  Performance evaluation 
 

In this section, we describe a series of simula-
tions used to evaluate the performance of FGR-GA 
and RRC-FGE. The experimental results show that, 
compared with the existing algorithms, the two algo-
rithms proposed in this study increase the acceptance 
ratio and decrease the cost of mapping each for-
warding graph request. We also compared the ac-
ceptance ratio of FGR-GA under different crossover 
and mutation probabilities to find the most appropri-
ate system parameter. 

7.1  Simulation settings 

7.1.1  Topology generation 

We used the GT-ITM tool (Wang et al., 2014) to 
generate a substrate network with 100 nodes and 2000 
FGRs. The GT-ITM tool has often been used in prac-
tical network topology generation. The substrate 
nodes were connected randomly with a probability of 
0.5; the values of CPU and bandwidth resource were 
uniformly distributed between 50 and 100. The 
number of virtual nodes in each virtual network was 
uniformly distributed from 2 to 10, and the values of 
the CPU and bandwidth constraints followed a uni-
form distribution from 0 to 30. In our simulation, each 
virtual node had a network function type randomly 
chosen from a total number of 10 network function 
types; we set the performance interference probability 
of any two network function types as 0.1. The FG 
requests arrived according to a Poisson process with 
20 requests per 100 time units on average. Each re-
quest had an exponentially distributed lifetime with 
1000 time units on average. 

7.1.2  Parameter setup 

To calculate the long-term average revenue, we 
set wc and wb to 3 and 4, respectively. The baseline 
energy consumption of the server Pb was set to 2, and 
the energy consumption of each unit of CPU resource 
Pa was 1. In RRC-FGE, ranking weight σ was set to 
0.5, and the available CPU weight d in the resource 
factor was set to 0.7. In FGR-GA, the population size 
was set to 40 and the iteration number to 50. When 
comparing FGR-GA with other embedding algo-
rithms, parameters Pc and Pm were set to 0.8 and 0.1, 
respectively. In the second step of our experiment, Pc 
was set to 0.5, 0.7, 0.8, and 0.9 with fixed Pm (0.1), 
and Pm was set to 0.1, 0.2, 0.3, and 0.4 with fixed Pc to 
compare the acceptance ratio under different values of 
Pc and Pm, respectively. 

7.1.3  Comparison setup 

We implemented the proposed algorithms in 
C++ and compared our algorithms with two previous 
algorithms. The notations that we used to refer to the 
different algorithms are shown in Table 2. The two 
baseline algorithms were slightly modified to be able 
to satisfy the performance interference constraint. We 
used the performance metrics presented in Section 3 
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to evaluate the performance of these algorithms. All 
these algorithms were executed on a computer 
equipped with an Intel® CoreTM i7 CPU processor 
running at 2.67 GHz with two cores, and a RAM of  
2 GB. 

 
Table 2  Summary of the compared algorithms 

Notation of the 
algorithm Algorithm description 

BL-SP (Razzaq 
and Siraj 
Rathore, 2010) 

Baseline algorithm with greedy node 
mapping and shortest path link 
mapping 

RW-MM-SP 
(Cheng et al., 
2011) 

Use a Markov random walk model to 
rank nodes in the node-mapping 
stage and the shortest path in the 
link-mapping stage 

RRC-FGE Our proposed heuristic algorithm 
using the regional resource clus-
tering metric in the node-mapping 
stage and the shortest path in the 
link-mapping stage 

FGR-GA Our proposed genetic algorithm 
based embedding algorithm 

 

7.2  Evaluation results 

1. Our proposed algorithms outperformed base-
line algorithms based on the acceptance ratio and 
average revenue. 

Fig. 4 shows that our algorithms achieved a 
higher acceptance ratio than baseline algorithms in 
the simulation. This is because our algorithms make 
better use of topology information, and hence reduce 
the length of substrate paths that carry virtual links. 
Also, our algorithms allow multiple virtual nodes 
within the same request to co-locate on the same 
substrate node as long as they do not have perfor-
mance interference. This also reduces bandwidth 
resource usage in the substrate network. Fig. 5 shows 
that our proposed algorithms also produced higher 
average revenue. 
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Fig. 4  Acceptance ratio of the compared algorithms 
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Fig. 5  Average revenue of the compared algorithms 
 
Fig. 4 shows that the heuristic algorithm RRC- 

FGE achieved a better acceptance ratio with larger σ. 
The reason is that the heuristic algorithm focuses 
more on the topology information and makes better 
use of substrate resources with a larger σ. By using a 
regional resource clustering metric, RRC-FGE tends 
to map virtual nodes to the substrate nodes within a 
small district and hence decreases bandwidth usage 
for mapping virtual links.  

