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Abstract: We propose a novel approach called the robust fractional-order proportional-integral-derivative (FOPID)
controller, to stabilize a perturbed nonlinear chaotic system on one of its unstable fixed points. The stability analysis
of the nonlinear chaotic system is made based on the proportional-integral-derivative actions using the bifurcation
diagram. We extract an initial set of controller parameters, which are subsequently optimized using a quadratic
criterion. The integral and derivative fractional orders are also identified by this quadratic criterion. By applying
numerical simulations on two nonlinear systems, namely the multi-scroll Chen system and the Genesio-Tesi system,
we show that the fractional PIλDμ controller provides the best closed-loop system performance in stabilizing the
unstable fixed points, even in the presence of random perturbation.
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1 Introduction

In recent years, the emergence of effective meth-
ods for solving differentiation and integration of non-
integer-order equations has made fractional-order
systems more attractive for the control system com-
munity (Machado, 1997; Machado and Galhano,
2009; Ladaci and Bensafia, 2016). To improve the
performance of linear feedback systems, Podlubny
(1999b) proposed a generalization of the classical
proportional-integral-derivative (PID) controller to
the PIλDμ form called the ‘fractional PID’, which
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has recently become very popular due to its addi-
tional flexibility to meet design specifications. Since
then, fractional order PIλDμ (FOPID) controllers
have found application in several power systems. For
example, Pan and Das (2012) designed a fractional-
order PID controller to take care of various contra-
dictory objective functions for an automatic volt-
age regulator (AVR) system. Another application of
the fractional controller was given by Bouafoura and
Braiek (2010), dealing with the design of a fractional-
order PID controller for integer and fractional plants.

Chen Z et al. (2014) designed an FOPID
for a hydraulic turbine regulating system (HTRS)
with the consideration of contradictory performance
objectives. They showed the superiority of the
fractional-order controllers over the integer con-
trollers by means of a comparative study between
the optimum of PID and FOPID controllers. Faieghi
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et al. (2011) proposed a fractional-order PID design
for ship roll motion control using an embedded chaos
embedded particle swarm optimization (PSO) algo-
rithm. Tang et al. (2012) studied an optimum de-
sign of a fractional-order PID controller for an AVR
system using chaotic ant swarm (CAS). Based on
the fractional high-gain adaptive control approach,
Charef et al. (2013) introduced new tuning parame-
ters for the performance improvement of the behav-
ior of the controlled plant. Auto-tuning algorithms
for fractional PID controllers have also been pro-
posed in the literature (Ladaci and Charef, 2006a;
Delavari et al., 2010; Neçaibia and Ladaci, 2014).

Chaotic behavior of dynamical systems can be
used in many real-world applications such as cir-
cuits (Liu Y, 2012), mathematics (Liu and Yang,
2010), power systems (Harb and Abdel-Jabbar,
2003), medicine (Ditto, 1996), biology (Ma et al.,
2009), and chemical reactors (Lamba and Hudson,
1987). The importance of these application fields for
chaotic systems makes chaos and related topics very
popular for researchers in various scientific domains
(Chen et al., 2012).

Chaotic systems are also affected by the frac-
tional order, in modeling or control, or in both.
The work of Rabah et al. (2015a) is an example
of stabilization of the fractional Chen chaotic sys-
tem by linear feedback control, and the work of
Rabah et al. (2015b) is an example of Genesio-
Tesi chaos stabilization using a fractional-order
PIλDμ controller. Chen et al. (2013) proposed
fractional-order chaotic synchronization and anti-
synchronization with stochastic parameters using a
controller composed of a compensation control action
and a fuzzy controller. Tavazoei and Haeri (2008)
performed stabilization of unstable fixed points of
chaotic fractional-order systems by a fractional pro-
portional integral (PI) controller. The stability anal-
ysis of such fractional-order nonlinear systems was
thoroughly investigated in Chen D et al. (2014),
where a mathematical description of a fractional-
order Lyapunov stability theorem was presented.

