
Hu et al. / Front Inform Technol Electron Eng 2017 18(11):1854-1866 1854

A forwarding graph embedding algorithm exploiting
regional topology information*

Hong-chao HU†‡, Fan ZHANG, Yu-xing MAO, Zhen-peng WANG

(National Digital Switching System Engineering & Technological R&D Center, Zhengzhou 450002, China)
†E-mail: huhongchao@gmail.com

Received July 8, 2016; Revision accepted Nov. 10, 2016; Crosschecked Nov. 24, 2017

Abstract: Network function virtualization (NFV) is a newly proposed technique designed to construct and manage network
functions dynamically and efficiently. Allocating physical resources to the virtual network function forwarding graph is a critical
issue in NFV. We formulate the forwarding graph embedding (FGE) problem as a binary integer programming problem, which
aims to increase the revenue and decrease the cost to a service provider (SP) while considering limited network resources and the
requirements of virtual functions. We then design a novel regional resource clustering metric to quantify the embedding potential
of each substrate node and propose a topology-aware FGE algorithm called ‘regional resource clustering FGE’ (RRC-FGE). After
implementing our algorithms in C++, simulation results showed that the total revenue was increased by more than 50 units and the
acceptance ratio by more than 15%, and the cost of the service provider was decreased by more than 60 units.

Key words: Network function virtualization; Virtual network function; Forwarding graph embedding
https://doi.org/10.1631/FITEE.1601404 CLC number: TP393

1 Introduction

Most current network services are defined by
statically combining a large number of network
functions (NFs) such as network address translators
(NATs), load balancers, firewalls, and intrusion de-
tection systems (IDSs). Traditionally, these functions
are provided by dedicated hardware platforms, which
are expensive and difficult to maintain and upgrade
(Mehraghdam et al., 2014).

Network function virtualization (NFV) (ETSI
NFVISG, 2013) is a rising idea that offers more
flexibility in network service delivery by imple-
menting NFs as virtual network function (VNF). Ex-
ploiting virtualization technologies, service providers
(SPs) respond to network service requests from cus-
tomers by developing network services at an abstract

level using a VNF forwarding graph (FG) and then
deploy the developed FGs within their datacenters.
Fig. 1 shows two VNF FGs which define the sequence
of VNFs that packets traverse and the logical con-
nections between VNFs to fulfill corresponding
network services. Network services are provided on
demand as a service and are composed of one or
multiple VNFs running on the top of virtual machines
that are located on standard servers (Xia et al., 2014).
Once a traffic flow arrives at an SP’s datacenter, it is
steered through a number of VNFs in a specific order
based on the SP’s provisioning policy and service
level agreement (SLA) (Koh et al., 2007).

How to map a VNF FG onto a substrate network
in an SP’s datacenter efficiently is called the for-
warding graph embedding (FGE) problem. FGE is a
critical issue that affects both the performance of the
network service and the resource utilization of the
substrate network. Specifically, each VNF is mapped
to one of the substrate nodes (servers), and the logical
connection between two VNFs is mapped to a sub-
strate path that connects the corresponding end nodes.

Frontiers of Information Technology & Electronic Engineering
www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com
ISSN 2095-9184 (print); ISSN 2095-9230 (online)
E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National Natural Science Foundation of
China (Nos. 61309020 and 61521003)

 ORCID: Hong-chao HU, http://orcid.org/0000-0002-9770-6610
© Zhejiang University and Springer-Verlag GmbH Germany 2017

Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1601404&domain=pdf

Hu et al. / Front Inform Technol Electron Eng 2017 18(11):1854-1866 1855

Network service requests arrive at different time in-
stances and demand to set up VNF FGs with different
VNFs and lifetimes.

Fig. 1 Mapping of forwarding graphs to a substrate net-
work for network service requests

The FGE problem is similar to the virtual net-

work embedding (VNE) problem, which aims to map
virtual nodes and virtual links onto a substrate net-
work. As a result, we know that the FGE problem is
also NP-hard (Mehraghdam et al., 2014). In the rest of
this paper, virtual machines on which VNFs are run-
ning are referred to as virtual nodes, and the logical
connections between them as virtual links. However,
directly applying VNE solutions to the FGE problem
is not practical. Firstly, current virtualization tech-
niques do not have enough performance isolation
between virtual machines on which VNFs are mapped.
Hence, the behavior of one VNF can adversely affect
the performance of another due to contention for
shared physical resources (Pu et al., 2010; Mei et al.,
2013). Bellavista et al. (2015) found that in industry
-relevant cloud platforms, there may be computing
overhead due to the intense communication load of
virtual machines (VMs) co-located on the same
physical host, and they proposed a VM placement
algorithm to take this factor into consideration. Shea
et al. (2014) found that there is degradation and vari-
ation in VM communications in lightly used cloud
networks. They showed that such variation and deg-
radation are due mainly to the dual-role of the CPU in
both computation and network communication
among VMs in the server. As a result, we conclude

that VNFs with performance interference should be
mapped to different substrate nodes. This is not the
case in virtual network resource allocation areas.
Secondly, virtual network (VN) embedding algo-
rithms usually avoid mapping multiple virtual nodes
from the same VN request onto one substrate node,
which is different from the FGE problem. As a result,
the solution space in FGE problems is larger than in
VNE problems. Previous VNE algorithms that also
have some shortcomings in balancing performance
and computational complexity; hence, an efficient
FGE algorithm is needed.

This study presents an efficient topology-aware
solution to the FGE problem and aims to increase an
SP’s revenue while satisfying network service re-
quirements. The main contributions of this paper are
as follows: (1) We formulate the FGE problem as a
binary integer programming (BIP) problem, which
takes resource capacity of the substrate network and
resource constraints of FGs into consideration and
aims to increase long-term revenue and decrease the
cost of the SP simultaneously. (2) We design a re-
gional resource clustering metric to evaluate the em-
bedding potential of substrate nodes and propose an
efficient topology-aware heuristic FG embedding
algorithm based on that metric. The algorithm takes
both regional topology information and the energy
consumption of the substrate network into considera-
tion. (3) We propose a genetic algorithm based heu-
ristic algorithm to maximize the long-term economic
benefits to the SP.