2. The proposed algorithms led to a lower em-
bedding cost and a higher R/C ratio. 

As our proposed algorithms tend to map virtual 
nodes to smaller districts in substrate networks, they 
reduce bandwidth resource usage by mapping virtual 
links to shorter substrate paths and decrease deploy-
ment costs. Our algorithms also take into account the 
operation cost of substrate nodes and avoid turning on 
new substrate nodes from the ‘off’ state if there are 
available ‘on’ state substrate nodes, thereby decreas-
ing operation costs. Our algorithms led to a lower 
embedding cost and a higher R/C ratio (Figs. 6 and 7). 

3. The acceptance ratio of the genetic algorithm 
based embedding algorithm FGR-GA was affected by 
system parameters Pc and Pm. 

In Figs. 8 and 9, we present the acceptance ratio 
of our genetic algorithm based embedding algorithm 
FGR-GA with different crossover and mutation 
probabilities, respectively. The acceptance ratio  
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Fig. 6  Average cost of the compared embedding algorithms 
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Fig. 7  Average revenue cost ratio of the compared em-
bedding algorithms 

 
increased as the iteration number increased, but when 
the iteration number exceeded 60, the acceptance 
ratio tended to be stable. The acceptance ratio of 
FGR-GA was affected by crossover probability Pc 
and mutation probability Pm. The crossover probabil-
ity indicates the percentage of the selected chromo-
somes whose crossover points are interchanged to 
generate child chromosomes. A higher crossover 
probability leads to more child chromosomes which 
differ from their parents. By introducing this param-
eter, the algorithm tries to avoid local optimum solu-
tions. However, if the crossover probability is too 
high, child chromosomes may lose the good perfor-
mance of their parents. The algorithm with a crosso-
ver probability of 0.1 had the highest acceptance ratio, 
and the acceptance ratio decreased as the crossover 
probability increased. Similar to the crossover prob-
ability, the mutation probability offers another way to 
avoid local optimum solutions. This parameter indi-
cates the percentage of the child chromosomes whose 
genes are changed by accident. Again, this parameter 
should be chosen carefully. According to Fig. 9, the 
acceptance ratio increased to its maximum as the 
mutation probability increased to 0.8, and then de-
creased as the mutation probability increased further. 
In this case, finding proper system parameters is of 
great importance.  

4. RRC-FGE needs a lower average execution 
time than FGR-GA. 

We compared the average execution time of four 
algorithms. Although FGR-GA achieved a better 
average acceptance ratio, it had the highest average 
execution time compared to the other algorithms  
(Fig. 10). The reason is that genetics based algorithms 
generate more chromosomes and select qualified ones. 
Crossover and mutation operations also need some 

time. BL-SP had the lowest average execution time, 
followed by RRC-FGE. 
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Fig. 8  Acceptance ratios of FGR-GA with different Pc and 
iteration numbers 
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Fig. 9  Acceptance ratios of FGR-GA with different Pm and 
iteration numbers 
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Fig. 10  Average execution time comparison of 2000 for-
warding graph regions 
 
 
8  Conclusions 
 

The FGE problem is a critical problem in net-
work function virtualization. In this study, we study 
this problem to increase service provider’s revenue. 
First, we formulate the FGE problem as a BIP prob-
lem and take network resource constraints into con-
sideration. To reduce the difficulty of solving 
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NP-hard FGE problem, a regional resource clustering 
metrics-based topology-aware heuristic embedding 
algorithm is proposed. To further increase the ac-
ceptance ratio and revenue of the service provider, we 
also propose a genetic algorithm based heuristic em-
bedding algorithm. Simulation results show that our 
algorithms significantly improve the acceptance ratio 
and average revenue, and reduce the average cost. 
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