
Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1458

A survey on run-time supporting platforms for
cyber physical systems*

Yuan SUN†‡, Gang YANG, Xing-she ZHOU

(School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China)
†E-mail: sunyuan@mail.nwpu.edu.cn

Received Sept. 24, 2016; Revision accepted Mar. 20, 2017; Crosschecked Oct. 12, 2017

Abstract: Cyber physical systems (CPSs) incorporate computation, communication, and physical processes. The deep coupling
and continuous interaction between such processes lead to a significant increase in complexity in the design and implementation of
CPSs. Consequently, whereas developing CPSs from scratch is inefficient, developing them with the aid of CPS run-time sup-
porting platforms can be efficient. In recent years, much research has been actively conducted on CPS run-time supporting plat-
forms. However, few surveys have been conducted on these platforms. In this paper, we analyze and evaluate existing CPS
run-time supporting platforms by first classifying them into three categories from the viewpoint of software architecture: com-
ponent-based platforms, service-based platforms, and agent-based platforms. Then, for each type, we detail its design philosophy,
key technical problems, and corresponding solutions with specific use cases. Subsequently, we compare existing platforms from
two aspects: construction approaches for CPS tasks and support for non-functional properties. Finally, we outline several im-
portant future research issues.

Key words: Cyber physical system (CPS); Run-time supporting platforms; Component; Service; Agent
https://doi.org/10.1631/FITEE.1601579 CLC number: TP311

1 Introduction

The cyber physical system (CPS) (Lee, 2008;
Sha et al., 2008; Rajkumar et al., 2010; Li RF et al.,
2012) is a recently emerging concept describing a
broad range of next-generation engineered systems
that tightly integrate computation, communication,
and physical processes. For the past few years, with
the continuous development and integration of such
technologies as embedded computing, wireless sensor
networks, and networked control, many complex
systems have appeared in various application fields,
such as smart grid, Internet of vehicles, and intelligent
manufacturing systems. These systems deeply in-
tertwine cyber and physical spaces, and have signif-

icantly changed the manner in which people interact
with the physical world.

At the same time, the inherent complexity of
CPSs challenges their design and implementation
(Lee, 2008). In a CPS, computation and physical
processes are deeply coupled and continuously in-
teract with each other. The events in the physical
space are first reflected in the cyber space, where they
are used to make control decisions that are returned to
the physical space to adjust physical processes. To
enable cooperation between computation and physi-
cal processes, we need to not only guarantee their
correctness, reliability, and safety, but also consider
the interplay between them. The highly dynamic na-
ture of both cyber and physical spaces necessitates
that reorganization and reconfiguration are essential
for a CPS to adapt itself to time-varying contexts. In
addition, time-predictability is very important for CPSs.
All the above-mentioned actions need to be con-
ducted in real time. As a consequence, developing

Frontiers of Information Technology & Electronic Engineering
www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com
ISSN 2095-9184 (print); ISSN 2095-9230 (online)
E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the Integrated Science-Technology Innovation
Plan of Shaanxi Province, China (No. 2015KTZDGY06-03)

 ORCID: Yuan SUN, http://orcid.org/0000-0002-8386-014X
© Zhejiang University and Springer-Verlag GmbH Germany 2017

Review:

http://orcid.org/0000-0002-6574-1542
Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1601579&domain=pdf

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1459

CPSs from scratch is not efficient.
One efficient way to construct CPSs is to use

CPS run-time supporting platforms. CPS run-time
supporting platforms facilitate deployment, execution,
and monitoring of CPS tasks. Using such platforms as
a base, developers can concentrate on the core mis-
sions of the CPS tasks, and do not have to spend much
time on common fundamental issues, thereby im-
mensely increasing the development efficiency.