In this work, we propose a design approach for a
fractional-order PIλDμ controller, based on a graph-
ical bifurcation diagram coupled with an optimiza-
tion algorithm for adjustment of the regulator pa-
rameters. We investigate the problem of chaos stabi-
lization for two nonlinear systems: multi-scroll Chen
system (Liu X et al., 2012) and Genesio-Tesi system

(Genesio and Tesi, 1992). The stability analysis
of the nonlinear chaotic system is made for the
fractional-order integral and derivative actions us-
ing the bifurcation diagram. The fractional PIλDμ

controller is implemented by means of the fractional
Gründwald-Leitnikov numerical method. The re-
sults show the effectiveness of fractional-order inte-
gral action in achieving the desired stability even in
the presence of perturbation.

2 Elements of fractional calculus the-
ory

Fractional calculus is an old mathematical re-
search topic, but it is currently enjoying increased
popularity. The fractional-order derivative theory
was developed mainly in the 19th century. Henten-
ryck et al. (1993) and Podlubny (1999a) provided
a good source of references on fractional calculus.
However, the application of fractional-order calculus
to dynamic system control is a recent focus of inter-
est, as presented by Oustaloup and Mathieu (1991),
Podlubny (1999b), and Ladaci and Charef (2006b).

2.1 Basic definitions

There are many mathematical definitions for
fractional integration and derivation. Here, we
present two currently used definitions.

2.1.1 Riemann-Liouville (R-L) definition

The R-L definition is one of the commonly
used definitions of fractional-order integrals and the
derivative procedure.

The R-L fractional-order integral of order λ > 0

is defined by (Podlubny, 1999a)

IλRLf(t) = D−λf(t) =
1

Γ(λ)

∫ t

0

(t− τ)λ−1f(τ)dτ, (1)

and the expression of the R-L fractional-order deriva-
tive of order μ is (Podlubny, 1999a)

Dμ
RLf(t) =

1

Γ(n− μ)

dn

dtn

∫ t

0

(t− τ)n−μ−1f(τ)dτ,

(2)
where Γ(·) is the Euler function and the integer n

satisfies n− 1 < μ < n. This fractional-order deriva-
tive of Eq. (2) may also be defined from Eq. (1) as
follows (Hentenryck et al., 1993):

Dμ
RLf(t) =

dn

dtn

{
I(n−μ)f(t)

}
. (3)
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2.1.2 Grünwald-Leitnikov (G-L) definition

The G-L fractional-order integral of order λ > 0

is given by (Hentenryck et al., 1993)

IλGLf(t) = D−λf(t)

= lim
h→0

hλ
k∑

j=0

(−1)j
(−λ

j

)
f(kh− jh),

(4)

where h is the sampling period and ω
(−λ)
j are the

coefficients of the following polynomial:

(1 − z)−λ =

∞∑
j=0

(−1)j
(−λ

j

)
zj =

∞∑
j=0

ω
(−λ)
j zj, (5)

with ω
(−λ)
0 =

( −λ

0

)
= 1.

The G-L fractional-order derivative of order μ >

0 is also given by (Hentenryck et al., 1993)

Dμ
GLf(t) =

dμ

dtμ
f(t)

= lim
h→0

h−μ
k∑

j=0

(−1)j
(
μ

j

)
f(kh− jh),

(6)
where h is the sampling period and ω

(μ)
j are the co-

efficients of the polynomial

(1− z)μ =

∞∑
j=0

(−1)j
(
μ

j

)
zj =

∞∑
j=0

ω
(μ)
j zj. (7)

The coefficients can be expressed as

ω
(μ)
j =

(
μ

j

)
=

Γ(μ+ 1)

Γ(j + 1)Γ(μ− j + 1)
, (8)

with ω
(μ)
0 =

(
μ

0

)
= 1.