2 Related work

NFV is a newly proposed concept that is still
under investigation. Standardization of the problem
definition and applications is not yet completed. To
the best of our knowledge, very few studies have
focused on our area of research. Xia et al. (2014)
formulated the VNF placement problem as a binary
integer programming problem. They regarded CPU
resource as a constraint and therefore aimed to min-
imize the number of substrate nodes used to host the
required VNFs. However, they did not consider the
bandwidth constraints of the substrate links, which
are also an important factor. Mehraghdam et al. (2014)
described the VNF placement problem as a mixed

Hu et al. / Front Inform Technol Electron Eng 2017 18(11):1854-1866 1856

integer quadratically constrained program. They
considered the resource capacity and resource re-
quirements of both the substrate network and VNFs.
However, they did not propose any heuristic algo-
rithm, since solving mixed-integer programming
(MIP) problems is known to be computationally in-
tractable. Thus, using the above methods to solve the
VNF placement problem is impracticable. Bellavista
et al. (2015) found that in industry-relevant cloud
platforms, there may be a computing overhead due to
the intense communication load of VMs co-located
on the same physical host. They proposed a VM
placement algorithm that not only satisfies the pre-
dicted communication demands, but also takes into
account the computing overhead due to resource
contention of the co-located VMs.

NFV provides an on-demand and per-flow net-
work service for customers’ network traffic, which
significantly improves compatibility and flexibility,
and introduces the FGE problem. Some previous
studies have focused on the virtual network embed-
ding problem, which is similar to the FGE problem in
some respects. In simple terms, in those studies the
problem space was restricted by assuming that virtual
network requests are known in advance (Fan and
Ammar, 2006; Lu and Turner, 2006) and focused on
the problem either in the absence of node or link
constraints or presuming infinite resource capacity of
the substrate networks (Fan and Ammar, 2006; Lu
and Turner, 2006; Razzaq and Siraj Rathore, 2010).

Dealing with the full problem space, in some
studies node mapping and link mapping were solved
separately to reduce the solution space (Lu and Turner,
2006; Yu et al., 2008; Lischka and Karl, 2009; Su et
al., 2012). However, two-stage algorithms can result
in poor performance because of their ignorance of the
relationship between node mapping and link mapping.
To overcome the shortcomings introduced by
two-stage embedding algorithms, Chowdhury et al.
(2009) and Cheng et al. (2011) conducted node
mapping and link mapping at the same stage, thereby
producing one-stage embedding algorithms. Alt-
hough they achieve better performance, these algo-
rithms also increase computational complexity.

In recent studies (Bhatia et al., 2008; Zhang et al.,
2012; Gong et al., 2014) topology-aware ranking
metrics have been presented to identify the bottleneck
nodes and links in substrate networks, and a set of

algorithms have been proposed based on those met-
rics. Although solving node mapping and link map-
ping separately, these algorithms consider link map-
ping constraints in the node mapping stage and
achieve a better tradeoff between performance and
computational complexity.

The existing VNE algorithms cannot be applied
directly to the FGE problem for the following reasons:
(1) Current virtualization techniques do not have
enough performance isolation between virtual ma-
chines, so different VNFs may have performance
interference. Hence, VNFs contending for the same
type of physical resources cannot be co-located on
one substrate node, which is not considered in VNE
algorithms. (2) In VNE problems, virtual nodes from
the same virtual network request cannot be mapped to
one substrate node. However, the FGE problem does
not have such a constraint and has a larger solution
space. As a result, the FGE problem needs more effi-
cient mapping algorithms.

3 Key concepts and preliminaries

The FGE problem is similar to the virtual net-

work embedding problem in the following three re-
spects: (1) In the FGE problem, the requested VNFs
should be mapped onto physical/substrate nodes, and
logical connections between VNFs should be mapped
to physical/substrate paths, where nodes/links re-
source requirements should be satisfied. In the virtual
network embedding problem, virtual nodes and vir-
tual links should also be mapped onto physical servers
and links, ensuring certain constraints are met. (2)
The objectives of the FGE problem and virtual net-
work embedding problem are to increase the
long-term revenue of SPs, and reduce the cost of
embedding each forwarding graph and virtual net-
work. (3) Both of these problems are NP-hard.

3.1 Substrate network

We consider a substrate network consisting of
multiple commodity servers connected by a network.
Each commodity server is able to perform computing
tasks and forward packets. In the rest of this paper, we
use substrate node (SN) and substrate link (SL) to
represent the commodity server and physical links
between two servers, respectively.

Hu et al. / Front Inform Technol Electron Eng 2017 18(11):1854-1866 1857

Definition 1 (Substrate network) Similar to previ-
ous work (Chowdhury et al., 2009; Lischka and Karl,
2009), an SN is modeled as a weighted undirected
graph denoted by Gs=(Vs, Es), where Vs and Es refer to
the sets of substrate nodes and links, respectively.
Each substrate node vs∈Vs is associated with a CPU
capacity value cs(vs). Each substrate link es is associ-
ated with a bandwidth capacity value bs(es) and a link
delay value ds(es). Fig. 2c shows an example of an SN.
The numbers over the nodes and links indicate the
available CPU and bandwidth resources, respectively.

n1 n4

n3

n2
13

7 5

15

n7

n6

n5
7 7

14

15

25

10

17 24 12

A B

DC

H

G
F

E

25

30

25
20

22
19

20
15

16
18

7
n1

40

25
30

30

40

30

20

10
7 7

n3

n2 n4

n7

n6

n5
(a)

(b) (c)

22 13
15

Fig. 2 Resource allocation of forwarding graphs: (a) for-
warding graph 1; (b) forwarding graph 2; (c) substrate
network

3.2 Virtual network function forwarding

A VNF FG defines the sequence of VNFs pack-
eting traverse and the logical connection between
VNFs. Each VNF runs on one VM. In the rest of this
paper, we refer to a VM as a VN and the connections
between VMs as virtual links (VLs).
Definition 2 (Virtual network function forwarding
graph) A VNF FG Fr=(Gr, Ta, Td) is a three tuple,
similar to that described by Yu et al. (2008). Gr=(Vr,
Er) is a weighted undirected graph indicating the to-
pology of the FG, where Vr and Er refer to the set of
virtual nodes (VNs) and virtual links (VLs), respec-
tively. Suppose there are n types of VNFs and each
virtual node vr∈Vr has a VNF type in those n types.
Each VNF type i has an interference vector ri=(r(1),
r(2), …, r(n)), where ri(j)∈{0, 1} has value 1 if the
VNF is with type i and the VNF with type j can be
collocated on the same SN; otherwise, its value is set
to 0. A virtual node is also associated with a CPU
constraint cr(vr). Each virtual link er∈Er is associated
with a bandwidth constraint br(er) and a link delay
constraint dr(er). Ta indicates the arriving time and Td
the duration of the FG. Figs. 2a and 2b present two
FGs with node and link requirements.