In both academic and industry communities,
much attention has been paid to CPS run-time sup-
porting platforms. First, many research projects have
been funded. In terms of the intelligent manufacturing
system, SOCRADES (Karnouskos et al., 2009), IMC-
AESOP (Karnouskos et al., 2010), and Artemis pro-
jects (Broy, 2013) are consecutively funded by the
European Union (EU). In terms of the intelligent
transportation system, important research projects
include Moblie-C (Chen et al., 2009), aDAPTS
(Wang, 2008), and NTuCab (Seow et al., 2010). In
terms of smart grid, there have been many projects.
One of the largest EU funded projects is the
GRID4EU project (GRID4EU, 2012), which costs 54
million euros. Second, several technology standards
have been proposed. The AUTomotive Open System
Architecture Standard (AUTOSAR) (AUTOSAR,
2014) was proposed to describe automotive software.
Several smart grid standardization studies have been
conducted, such as US NIST IOP roadmap (Greer et
al., 2014), IEC SMB SG 3 (SMB Smart Grid Strategic
Group, 2010), and Microsoft SERA (Microsoft,
2015).

Summarizing existing research efforts is foun-
dation for further research on CPS run-time support-
ing platforms. In this paper, we comprehensively
analyze and evaluate existing platforms. First, we
classify existing platforms into three categories from
the viewpoint of software architecture: component-
based platforms, service-based platforms, and agent-
based platforms. Next, we summarize existing work
based on the above classification. For each type, we
detail its design philosophy, key technical problems,
and corresponding solutions with specific use cases.
Then, we compare existing platforms from two as-
pects: construction approaches for CPS tasks, and
support for non-functional properties. The compari-
son results show that existing platforms have both
advantages and disadvantages as they are aimed at

different application fields. To choose an appropriate
platform architecture, the particular characteristics of
the application field have to be well studied.

2 Related work

Many surveys have been conducted on CPSs to
date. In general, these surveys can be roughly divided
into two categories: surveys on general CPS problems
and surveys on domain-related problems.

In early CPS studies, much attention was paid to
general CPS problems. Wang and Xie (2011) sum-
marized such issues as integration under heteroge-
neous environments, real-time, safety, and verifica-
tion. Li RF et al. (2012) discussed the main chal-
lenges associated with CPSs from the viewpoint of
the computing system, network system, as well as
control system, and subsequently surveyed recent
research advances in available theories and technol-
ogies that can be used to design a CPS. Shi et al.
(2011) and Wan et al. (2011) summarized recent work
from such technological viewpoints as energy control,
security control, transmission and management, con-
trol technique, system resource allocation, and mod-
el-based software design. Khaitan and McCalley
(2015) surveyed recent advances in design technolo-
gies, security, resilience, reliability, quality of service
(QoS), and real-time. In addition, there exist several
specialized surveys on specific general CPS tech-
nology issues, such as testing (Asadollah et al., 2015),
security (Wu et al., 2016), robustness (Hu et al.,
2016), language-based approaches to CPS develop-
ment (Soulier et al., 2015), and self-adaptation in
CPSs (Muccini et al., 2016).

With the gradual deepening of CPS research,
domain-related problems have begun to receive an
increasing amount of attention. Gunes et al. (2014)
briefly discussed the research efforts in several ap-
plication fields, such as emergency response, air
transportation, critical infrastructure, intelligent
transportation, and robotic services. Moreover, more
in-depth summaries in such domains as manufactur-
ing (Monostori et al., 2016), healthcare (Haque et al.,
2014), vehicular CPS (Jia et al., 2015), and smart
grids (Macana et al., 2011) have been conducted.

It is clear that virtually all the technology prob-
lems associated with the development of CPSs from

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1460

scratch are included in the surveys cited above. As
discussed above, with the increasing difficulty in
developing CPSs, building CPSs with the aid of
run-time supporting platforms is more efficient. In
recent years, an increasing number of studies have
been conducted in this direction. However, few sur-
veys have been conducted on these studies.

3 Classification

Software run-time supporting technologies, e.g.,
Fractal (Bruneton et al., 2006), open services gateway
initiative (OSGI) (Dobrev et al., 2002), and Java
agent development framework (JADE) (Bellifemine
et al., 2008), are more effective in handling the in-
creasing complexity compared to general software.
These technologies have gradually matured over
many years of development. In recent years, these
mature technologies have gradually been receiving
the attention of researchers in the field of CPSs. At
present, virtually all technologies used in existing
CPS run-time supporting platforms are modified
versions of these well-developed ones. From the
viewpoint of software architecture, we classify ex-
isting platforms into three categories: component-
based platforms, service-based platforms, and agent-
based platforms. In this section, we just give over-
views of the three types of platforms, and the concrete
analyses of them are conducted in subsequent
sections.