2.2 Implementation of a fractional operator

Generally, in industrial control processes, the
data is sampled, so a numerical approximation of the
fractional operator is necessary. There exist several
approximation approaches based on the temporal or
frequency domain. In the literature, the currently
used approaches in the frequency domain are those of
Oustaloup and Mathieu (1991), Ladaci and Charef
(2006b), and Ladaci and Bensafia (2016). In the
temporal domain, there is a lot of work on the nu-
merical solution of fractional differential equations.

Diethlem (2003) proposed an efficient method based
on the predictor-corrector Adams algorithm. The
definitions cited above also have numerical approxi-
mations, as given below.

2.2.1 Riemann-Liouville (R-L) approximation

Numerical approximation of the fractional R-L
integral is based on the rectangular method (Ladaci
and Charef, 2006b). By putting

t = kΔ, (9)

where t is the current time, k is an integer, and Δ is
the sampling period, we obtain

IλRLf(kΔ) =
Δ

Γ(λ)

k−1∑
τ=0

(kΔ− τΔ)λ−1f(τΔ)

=
Δλ

Γ(λ)

k−1∑
τ=0

(k − τ)λ−1f(τΔ).

(10)

2.2.2 Grünwald-Leitnikov (G-L) approximation

For numerical calculus of fractional-order inte-
grals and derivatives, we can use the G-L definitions
and Eqs. (5) and (6), respectively.

Thus, for a causal function f(t) and for t =

kh, the fractional-order derivative is given as follows
(Podlubny, 1999a):

Dμf(kh) =
dμ

dtμ
f(t) ∼= h−μ

k∑
j=0

ω
(μ)
j f(kh− jh),

(11)
where the coefficients ω(μ)

j are those of Eq. (7), which
can be computed by using the following recursive
formula:

ω
(μ)
j =

⎧⎨
⎩
1, j = 0,(
1− 1+μ

j

)
ω
(μ)
j−1, j = 1, 2, . . . , k.

(12)

3 Control strategy

To improve the performance of linear feedback
systems, Podlubny (1999b) proposed a generaliza-
tion of the classical PID controller to the PIλDμ

form, the so-called fractional-order PID, which has
recently become very popular due to its additional
flexibility to meet design specifications. Since that
time, FOPID controllers have found application in
several power systems.
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3.1 Fractional-order proportional-integral-
derivative (FOPID) controller

FOPID is a feedback mechanism from the con-
trol loop. It has been widely used in industrial con-
trol systems. The PIλDμ controller calculates an
error value and tries to minimize it by adjusting the
process using a manipulated variable (Rabah et al.,
2016).

We assume a system with the following classic
dynamics:

Ẋ = f(X) + u(t), (13)

where X ∈ R
n and u(t) are the control signals.

The PIλDμ control law is given by the following
function:

u(t) = kPX + kII
λX + kDD

μX, (14)

where λ and μ are the fractional integral and deriva-
tive order, respectively.

A schematic diagram of the fractional-order PID
controller applied in the multi-scroll Chen system
(Liu X et al., 2012) is shown in Fig. 1.

kP

kI

kDsμ

1
sλ

+
+

+

u XSystem

Fig. 1 Diagram of the fractional-order proportional-
integral-derivative control system

3.2 Design construction

3.2.1 Bifurcation diagram

The bifurcation diagram is an effective tool to
quickly evaluate all possible solutions of the system
based on the variation of one of its parameters. It
enables identification of the particular values that
introduce the stability area (Chen et al., 2016), which
is shown in Fig. 2. Consequently, bifurcation control
has attracted much research effort in recent years
(Berns et al., 1998; Colonius and Grne, 2002).

In this work, we will use this tool to identify kP,
kI, and kD gains.
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Fig. 2 Bifurcation diagram of a fractional Chen sys-
tem x = f(q1)

3.2.2 Optimization

To choose the proper values of the fractional
order and optimize the controller gains, we use a
quadratic criterion formulated as

J =
√∑

(x − xf )2 + (y − yf)2 + (z − zf )2, (15)

where x, y, z are the state variables and F =

(xf , yf , zf ) is the desired fixed point.
The proposed design methodology can be rep-

resented by Algorithm 1.