The notations used in this paper (Table 1) is
similar to those used by Gong et al. (2014). The
subscript indicates the substrate network/forwarding
graph.

Table 1 Notations of the forwarding graph model

Notation Meaning
Gs Topology of the substrate network
Vs Set of substrate nodes
Es Set of substrate links
cs(vs) CPU capacity of substrate node vs
bs(vs) Bandwidth capacity of substrate link es
ds(es) Link delay of substrate link es
RCs Set of residual CPU resources
RBs Set of residual bandwidth resources
Ps Set of loop-free substrate paths
Fr Virtual network function forwarding graph
Gr Topology of the forwarding graph
Vr Set of virtual nodes
Er Set of virtual links
cr(vr) CPU constraints of virtual node vr
br(er) Bandwidth of virtual link er
dr(er) Delay constraint of virtual link er
ri Interference vector of VNF type i

3.3 Forwarding graph embedding

When an FG is developed, the SP has to decide
whether to accept it. If the FG is accepted, the SP then
allocates a proper amount of resources to satisfy the
FG’s constraints. Once the FG expires, the resources
assigned to that FG are released.
Definition 3 (Forwarding graph embedding) Simi-
lar to previous work (Chowdhury et al., 2009;
Lischka and Karl, 2009), a forwarding graph embed-
ding of an FG to the substrate network is defined as a
mapping M from Gr to a subset of Gs, M: Gr→Gs′ (Vs′,
Es′), where Vs′⊆Vs, Es′⊆Es. The embedding process
can be decomposed into two major components: node
embedding Mn and link embedding Ml.

Node embedding Mn maps a virtual node to a
substrate node with enough available computing re-
sources to meet its demands. Multiple virtual nodes of
an FG can be co-located on the same substrate node as
long as they do not have performance interference.
Mathematically, the node mapping can be described
as a many-to-one mapping, i.e.,

n r s:M V V ′→ , subjected to:

Hu et al. / Front Inform Technol Electron Eng 2017 18(11):1854-1866 1858

r rr r r ,, , if 0n mn m V r∀ ∈ =

n r s

n r n r

n r r r

() ,
() (),

RC (()) ().s

M n V
M n M m

M n c n

∈
 ≠
 ≥

The link embedding Ml maps a virtual link to

a loop-free substrate path in a substrate network con-
sisting of at least one substrate link. Similar to node
embedding, the link embedding can be described as

l r s:M E P→ , subjected to:

r r r r()e m n E∀ = ∈

l r r s n r n r

s l r r r r

() ((), ()),
RB (()) (),
M m n P M m M n

M m n b e
∈

 ≥

where Ps is the set of loop-free paths between sub-
strate nodes hosting the end nodes of the virtual link.
Fig. 2c shows that FG1 and FG2 can be mapped onto
the substrate network. For FG1, we have

L 1 2 2 4

1 3 3 4

N 1 2 3 4

{ (,) (,), (,) (,),
(,) (,), (,) (,)}.

{ , , , },
M e n n A C e n n C D

e n n A B e n n B D

M n A n C n B n D
= → →

→ →

= → → → →

3.4 Objectives

As FG embedding is done by an SP, the main
objective of FG embedding is to increase revenue and
decrease the cost of embedding the forwarding graph.
A customer is willing to pay only for the resources
he/she requires. As a result, the revenue of embedding
an FG at time t can be defined as

r r r r

r d c r r b r rRvn(,) (() ()),
v V e E

F t T w c v w b e
∈ ∈

= +∑ ∑ (1)

where wc and wb are the unit prices of CPU and
bandwidth resources, respectively.

Since the SP maps FGs to the substrate network,
there is also a mapping cost, consisting of a deploy-
ment cost and an operation cost at time t, which can
be defined as follows:

r d r o rCos t(,) Cos t (,) Cos t (,),F t F t F t= + (2)

where Costd(Fr, t) refers to the deployment cost and
Costo(Fr, t) to the operation cost for mapping FG Fr at
time t. Similar to Chowdhury et al. (2009), the de-
ployment cost of successfully embedding an FG is
defined as being proportional to the sum of the total
resources assigned to that FG:

r r r r

d r d r r r r l rCos t (,) () () | () | ,
v V e E

F t T c v b e M e
∈ ∈

= +

∑ ∑

(3)

where |Ml(er)| is the length of the substrate path which
carries the virtual link er.

In this study, we consider the operation cost for
mapping the FG Fr to be the energy consumed by the
substrate nodes to host the virtual nodes of that FG,
and the energy consumed to run the substrate server.
For simplicity, we assume that the servers are ho-
mogeneous with regard to their energy consumption.
The operation cost is defined as

[] []r r

o r

b r r
d a r r

s n r s n r

Cos t (,)

()
() ,

() RC ()v V

F t

p c vT p c v
c M v M v∈

=

 ⋅ ⋅ + ⋅
−

∑
(4)

where pb is the baseline energy consumption in each
time unit of each substrate node if it is in the ‘on’ state,
and pa is the energy consumption of each unit of CPU
requirement. According to Eq. (4), if a substrate node
has no virtual nodes on it, it will contribute no energy
consumption to the operation cost.

From the above definitions, the revenue is fixed
if an FG is given. Therefore, the SP should try to
accept more FGs and allocate proper resources to
them, decreasing the cost of embedding each FG and
increasing profits.

As in Zhang et al. (2012), the long-term average
revenue is defined by

r
0

1lim Rvn(,).
T

T t
F t

T→∞
=
∑ (5)

The FG acceptance ratio of the substrate network

can be defined by

s
0 0

lim FG () FG(),
T T

T t t
t t

→∞
= =
∑ ∑ (6)

Hu et al. / Front Inform Technol Electron Eng 2017 18(11):1854-1866 1859

where FGs is the number of FGs successfully ac-
cepted by the substrate network at time t, and FG is
the total number of arrival FGs at time t.