3.1 Component-based platforms

The design philosophy of component-based CPS
run-time supporting platforms (Obermaisser and
Huber, 2009; Dubey et al., 2011; Bures et al., 2013;
Martínez et al., 2013; Acosta et al., 2014; Inam et al.,
2014; Levendovszky et al., 2014; Ni et al., 2014) is
rooted in component-based software engineering. In
these types of platforms, CPS components are em-
ployed to encapsulate low-level operations in both
cyber and physical spaces, and CPS tasks comprise a
set of CPS components. The critical technical prob-
lems in these types of platforms usually exist in as-
pects such as CPS component construction, con-
struction and deployment of CPS tasks, and recon-
figuration of CPS tasks. Provision of real-time sup-
port and decoupling are the main challenges of CPS

components. The deployment mechanism is required
to provide support for robustness, autonomy, and
real-time. Because of the low flexibility of traditional
components, integrating reconfiguration mechanisms
into these types of platforms is very essential.

Distributed real-time managed systems (DREMS)
(Levendovszky et al., 2014) is a typical component-
based CPS run-time supporting platform. It is aimed
at distributed and mobile scenarios, e.g., clusters of
satellites, or swarms of unmanned aerial vehicles
(UAVs). As depicted in Fig. 1, the supporting soft-
ware is distributed across the nodes of the system.
Each node in the system manages multiple types of
devices and the nodes can interact with each other
through communication devices managed by them-
selves. CPS components are hosted by actors, which
are specialized operating system (OS) processes.
Actors can run in parallel, and can be migrated from
node to node. Actors are configured and managed by
the deployment manager, a privileged actor installed
on each node of the system. The OS and middleware
are responsible for performance isolation between
actors of different tasks.

3.2 Service-based platforms

The design philosophy of service-based CPS
run-time supporting platforms (Cucinotta et al., 2009;
Huang et al., 2009b; Mendes et al., 2010; Vicaire et
al., 2010; Dillon et al., 2011; Wang et al., 2012) was
borrowed from service oriented architecture (SOA)
technology (Papazoglou and Heuvel, 2007). As a
consequence, it inherits several advantages of SOA
technology, such as loose coupling and flexibility.
CPS services, which integrate the abilities of physical
entities and related software, are treated as basic
structural units of CPS tasks. In general, service-

Fig. 1 A component-based CPS run-time supporting
platform (Levendovszky et al., 2014)
Comp: component; OS: operating system

Comp

Comp Comp

Actor

Comp

Comp

Actor
Deployment

manager

OS

RT middleware

Device Device Communication
device

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1461

based platforms have three layers: service provision
layer, service repository layer, and CPS task execu-
tion layer. In the service provision layer, the functions
of both physical devices and related software are
abstracted into CPS services. The main challenge in
this layer is how to describe CPS services. CPS ser-
vices are registered and discovered in the service
repository layer. The CPS task execution layer pro-
vides an execution environment for CPS tasks. A
service selection or composition mechanism is usu-
ally required in this layer.

Fig. 2 depicts a typical service-based CPS
run-time supporting platform (Mendes et al., 2010),
which is designed for an industrial automation system.
The industrial equipment in the system is managed by
smart embedded devices, which interact with each
other by the service bus. An automation entity is a
software component inside a smart embedded device.
Smart embedded devices serve as brokers between
the industrial equipment and the platform. First, they
are responsible for controlling and coordinating ac-
cesses to the industrial equipment. Second, they ex-
pose the functions of the industrial equipment as CPS
services. Third, they can compose multiple CPS ser-
vices into higher ones using their internal orchestra-
tion engines.

3.3 Agent-based platforms

Agent-based CPS run-time supporting platforms
(Lin et al., 2011; Vrba et al., 2011b; Leitão, 2013;
Giordano et al., 2016) are currently applied in fields
where both local autonomy and global collaboration
have to be considered. The underlying design phi-
losophy of these types of platforms is derived from
agent-based software engineering (Leitão et al., 2013).