Algorithm 1 Design methodology
Input: initialize parameters kP, kI, and kD by k1, k2,

and k3, respectively; initialize k0
1, k0

2, and k0
3 .

Step 1: obtain classical PID controller parameters
1: for i = 1 to 3 do
2: Trace the bifurcation diagram of state x vs. ki
3: Find interval Ii where the system stabilizes the

desired fixed point for ki
4: Search for the optimal value ki-opt on interval Ii

using the quadratic criterion J given by Eq. (15)
5: Update the ki value by ki = ki-opt

6: end for
Step 2: obtain fractional PIλDμ controller parameters
7: Fix the parameters (kP, kI, kD) to the optimal values

obtained in Step 1
8: μ = 1

9: Search for the optimal value λopt on interval [0, 2]

using the quadratic criterion J given by Eq. (15)
10: λ = λopt

11: Search for the optimal value μopt on interval [0, 2]

using the quadratic criterion J given by Eq. (15)
Output: parameters kP, kI, kD, λ, and μ.
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4 Application examples

In this part, we apply the control strategy pre-
sented previously to control the multi-scroll Chen
chaotic system as a first step, and then control the
Genesio-Tesi chaotic system as a second step. The
fractional Gründwald-Leitnikov method is used for
numerical approximation of the control system using
Matlab/Simulink.

4.1 Multi-scroll Chen chaotic system

The multi-scroll system was derived from the
Chen system in Liu X et al. (2012). It is described
by the following mathematical model:

⎧⎨
⎩

ẋ = a(y − x),

ẏ = (c− a− z + d sin z)x+ cy,

ż = xy − bz,

(16)

where x, y, z are state variables and a, b, c are
the system parameters. As indicated in Hadef and
Boukabou (2014), when a = 35, b = 3, c = 28, and
d = 8, a six-scroll attractor is produced as shown in
Fig. 3.
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Fig. 3 Phase plane of the multi-scroll Chen system

Let us compute the fixed points of the multi-
scroll chaotic Chen system. By solving the equation
(ẋ, ẏ, ż) = (0, 0, 0), we have

ẋ = a(y − x) = 0, (17)

ẏ = (c− a− z + d sin z)x+ cy = 0, (18)

ż = xy − bz = 0. (19)

From Eq. (17) we obtain

x = y. (20)

By replacing Eq. (20) into Eq. (19) we have

z = x2/b, (21)

and from Eqs. (18), (20), and (21), we obtain the
following equation:

(2c− a)x− x3/b+ dx sinx2/b = 0. (22)

Eq. (22) can then be resolved by a graphical
method as shown in Fig. 4.

−10 −5 0 5 10
−200

−150

−100

−50

0

50

100

150

200

x = 8.102
y = 0.001508

x

x = −8.102
y = −0.001508 x = 0

y = 0y

Fig. 4 Fixed points of the multi-scroll chaotic Chen
system

We obtain the original fixed points F0 = (0, 0, 0)

and 10 other fixed points:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F±1 = (±6.999, ±6.999, 16.331),

F±2 = (±7.457, ±7.457, 18.536),

F±3 = (±8.102, ±8.102, 21.880),

F±4 = (±9.059, ±9.059, 27.356),

F±5 = (±8.792, ±8.792, 25.771).

(23)

To control this system on its fixed point F+3 =

(8.102, 8.102, 21.880), we simultaneously use the
classical PID controller and the fractional PIλDμ

controller.

4.1.1 Using a classical PID controller

In this subsection, (kP, kI, kD) parameters are
identified using bifurcation diagrams and a quadratic
criterion J . First, we fix parameters (kI, kD) =

(0.08, 0.02) and trace the bifurcation diagram, which
presents the evolution of the x state with the kP
gain shown in Fig. 5. According to this diagram, we
determine that the system stabilizes at the desired
fixed point for kP ∈ [0.670, 0.745].