The long-term revenue to cost ratio is also con-
sidered in measuring the efficiency of resource
utilization in the substrate network:

r r0 0
lim Rvn(,) Cos t(,).T T

t tT
F t F t

= =→∞∑ ∑ (7)

Higher FG acceptance and R/C ratios are pre-

ferred if the long-term average revenues of the FG
embedding solution are about the same.

4 Binary integer programming formulation
for forwarding graph embedding

In this section we formulate the forwarding

graph problem as a binary integer programming
problem (BIP), in which each virtual node must be
mapped to exactly one substrate node. Each substrate
node is able to host multiple virtual nodes from the
same FG if these virtual nodes do not have perfor-
mance interference. We consider a situation where
virtual links are unsplittable and therefore cannot be
embedded to multiple substrate paths. We present the
following BIP formulation.

FGE_ILP

1. Variables
{0,1}ij

uvf ∈ : A binary variable denoting whether
the substrate path hosting virtual link (i, j) passes
substrate link (u, v). If the substrate path passes
the substrate link, the variable is set to 1 and 0 oth-
erwise.

{0,1}i
ux ∈ : A binary variable, which has the

value 1 if virtual node i is mapped to substrate node u,
and 0 otherwise.

2. Objectives
Minimize

r s

s rs

b r

s s s

()
[() RC ()] RC ()

1 .
RB ()

uv ij

i V u V

ij
uv

l E l Euv

p c i
c u u u

f
l

δ

δ

∈ ∈

∈ ∈

⋅
− ⋅ +

+
+

∑∑

∑ ∑
 (8)

3. Constraints
Capacity constraints:

r

r s s r() RB (), , , , .
ij

ij
uv ij uv

l E
f b l l u v V i j V

∈

⋅ ≤ ∀ ∈ ∀ ∈∑ (9)

r

r s s r() RC (), , .i
u

i V
x c i u u V i V

∈

⋅ ≤ ∀ ∈ ∀ ∈∑ (10)

Flow-related constraints:

s s

s r, , , .
uk kv

ij ij i i
uk vk u v

l E l E
f f x x u V i j V

∈ ∈

− = − ∀ ∈ ∀ ∈∑ ∑

(11)

Link delay constraints:

s

s r s r() (), , , , .
uv

ij
uv uv ij

l E
d l f d l u v V i j V

∈

⋅ ≤ ∀ ∈ ∀ ∈∑ (12)

Constraints to ensure that a virtual node is

mapped to exactly one substrate node:

s

r s1, , .i
u

u V
x i V u V

∈

= ∀ ∈ ∀ ∈∑ (13)

Performance interference constraints:

s r, , , .i j
u u ijx x r u V i j V⋅ ≤ ∀ ∈ ∀ ∈ (14)

4. Explanations of the formulation
The objective function of the BIP in Eq. (8) tries

not only to minimize the cost of embedding the FG
but also to balance the load. In the first part of the
formulation, the virtual node operation cost is divided
by the product of the residual CPU capacity and al-
located CPU capacity of the substrate node to which
the virtual node is mapped. This ensures that substrate
nodes with more residual CPU capacity and to which
more CPU capacity has already been allocated are
preferred. Similarly, the second part of the formula-
tion ensures that substrate links with more residual
bandwidth are preferred. We ignore the deployment
cost of the virtual nodes in the formulation as it is
fixed once the virtual nodes are given. δ is a small
positive constant to avoid being divided by zero in
computing the objective function.

Constraints in Eqs. (9) and (10) ensure that the
bandwidth and CPU resources allocated from the
substrate network remain within their limitations.

Constraint in Eq. (11) refers to the flow

Hu et al. / Front Inform Technol Electron Eng 2017 18(11):1854-1866 1860

conservation conditions.
Constraint in Eq. (12) ensures that the total delay

of the path to which the virtual link is mapped does
not violate its constraint.

Constraint in Eq. (13) denotes that a virtual node
is mapped to exactly one substrate node and con-
straint in Eq. (14) ensures that a virtual node does not
affect the performance of other virtual nodes mapped
to the same substrate node.

5 Topology-aware heuristic forwarding graph
embedding algorithm based on a regional
resource clustering metric

As solving BIP is NP-hard (Chen et al., 2012), it
is not practical to solve this problem when the prob-
lem is large. Hence, we propose a topology-aware
heuristic FG embedding algorithm called RRC-FGE
(regional resource clustering FGE), which aims to
decrease deployment and operation costs by taking
both the regional topology information and the degree
of resource aggregation into consideration. First, to
evaluate the embedding potential of substrate nodes,
we design a regional resource clustering metric R,
which quantifies the embedding potential of substrate
nodes. Second, to decrease further the embedding
cost, we propose a comprehensive measurement NM
to make a balance between the regional resource
clustering metric and the operation cost of substrate
nodes. We then conduct a greedy node mapping based
on NM and a shortest-path based link mapping.

5.1 Regional resource clustering metric

Motivations: Some earlier studies considered
link mapping constraints in the node mapping stage
by proposing metrics to measure topology infor-
mation and the global resource capacity of the sub-
strate nodes (Bhatia et al., 2008; Zhang et al., 2012;
Gong et al., 2014). However, these metrics have the
following disadvantages:

1. The adjacency limitation problem. These
proposed global resource metrics quantify the em-
bedding potential value of the substrate node by its
available resources together with embedding potential
values transferred by its incident links from other
nodes. For example, as shown in Fig. 3, the nodes
filled in grey in Figs. 3a and 3b have the same value in

the above global resource metrics. However, the
grey-filled node on the right has more available re-
sources around it than that on the left, as there are
links between the adjacent nodes of the grey-filled
node in the figure on the right.

1010

10

10

10

10

10

10

10 1010

10

10

10

10

10

10

10

10

10 10

10

(a) (b)

Fig. 3 An example of disadvantages of global resource
metrics: (a) a network where the white nodes are not ad-
jacent to each other; (b) a network where the white nodes
are adjacent to each other

2. The regional pertinence absence problem. The
proposed metrics in the above studies measured the
embedding potential of a substrate node by consid-
ering resource information from all the other substrate
nodes. In practice, virtual networks often have a much
smaller size than substrate networks and should be
compactly mapped to a small part of the substrate
network. However, the metrics above lack the ability
to measure the embedding potential of a node in
relation to the topology information in its regional
area.