CPS agents are used to manage autonomous entities
in the system, and CPS tasks need the collaboration of
the sets of CPS agents. CPS tasks are usually also
designed as CPS agents—the so-called ‘CPS task
agents’. CPS task agents can use other CPS agents in
negotiations. CPS agent construction and evolution of
CPS agents are the main technical points in these
types of platforms. Traditional agents have short-
comings in aspects such as real-time, heterogeneity,
and dynamics, which have to be considered and han-
dled during CPS agent construction.

A typical agent-based CPS run-time supporting
platform (Hsieh, 2010) is depicted in Fig. 3. It is de-
signed for a holonic manufacturing system. The
manufacturing resources, production management
entities, and order management entities in the system
are encapsulated as three different types of CPS
agents. These CPS agents interact with each other by
the agent communication language (ACL), which was
proposed by the Foundation for Intelligent Physical
Agents (FIPA). The directory facilitator is used to
publish and discover the CPS agents’ abilities. The
agent management system is responsible for naming,
locating, and controlling the CPS agents. The mes-
sage transport service is employed to communicate
with other platforms.

4 Component-based CPS run-time support-
ing platforms

4.1 CPS component model

Existing studies on CPS components focus on the
following two aspects: (1) In a CPS, non-functional
properties such as real-time are equally important as

Fig. 2 A service-based CPS run-time supporting platform
(Mendes et al., 2010)
DPWS: devices profile for web services

Dynamic discovery Dynamic deployment

Service exposition / requesting

User data

Orchestration engine
(e.g., IEC 61131 engine, Petri nets engine)

I/O moduleDPWS framework

Platform (OS, applications, and libraries)

A
utom
ation entity

Industrial
equipment

Smart
embedded

device

I/O

Service bus (network)

Fig. 3 An agent-based CPS run-time supporting plat-
form (Hsieh, 2010)
ACL: agent communication language

Product
agentOrder

agent

Message transport service

Agent
management

system
Directory
facilitatorACL

ACL

ACL ACL

ACL

ACL
ACL

Resource
agent

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1462

functional features; (2) Existing components use in-
terfaces to interact with each other, leading to strong
dependence between components.

4.1.1 Real-time component

Currently, only a few CPS components support
hard real-time operation. The ARINC-653 component
model (ACM) (ARINC-653 is a software specifica-
tion for space and time partitioning in safety-critical
avionics real-time operating systems) (Dubey et al.,
2011) and real-time container component model
(RT-CCM) (Martínez et al., 2013) are two such
components. Both components are based on the
Lightweight CORBA (common object request broker
architecture) component model (LwCCM) and are
very similar. The differences between them lie in the
number of ports and the component configuration. An
RT-CCM component has only two kinds of ports,
facetport and recepport, while an ACM component
has two additional kinds of ports besides RT-CCM. In
respect of component configuration, RT-CCM pro-
vides a series of configurable properties, which are
assigned to concrete values during component in-
stantiation. In addition to configurable properties,
ACM provides another kind of property: state varia-
bles. The value of a state variable cannot be modified
outside the component; therefore, it can be used to
monitor the internal state of a component from outside.

To provide real-time support, an RT-CCM
component is designed as an active component. Ac-
tive components can not only be invoked through
facetport, but also respond to external or timed events.
These responses are implemented by the components
themselves and must be declared beforehand. More-
over, these responses are triggered inside the com-
ponents, and have nothing to do with invocations
from other components; however, they can invoke
other components that are connected to the recepport.

4.1.2 Independent component

The dependable emergent ensembles of com-
ponents (DEECo) (Bures et al., 2013) is aimed at
dealing with the inherent difficulties in large-scale
distributed CPSs, such as dynamics, openness, and
autonomy. Compared to traditional components, a
DEECo component system has strong independence.
There are two key concepts in a DEECo component
system: component and ensemble. Components are

independent of each other regardless of whether the
procedure is development, deployment, or execution.
Components comprise knowledge and expose their
functionalities as interfaces and processes. Ensembles
are employed to link a group of components and
manage their interactions. To reduce coupling and
improve independence, DEECo components com-
municate with each other in the knowledge exchange
process carried out by ensembles. Moreover, Bures et
al. (2014) integrated gossip-based communication
into DEECo components to further improve their
independence.