So, the search for the optimal value kP-opt using
the quadratic criterion J is limited on this interval
as presented in Fig. 6.
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Fig. 5 Bifurcation diagram x = f(kP)
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Fig. 6 Quadratic criterion J = f(kP)

Once we have the optimal value kP-opt = 0.67,
we fix it by keeping kD = 0.02, and then trace the
evolution of x with kI. This last configuration is
presented in Fig. 7. In this case, the convergence
is guaranteed for kI ∈ [0.01, 0.08], and the optimal
value kI-opt is pulled from Fig. 8, which shows the
evolution of the quadratic criterion J versus kI.

Now we have two optimal values (kP-opt, kI-opt)

= (0.67, 0.08), and will look for the third parameter
by the same procedure. In this case, the evolution
of the x state and the quadratic criterion J versus
kD is presented in Figs. 9 and 10, respectively. The
system reaches the desired fixed point for kD = 0.01,
kD = 0.02, and also kD ∈ [0.25, 0.47].

The values of J corresponding to three parame-
ters that ensure system stability on the desired fixed
point F+3 = (8.102, 8.102, 21.880) are presented in
Tables 1–3. Therefore, we can easily determine
kD-opt.

At this stage, we have the three opti-
mal control parameters (kP-opt, kI-opt, kD-opt) =

(0.67, 0.08, 0.37), and can control the multi-scroll
Chen system. The resulting system control responses
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Fig. 7 Bifurcation diagram x = f(kI)
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Table 1 Quadratic criterion J = f(kP)

kP J kP J

0.670 69.55 0.710 77.77
0.675 70.59 0.715 79.26
0.680 71.49 0.720 80.95
0.685 72.37 0.725 82.93
0.690 73.27 0.730 85.28
0.695 74.24 0.735 88.13
0.700 75.30 0.740 91.75
0.705 76.47

Table 2 Quadratic criterion J = f(kI)

kI J kI J

0.01 74.17 0.05 71.58
0.02 73.49 0.06 70.95
0.03 72.83 0.07 70.27
0.04 72.20 0.08 69.55

Table 3 Quadratic criterion J = f(kD)

kD J kD J

0.01 73.69 0.35 22.58
0.02 69.55 0.37 22.09
0.25 32.62 0.39 22.32
0.27 29.22 0.41 23.50
0.29 26.97 0.43 26.04
0.31 25.12 0.45 30.96
0.33 23.63 0.47 45.15

are exhibited in Figs. 11 and 12. The control is trig-
gered at t = 5 s.
Remark 1 For kD = 0.02, we have J = 69.65

and the control signal u = (0.17, 0.17, 0.45), but for
kD = 0.37, J is smaller (J = 22.09) with a more
important control u = (3.25, 3.25, 8.35).

4.1.2 Using a fractional PIλDμ controller

In this step, we have three optimal parameters
(kP-opt, kI-opt, kD-opt) = (0.67, 0.08, 0.37) and need to
obtain the optimal values λopt and μopt for the sys-
tem to reach the desired fixed point. For this case,
we use the quadratic criterion defined previously.

Putting μ = 1 and varying λ between 0.7 and
3, the J values obtained are gathered in Table 4
beyond 2 (λ = 2), and the values vary around 22, but
the system stabilizes slightly away from the desired
fixed point. From the results obtained (Fig. 13), J is
optimal for λopt = 1.05.

We set λopt = 1.05 and seek the optimal value
μopt by calculating the J criterion for different values
of μ (Table 5 and Fig. 14).

We have finally defined five optimal values. To
test the robustness of the fractional controller, we

x
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Fig. 11 State variables of the controlled multi-scroll
Chen system
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Fig. 12 Proportional-integral-derivative control sig-
nal

introduce a random perturbation into the input as
follows:

u = u+A · rand(). (24)

In our case, A = 0.02. The controller results ob-
tained are presented in Figs. 15 and 16.