Definition: To overcome the problems of the
above mentioned metrics, we propose a regional re-
source clustering metric (RRC) to quantify the em-
bedding potential of the nodes in substrate networks.
This metric was inspired by semi-local centrality
(Fagiolo, 2007) and the clustering coefficient
(Eppstein, 1998) of a node. Specifically, given a
network topology G(V, E), the CPU capacity c(u),
u∈V, and the bandwidth resource b(u, v), (u, v)∈E,
the RRC value R(u) of node u are formulated as

() Rf () ln[Cf ()],R u u u= ⋅ (15)

where Rf(u) is a resource factor and ln[Cf(u)] is a
clustering factor of node u. We use ln[Cf(u)] instead
of Cf(u) for two reasons: (1) The value of the clus-
tering factor is reduced. Thus, the resource factor
contributes more to R(u). (2) Using the logarithm can

Hu et al. / Front Inform Technol Electron Eng 2017 18(11):1854-1866 1861

still guarantee a right result because a larger Cf(u)
leads to a larger ln[Cf(u)].

Nei()

(,)Rf () () (1) (),
()v u

b u vu d c u d Q v
b v∈

= ⋅ + − ⋅∑ (16)

Nei()

(,)() () (1) (),
()w v

b v wQ v d c v d c w
b w∈

= ⋅ + − ⋅∑ (17)

()() ,
()

v V

c uc u
c v

∈

=
∑

 (18)

Nei
() (,),

v
b u b u v

∈

= ∑ (19)

where Nei(u) is the node set containing all the adja-
cent nodes of u, and d∈(0, 1) is a constant number.

[1 3] 3
| || |[]

Cf () ,
(1)

u u

u u

W
u

d d
=

−
 (20)

[1 3] 3{ }, , ,ijW w i j V= ∀ ∈ (21)

(,) , (,) ,
max()ij

b i jw u v E
bw

= ∈ (22)

where [1 3] 3

| || |[]u uW is the uth element of the main di-

agonal of [1 3] 3[]W [1 3] [1 3] [1 3]W W W= , du is the degree

of node u, [1 3]W is the matrix obtained from W by
taking the 3rd root of each entry, and max(bw) is the
largest bandwidth in the network.

Physical meaning: Eqs. (15)–(19) indicate that
the resource factor of any node u V∈ is a weighted
summation of the resource of its two-tier neighbors;
i.e., other nodes in that region also contribute to the
resource factor of node u. Eqs. (20)–(22) indicate that
the clustering coefficient factor of any node u V∈
measures the bandwidth resources between its
neighbors. The RRC metric combines the above two
factors to overcome the drawbacks of previous
metrics.

Calculation: The complexity of calculating the
RRC is 2(| | ())O V D V⋅ , where |V| and D(V) are the
number and average degree of the nodes in the net-
work, respectively. We propose the algorithm for
calculating the regional resource clustering metric as
Algorithm 1.

Algorithm 1 Calculation of the regional resource
clustering metric vector

1 0R ← ;
2 Rf ()i d c i= ⋅ ;
3 for each j∈neighbour(i) do
4 ()jq d c j= ⋅ ;
5 for each k∈neighbour(j) do
6 if k==1
7 continue;
8 end if

9 (,)(1) ()
()j

b j kq d c k
b k

+ = − ;

10 end for

11 (,)Rf (1)
()i j

b i jd q
b j

+ = − ;

12 Rf ln Cf ()i iR i= ⋅ ;
13 end for

In Algorithm 1, the input is network topology

G(V, E) and output is an RRC vector R.
However, as illustrated in Eq. (4), the operation

cost for a substrate node to perform a unit computing
task is inversely proportional to its allocated re-
sources. Hence, to decrease the operation cost we
should map virtual nodes to substrate nodes which
have more allocated resources.

Let σ∈(0, 1) be a constant number. To trade off
between these two potentially conflicting goals, we
measure the substrate nodes comprehensively as

NM() () (1)[() RC()].u R u c u rσ σ= ⋅ + − − (23)

5.2 Greedy node mapping

We adopt a greedy mapping method in the node
mapping stage. After calculating the NM value of the
substrate node, we sort virtual nodes in ascending
order according to the number of virtual nodes with
which each has performance interference. Then, we
sort the virtual nodes that have the same interference
number in descending order according to their CPU
demands. For each virtual node, the algorithm selects
a set of substrate nodes with enough available CPU
resources to meet the virtual node’s CPU demand and
does not host any virtual node that has performance
interference with it. The algorithm maps the virtual
node to the substrate node with the highest NM value
in that set. If there is no qualified substrate node in the
set, the FG is blocked.

Hu et al. / Front Inform Technol Electron Eng 2017 18(11):1854-1866 1862

Algorithm 2 shows the details of the greedy node
mapping algorithm. The time complexity of the al-
gorithm is O(|Vs||Vr|). The inputs are FG topology
Gr(Vr, Er), substrate network Gs(Vs, Es) , and the RRC
vector rs for substrate network. The output is the node
mapping Mn.

Algorithm 2 Greedy node mapping

1 Sort virtual nodes according to their interference
number and CPU demand to obtain sort

rV ;

2 for each sort
rv V∈ do

3 Φv←∅;
4 for each u∈Vs do
5 if qualified_host(u, v)=true
6 Φv←Φv∪u;
7 end if
8 end for
9 if Φv=∅
10 block Gr;
11 else
12 s() arg max { ()}

vzNM v r zΦ∈= ;
13 end if
14 end for

Function qualified_host(u, v) checks whether

substrate node u is qualified to the host virtual node v.
If RCs≥cs(v) and u does not host any virtual node that
has performance interference with v, the function
returns true; otherwise, it returns false.

5.3 Link mapping

In the link mapping stage, our algorithm maps
virtual links to substrate paths. For each virtual link,
the algorithm first cuts off all the substrate links that
violate its bandwidth constraint. Since virtual links
are unsplittable, the algorithm finds the shortest path
by searching the k-shortest paths (Wang et al., 2014)
on values of k, until a path is found to satisfy the delay
requirement of the virtual link.

6 Genetic algorithm based forwarding graph
embedding algorithm

In this section, we propose a genetic algorithm
based heuristic (Goldberg, 2009), FGR-GA, to solve
the NP-hard forwarding graph embedding problem.
FGR-GA works as follows. Once the forwarding
graph request arrives, forwarding graph regional-
genetic algorithm (FGR-GA) randomly generates an

initial population of feasible virtual node embedding
solutions (i.e., chromosomes). During each iteration,
the population evolves through a set of chromosome
operators: selection, crossover, and mutation. After a
given number of iterations, an optimal solution is
selected to satisfy the request’s demands.