One can remark that for the multi-scroll Chen
system example, the fractional PIλDμ controller pro-
vides better closed-loop system performance in sta-
bilizing the fixed point when compared with the pre-
dictive control studied in Boukabou et al. (2007) and
Hadef and Boukabou (2014).

4.2 Chaotic Genesio-Tesi system

Many researchers have been attracted by the
problem of control and synchronization of the
Genesio-Tesi nonlinear system (Hosseinia et al.,
2010; Faieghi and Delavari, 2012). They have
proposed different strategies for control and syn-
chronization such as adaptive control (Park, 2007;
Fayazi and Rafsanjani, 2011), linear matrix inequal-
ity (LMI) optimization approach (Park et al., 2008),
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Table 4 Quadratic criterion J = f(λ)

λ J x y z

0.70 Nan Nan Nan Nan
0.75 30.9131 8.101 8.101 21.881
0.80 24.6470 8.101 8.101 21.881
0.85 23.1903 8.102 8.101 21.881
0.90 22.5495 8.102 8.101 21.881
0.95 22.2310 8.102 8.102 21.881
0.97 22.1573 8.102 8.102 21.881
0.99 22.1060 8.102 8.102 21.881
1.00 22.0874 8.102 8.102 21.881
1.01 22.0731 8.102 8.102 21.881
1.03 22.0557 8.102 8.102 21.881
1.05 22.0511 8.102 8.102 21.881
1.07 22.0571 8.102 8.102 21.881
1.09 22.0720 8.102 8.103 21.881
1.10 22.0821 8.102 8.103 21.881
1.15 22.1536 8.103 8.103 21.881
1.20 22.2459 8.103 8.103 21.881
1.25 22.3446 8.103 8.104 21.881
1.30 22.4390 8.104 8.104 21.881
1.40 22.5889 8.104 8.106 21.881
1.50 22.6680 8.105 8.107 21.881
1.60 22.6774 8.106 8.109 21.881
1.70 22.6332 8.108 8.111 21.880
1.80 22.5565 8.109 8.114 21.880
1.90 22.4671 8.111 8.116 21.880
2.00 22.3805 8.113 8.120 21.880
2.10 22.3077 8.115 8.123 21.880
2.20 22.2553 8.117 8.127 21.980
2.50 22.2446 8.127 8.142 21.879
3.00 22.6732 8.149 8.178 21.878

Nan: not a number
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Fig. 13 Quadratic criterion J = f(λ)

sliding mode control (Dadras and Momeni, 2009;
Ghamati and Balochian, 2015), single variable feed-
back control (Wang, 2010), and back stepping con-
trol (Gholipour et al., 2012).

The Genesio-Tesi system is defined by the fol-
lowing mathematical model:

⎧⎨
⎩

ẋ = y,

ẏ = z,

ż = −cx− by − az + x2.

(25)

Table 5 Quadratic criterion J = f(μ)

μ J x y z

0.1 22.0540 8.102 8.102 21.881
0.2 22.0540 8.102 8.102 21.881
0.3 22.0540 8.102 8.102 21.881
0.4 22.0540 8.102 8.102 21.881
0.5 22.0540 8.102 8.102 21.881
0.6 22.0540 8.102 8.102 21.881
0.7 22.0539 8.102 8.102 21.881
0.8 22.0535 8.102 8.102 21.881
0.9 22.0528 8.102 8.102 21.881
1.0 22.0511 8.102 8.102 21.881
1.1 22.0475 8.102 8.102 21.881
1.2 22.0403 8.102 8.102 21.881
1.3 22.0263 8.102 8.102 21.881
1.4 22.0017 8.102 8.102 21.881
1.5 21.9723 8.102 8.102 21.881
1.6 149.783 Variable around fixed point
1.7 Nan Divergence

Nan: not a number
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Fig. 14 Quadratic criterion J = f(μ)

When (a, b, c) = (1.2, 2.992, 6), as presented
in Hosseinia et al. (2010), the Genesio-Tesi system
presents a chaotic behavior as shown in Fig. 17.
In this numerical simulation, initial conditions are
the same as those used in Hosseinia et al. (2010):
x(0) = −1.0032, y(0) = 2.3445, and z(0) = −0.087.