6.1 Chromosome coding and initial population

In this study, we encode a virtual node embed-
ding solution as a chromosome. The number of genes
in the chromosome equals that of virtual nodes in the
FG, and the value of each gene denotes the substrate
node to which this virtual node is mapped. A chro-
mosome is expressed as follows:

1 2[, ,...,],lC g g g= (24)

where l=|Vr|, and gk∈{0, 1, ..., |Vs|−1} (k=1, 2, …, l).
FGR-GA generates randomly a large initial

population of chromosomes. However, some of these
chromosomes may not be feasible due to performance
interference and substrate node capacity limitations.
We propose a feasibility check method to make sure
that all the chromosomes are feasible solutions to the
node mapping problem. If a chromosome fails to pass
the feasibility check, the gene that violates the con-
straints will select randomly another substrate node
until the constraints are satisfied.

6.2 Crossover and mutation

In this study, we adopt the multi-point crossover
method. In each iteration, the algorithm selects sev-
eral chromosomes to be the parent chromosomes
according to the crossover probability Pc. The genes
denoted by the crossover point in each pair of parent
chromosomes are swapped to generate child chro-
mosomes.

The mutation operation is applied to avoid a lo-
cal optimum; the goal is obtained by introducing a
small percentage of randomness according to the
mutation probability Pm.

After crossover and mutation operations, a fea-
sibility check method similar to the feasibility check
mentioned above is needed.

6.3 Fitness evaluation and chromosome selection

The fitness of a chromosome is an indicator of
the quality of the virtual node mapping solution. We
use the objective function in Eq. (8) as a fitness metric.

Hu et al. / Front Inform Technol Electron Eng 2017 18(11):1854-1866 1863

For each chromosome, we solve the link mapping
problem using the link mapping algorithm mentioned
in Section 5.3, and calculate the fitness of the entire
mapping solution.

The algorithm selects the chromosomes with the
top N fitness values to be the parent population for the
next iteration after calculating the fitness value of all
the chromosomes in the population. The detailed
process of FGR-GA is presented in Algorithm 3.

Algorithm 3 FGR-GA algorithm

1 Set iteration number i←0;
2 Generate the initial population and do feasibility

checking to obtain Groupinit;
3 Do link mapping and evaluate the fitness of each

chromosome in the population and record the
solution with the best fitness value Sbest;

4 Select parent chromosomes according to the fitness
metric, conduct crossover and mutation operation
and check feasibility;

5 while i<I do
6 Map virtual links and evaluate the fitness value of

each chromosome in the population, and record
the solution with the best fitness value bestS′ ;

7 if bestS′ has a higher fitness value than Sbest

8 Sbest← bestS′ ;
9 end if
10 i++;
11 end while
12 return Sbest;

In Algorithm 3, the inputs are FGR topology

Gr(Vr, Er), substrate network Gs(Vs, Es), population
size M, maximum iteration count I, crossover proba-
bility Pc, and mutation probability Pm. The output is
the FG embedding solution.

7 Performance evaluation

In this section, we describe a series of simula-
tions used to evaluate the performance of FGR-GA
and RRC-FGE. The experimental results show that,
compared with the existing algorithms, the two algo-
rithms proposed in this study increase the acceptance
ratio and decrease the cost of mapping each for-
warding graph request. We also compared the ac-
ceptance ratio of FGR-GA under different crossover
and mutation probabilities to find the most appropri-
ate system parameter.

7.1 Simulation settings

7.1.1 Topology generation

We used the GT-ITM tool (Wang et al., 2014) to
generate a substrate network with 100 nodes and 2000
FGRs. The GT-ITM tool has often been used in prac-
tical network topology generation. The substrate
nodes were connected randomly with a probability of
0.5; the values of CPU and bandwidth resource were
uniformly distributed between 50 and 100. The
number of virtual nodes in each virtual network was
uniformly distributed from 2 to 10, and the values of
the CPU and bandwidth constraints followed a uni-
form distribution from 0 to 30. In our simulation, each
virtual node had a network function type randomly
chosen from a total number of 10 network function
types; we set the performance interference probability
of any two network function types as 0.1. The FG
requests arrived according to a Poisson process with
20 requests per 100 time units on average. Each re-
quest had an exponentially distributed lifetime with
1000 time units on average.

7.1.2 Parameter setup

To calculate the long-term average revenue, we
set wc and wb to 3 and 4, respectively. The baseline
energy consumption of the server Pb was set to 2, and
the energy consumption of each unit of CPU resource
Pa was 1. In RRC-FGE, ranking weight σ was set to
0.5, and the available CPU weight d in the resource
factor was set to 0.7. In FGR-GA, the population size
was set to 40 and the iteration number to 50. When
comparing FGR-GA with other embedding algo-
rithms, parameters Pc and Pm were set to 0.8 and 0.1,
respectively. In the second step of our experiment, Pc
was set to 0.5, 0.7, 0.8, and 0.9 with fixed Pm (0.1),
and Pm was set to 0.1, 0.2, 0.3, and 0.4 with fixed Pc to
compare the acceptance ratio under different values of
Pc and Pm, respectively.

7.1.3 Comparison setup

We implemented the proposed algorithms in
C++ and compared our algorithms with two previous
algorithms. The notations that we used to refer to the
different algorithms are shown in Table 2. The two
baseline algorithms were slightly modified to be able
to satisfy the performance interference constraint. We
used the performance metrics presented in Section 3

Hu et al. / Front Inform Technol Electron Eng 2017 18(11):1854-1866 1864

to evaluate the performance of these algorithms. All
these algorithms were executed on a computer
equipped with an Intel® CoreTM i7 CPU processor
running at 2.67 GHz with two cores, and a RAM of
2 GB.

Table 2 Summary of the compared algorithms

Notation of the
algorithm Algorithm description

BL-SP (Razzaq
and Siraj
Rathore, 2010)

Baseline algorithm with greedy node
mapping and shortest path link
mapping

RW-MM-SP
(Cheng et al.,
2011)

Use a Markov random walk model to
rank nodes in the node-mapping
stage and the shortest path in the
link-mapping stage

RRC-FGE Our proposed heuristic algorithm
using the regional resource clus-
tering metric in the node-mapping
stage and the shortest path in the
link-mapping stage

FGR-GA Our proposed genetic algorithm
based embedding algorithm

7.2 Evaluation results

1. Our proposed algorithms outperformed base-
line algorithms based on the acceptance ratio and
average revenue.

Fig. 4 shows that our algorithms achieved a
higher acceptance ratio than baseline algorithms in
the simulation. This is because our algorithms make
better use of topology information, and hence reduce
the length of substrate paths that carry virtual links.
Also, our algorithms allow multiple virtual nodes
within the same request to co-locate on the same
substrate node as long as they do not have perfor-
mance interference. This also reduces bandwidth
resource usage in the substrate network. Fig. 5 shows
that our proposed algorithms also produced higher
average revenue.

Time
0 2000 4000 6000 8000

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

RW-MM-SP
RRC-FGE(σ=0.2)
BL-SP
RRC-FGE(σ=0.5)
RRC-FGE(σ=0.8)
FGR-GA

Fig. 4 Acceptance ratio of the compared algorithms

0 2000 4000 6000 8000
Time

600
650Av

er
ag

e
re

ne
nu

e

700
750

800

850
900
950

RW-MM-SP
RRC-FGE(σ=0.2)
BL-SP
RRC-FGE(σ=0.5)
RRC-FGE(σ=0.8)
FGR-GA

Fig. 5 Average revenue of the compared algorithms

Fig. 4 shows that the heuristic algorithm RRC-

FGE achieved a better acceptance ratio with larger σ.
The reason is that the heuristic algorithm focuses
more on the topology information and makes better
use of substrate resources with a larger σ. By using a
regional resource clustering metric, RRC-FGE tends
to map virtual nodes to the substrate nodes within a
small district and hence decreases bandwidth usage
for mapping virtual links.

2. The proposed algorithms led to a lower em-
bedding cost and a higher R/C ratio.

As our proposed algorithms tend to map virtual
nodes to smaller districts in substrate networks, they
reduce bandwidth resource usage by mapping virtual
links to shorter substrate paths and decrease deploy-
ment costs. Our algorithms also take into account the
operation cost of substrate nodes and avoid turning on
new substrate nodes from the ‘off’ state if there are
available ‘on’ state substrate nodes, thereby decreas-
ing operation costs. Our algorithms led to a lower
embedding cost and a higher R/C ratio (Figs. 6 and 7).

3. The acceptance ratio of the genetic algorithm
based embedding algorithm FGR-GA was affected by
system parameters Pc and Pm.

In Figs. 8 and 9, we present the acceptance ratio
of our genetic algorithm based embedding algorithm
FGR-GA with different crossover and mutation
probabilities, respectively. The acceptance ratio

Time
0 2000 4000 6000 8000220

240
260
280
300
320
340
360
380
400

Av
er

ag
e

co
st

RW-MM-SP
RRC-FGE(σ=0.2)
BL-SP
RRC-FGE(σ=0.5)
RRC-FGE(σ=0.8)
FGR-GA

Fig. 6 Average cost of the compared embedding algorithms

Hu et al. / Front Inform Technol Electron Eng 2017 18(11):1854-1866 1865

Time
0 2000 4000 6000 8000

1.5

2.0

2.5

3.0

3.5

4.0
RW-MM-SP
RRC-FGE(σ=0.2)
BL-SP
RRC-FGE(σ=0.5)
RRC-FGE(σ=0.8)
FGR-GA

Fig. 7 Average revenue cost ratio of the compared em-
bedding algorithms

increased as the iteration number increased, but when
the iteration number exceeded 60, the acceptance
ratio tended to be stable. The acceptance ratio of
FGR-GA was affected by crossover probability Pc
and mutation probability Pm. The crossover probabil-
ity indicates the percentage of the selected chromo-
somes whose crossover points are interchanged to
generate child chromosomes. A higher crossover
probability leads to more child chromosomes which
differ from their parents. By introducing this param-
eter, the algorithm tries to avoid local optimum solu-
tions. However, if the crossover probability is too
high, child chromosomes may lose the good perfor-
mance of their parents. The algorithm with a crosso-
ver probability of 0.1 had the highest acceptance ratio,
and the acceptance ratio decreased as the crossover
probability increased. Similar to the crossover prob-
ability, the mutation probability offers another way to
avoid local optimum solutions. This parameter indi-
cates the percentage of the child chromosomes whose
genes are changed by accident. Again, this parameter
should be chosen carefully. According to Fig. 9, the
acceptance ratio increased to its maximum as the
mutation probability increased to 0.8, and then de-
creased as the mutation probability increased further.
In this case, finding proper system parameters is of
great importance.

4. RRC-FGE needs a lower average execution
time than FGR-GA.

We compared the average execution time of four
algorithms. Although FGR-GA achieved a better
average acceptance ratio, it had the highest average
execution time compared to the other algorithms
(Fig. 10). The reason is that genetics based algorithms
generate more chromosomes and select qualified ones.
Crossover and mutation operations also need some

time. BL-SP had the lowest average execution time,
followed by RRC-FGE.

Iteration number
30 40 50 60 70

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

Ac
ce

pt
an

ce
 ra

tio Pc=0.1
Pc=0.2

Pc=0.4
Pc=0.3

Fig. 8 Acceptance ratios of FGR-GA with different Pc and
iteration numbers

Iteration number
30 40 50 60 70

Pm=0.6
Pm=0.7

Pm=0.9
Pm=0.8

Ac
ce

pt
an

ce
 ra

tio

0.44
0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

Fig. 9 Acceptance ratios of FGR-GA with different Pm and
iteration numbers

BL-SP RWMM-SP RRC-FGE- FGR-GA

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

in
)

0

2

4

6
8

10

12

14

Algorithm
Fig. 10 Average execution time comparison of 2000 for-
warding graph regions

8 Conclusions

The FGE problem is a critical problem in net-
work function virtualization. In this study, we study
this problem to increase service provider’s revenue.
First, we formulate the FGE problem as a BIP prob-
lem and take network resource constraints into con-
sideration. To reduce the difficulty of solving

Hu et al. / Front Inform Technol Electron Eng 2017 18(11):1854-1866 1866

NP-hard FGE problem, a regional resource clustering
metrics-based topology-aware heuristic embedding
algorithm is proposed. To further increase the ac-
ceptance ratio and revenue of the service provider, we
also propose a genetic algorithm based heuristic em-
bedding algorithm. Simulation results show that our
algorithms significantly improve the acceptance ratio
and average revenue, and reduce the average cost.