By a simple analysis, we obtain two unstable
fixed points: F1 = (0, 0, 0) and F2 = (6, 6, 0).

To stabilize the system on the original fixed
point F1 = (0, 0, 0), we use the same procedure as
what is applied to the multi-scroll Chen system.

4.2.1 Using a classical PID controller

Here, the bifurcation diagrams are traced to ob-
tain the interval values for (kP, kI, kD) parameters,
which will be optimized using a quadratic criterion.

We begin by varying the x state depending on
kP as presented in Fig. 18. With (kI, kD) = (0.1, 0.2),
the system stabilizes on the desired fixed point for
kP ∈ [0.8, 0.998].
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Fig. 15 State variables of the controlled multi-scroll
Chen perturbed system
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Fig. 16 PIλDμ control signal for the perturbed system
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Fig. 17 Phase plane of the chaotic Genesio-Tesi
system

The same procedure is repeated to obtain the
intervals for kD and kI (Figs. 19 and 20), respec-
tively. Then, using the quadratic criterion J given
by Eq. (15), we search for the optimal values of the
parameters kP, kI, and kD on the corresponding sta-
bility intervals (Figs. 21, 22, and 23).

4.2.2 Using a fractional PIλDμ controller

After identifying the parameters of the classic
controller, we search for the fractional order of the
integral and derivative actions to create an optimal
fractional controller. The choice of the fractional

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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x

Fig. 18 Bifurcation diagram x = f(kP)
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Fig. 19 Bifurcation diagram x = f(kD)

order μ is based on the quadratic criterion. We vary
μ between 0.1 and 1.1. The results obtained are
shown in Table 6 and Fig. 24.

By applying the optimal controller on the
Genesio-Tesi chaotic system, this controller stabi-
lizes the system on the fixed point F1 = (0, 0, 0) as
shown in Figs. 25 and 26.

We have finally described the optimal controller
parameters. Now we proceed to test the robustness
of the controller. The system is disturbed with added
input noise as defined in Eq. (24). The results ob-
tained are presented in Figs. 27 and 28.

Table 6 Quadratic criterion J = f(μ)

μ J μ J

0.100 125.8101 0.993 123.7468
0.200 125.8036 0.995 123.7435
0.300 125.7925 0.997 123.7424
0.400 125.7731 0.999 123.7438
0.500 125.7381 1.000 123.7456
0.600 125.6719 1.001 123.7480
0.700 125.5387 1.003 123.7551
0.800 125.2510 1.005 123.7655
0.900 124.6098 1.010 123.8078
0.990 123.7556 1.050 126.0309
0.991 123.7522 1.100 168.1654
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Fig. 20 Bifurcation diagram x = f(kI)
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Fig. 24 Quadratic criterion J = f(μ)
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Fig. 25 State variables of the controlled Genesio-Tesi
system
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Fig. 27 State variables of the controlled Genesio-Tesi
perturbed system
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5 Conclusions

A robust FOPID controller is investigated to
stabilize a chaotic system on one of its fixed points.
The three parameters kP, kI, and kD are initially
defined through the bifurcation diagram, and then
optimized by means of the quadratic error criterion,
which includes the fractional orders. Note that the
state variables of the controlled system are asymp-
totically stabilized on the desired fixed point even
in the presence of a random perturbation. Using
numerical simulations on the proposed design ap-
proach in the first example of the multi-scroll Chen
system, we find that the fractional PIλDμ controller
provides the best closed-loop system performance in
stabilizing an unstable fixed point compared to pre-
vious studies. In the second example of the Genesio-
Tesi system, the fractional proportional derivative
controller presents some improvement in terms of
the system behavior compared to the integer-order
controller.
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