References
Bellavista, P., Callegati, F., Cerroni, W., et al., 2015. Virtual

network function embedding in real cloud environments.
Comput. Netw., 93(3):506-517.
https://doi.org/10.1016/j.comnet.2015.09.034

Bhatia, S., Motiwala, M., Muhlbauer, W., et al., 2008. Hosting
Virtual Networks on Commodity Hardware. Technical
Report, No. GT-CS-07-10. Georgia Institute of Tech-
nology, PA.

Chen, D., Lu, L., Shang, M., et al., 2012. Identifying influen-
tial nodes in complex networks. Phys. A., 391(4):1777-
1787. https://doi.org/10.1016/j.physa.2011.09.017

Cheng, X., Su, S., Zhang, Z., et al., 2011. Virtual network
embedding through topology-aware node ranking. ACM
SIGCOMM Comput. Commun. Rev., 41(2):38-47.
https://doi.org/10.1145/1971162.1971168

Chowdhury, M., Rahman, M., Boutaba, R., et al., 2009.
Vineyard: virtual network embedding algorithms with
coordinated node and link mapping. IEEE/ACM Trans.
Netw., 20(1):206-219.
https://doi.org/10.1109/TNET.2011.2159308

Eppstein, D., 1998. Finding the K shortest paths. SIAM J.
Comput., 28(2):652-673.
https://doi.org/10.1137/S0097539795290477

ETSI NFVISG (European Telecommunications Standards
Institute Network Functions Virtualization Industry
Specification Group), 2013. Network Functions Virtual-
ization, White Paper. http://www.esti.org/technologies
cluster/technologies/nfv [Accessed on Nov. 2, 2016].

Fagiolo, G., 2007. Clustering in complex directed networks.
Phys. Rev. E, 76(2):12-23.
https://doi.org/10.1103/PhysRevE.76.026107

Fan, J., Ammar, M., 2006. Dynamic topology configuration in
service overlay networks: a study of reconfiguration
policies. Proc. 25th IEEE Int. Conf. on Computer Com-
munications, p.21-32.
https://doi.org/10.1109/INFOCOM.2006.139

Goldberg, D., 2009. Genetic Algorithms in Search, Optimiza-
tion and Machine Learning. Addison-Wesley Profes-
sional, USA, p.216-236.

Gong, L., Wen, Y., Zhu, Z., et al., 2014. Toward profit-seeking
virtual network embedding algorithm via global resource
capacity. Proc. IEEE Int. Conf. on Computer Communi-
cations, p.1-9.
https://doi.org/10.1109/INFOCOM.2014.6847918

Koh, Y., Knauerhase, R., Brett, P., et al., 2007. An analysis of

performance interference effects in virtual environments.
Proc. IEEE Int. Symp. on Performance Analysis of Sys-
tems & Software, p.200-209.
https://doi.org/10.1109/ISPASS.2007.363750

Lischka, J., Karl, H., 2009. A virtual network mapping algo-
rithm based on subgraph isomorphism detection. Proc. 1st
ACM Workshop on Virtualized Infrastructure Systems
and Architectures, p.81-88.
https://doi.org/10.1145/1592648.1592662

Lu, J., Turner, J., 2006. Efficient Mapping of Virtual Networks
onto a Shared Substrate. Technical Report No. WUCSE-
2006-35, Washington University in St Louis, Washington.

Mehraghdam, S., Keller, M., Karl, H., et al., 2014. Specifying
and placing chains of virtual network functions. Proc. 3rd
IEEE Int. Conf. on Cloud Networking, p.7-13.
https://doi.org/10.1109/CloudNet.2014.6968961

Mei, Y., Liu, L., Pu, X., et al., 2013. Performance analysis of
network I/O workloads in virtualized data centers. IEEE
Trans. Serv. Comput., 6(1):48-63.
https://doi.org/10.1109/TSC.2011.36

Pu, X., Liu, L., Mei, Y., et al., 2010. Understanding perfor-
mance interference of I/O workload in virtualized cloud
environment. Proc. 3rd IEEE Int. Conf. on Cloud Com-
puting, p.51-58. https://doi.org/10.1109/CLOUD.2010.65

Razzaq, A., Siraj Rathore, M., 2010. An approach towards
resource efficient virtual network embedding. Proc. 2nd
Int. Conf. on Evolving Internet, p.68-73.
https://doi.org/10.1109/INTERNET.2010.21

Shea, R., Wang, F., Wang, H., et al., 2014. A deep investiga-
tion into network performance in virtual machine based
cloud environments. Proc. IEEE Int. Conf. on Computer
Communications, p.1285-1293.
https://doi.org/10.1109/INFOCOM.2014.6848061

Su, S., Zhang, Z., Cheng, X., et al., 2012. Energy-aware virtual
network embedding through consolidation. Proc. IEEE
Int. Conf. on Computer Communications Workshops,
p.127-132.
https://doi.org/10.1109/INFCOMW.2012.6193473

Wang, Z., Wu, J., Wang, Y., et al., 2014. Survivable virtual
network mapping using optimal backup topology in vir-
tualized SDN. China Commun., 11(2):26-37.
https://doi.org/10.1109/CC.2014.6821735

Xia, S., Zhang, Y., Green, H., et al., 2014. Network function
placement for NFV chaining in packet/optical data cen-
ters. Proc. European Conf. on Optical Communication,
p.1-3. https://doi.org/10.1109/ECOC.2014.6963925

Yu, M., Yi, Y., Rexford, J., et al., 2008. Rethinking virtual
network embedding: substrate support for path splitting
and migration. ACM SIGCOMM Comput. Commun. Rev.,
32(2):17-29.
https://doi.org/10.1145/1355734.1355737

Zhang, S., Qian, Z., Wu, J., et al., 2012. An opportunistic
resource sharing and topology-aware mapping framework
for virtual networks. Proc. IEEE Int. Conf. on Computer
Communications, p.2408-2416.
https://doi.org/10.1109/INFCOM.2012.6195630

	Hong-chao HU†‡, Fan ZHANG, Yu-xing MAO, Zhen-peng WANG
	Abstract: Network function virtualization (NFV) is a newly proposed technique designed to construct and manage network functions dynamically and efficiently. Allocating physical resources to the virtual network function forwarding graph is a critic...
	Key words: Network function virtualization; Virtual network function; Forwarding graph embedding