4.2 Construction and deployment of component-
based CPS tasks

In general, CPS tasks are first constructed and
then deployed to run-time supporting platforms. In
the construction procedure, the developer must decide
on the composition of CPS tasks, connections be-
tween components, values of configurable properties,
resources that have to be reserved, etc. Then, these
pieces of information are used to generate a deploy-
ment plan, which guides the deployment procedure.
The challenges in the construction and deployment
procedures lie in aspects such as real-time (Martínez
et al., 2010; Inam et al., 2014), robustness (Pradhan et
al., 2014), and autonomy (Pradhan et al., 2014).

Inam et al. (2014) proposed a construction and
deployment specification for real-time CPS tasks.
The proposed specification is modified from the real-
time CORBA specification. On one hand, metadata
about the temporal behaviors and resource require-
ments of components are added to the real-time
CORBA specification, and the component based
software engineering-modelling and analysis suite for
real-time applications (CBSE-MAST) (Lopez et al.,
2006) is used to analyze the temporal behaviors of
both components and tasks. On the other hand,
metadata about the resources in the platform are also
added. On the basis of the metadata, the schedulabil-
ity aanalysis of real-time CPS tasks can be performed.
Thus, the feasibility of current CPS task construction
procedures can be verified.

Martínez et al. (2010) presented a runnable vir-
tual node (RVN) based two-stage component inte-
gration approach. In the proposed approach, at the
first stage, RVNs are first constructed by mapping
task sets to CPU-time partitions and assigning priori-

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1463

ties to the task sets. Then, the time constraints of the
RVNs are verified through simulation, test, or local
schedulability analysis. At the second stage, RVNs
are connected together, and the priorities of CPU-time
partitions are assigned. Subsequently, a global dis-
patcher is employed to conduct global schedulability
analysis. Finally, if the priority assignments are
proved to be feasible, all codes generated in the two
stages are compiled and linked with OS and mid-
dleware binaries. In this way, real-time CPS tasks are
generated.

In distributed and mobile CPSs, e.g., clusters of
satellites or swarms of UAVs, the deployment of CPS
tasks is required to be conducted autonomously. This
is necessary because the dynamic nature of these
systems is so high that even the task deployment
procedure could be influenced. Therefore, human
intervention to address the difficulty is not very easy.
Pradhan et al. (2014) proposed a resilient and au-
tonomous deployment infrastructure in which all the
nodes of systems are installed with three modules:
deployment manager, component server, and group
member monitor. The deployment infrastructure is
composed of all the deployment managers. Group
member monitors maintain group membership in-
formation and detect the failures of its members. The
multi-staged deployment process employed is de-
picted in Fig. 4. All the nodes in the group have the
opportunity to receive the deployment plan. The node
that first receives the deployment plan becomes the
deployment leader automatically. This leader is re-
sponsible for initiating the deployment process, ana-
lyzing the plan, and allocating deployment actions.

4.3 Reconfiguration of component-based CPS
tasks

As is well-known, CPSs operate in dynamic and
uncontrollable environments. The topologies of CPSs
are dynamic as failures of nodes or communication
links can cause changes. Further, the available re-
sources and missions of CPS tasks can change at
times. This high dynamic nature makes reconfigura-
tion of CPS tasks absolutely essential, especially for
component-based CPS tasks.

A runtime@model (Morin et al., 2009) based
reconfiguration is used in u-kevoree (Acosta et al.,
2014). The concept of runtime@model is based on the

idea of reflection. It allows changing the composition
of tasks and connections between components. Spe-
cifically, u-kevoree provides four kinds of adaptation
abilities: parametric adaptation, architectural adapta-
tion, dynamic provision of component types, and
adaptation for remote management. u-kevoree uses an
adaptation engine as a core module to perform adap-
tation. During the reconfiguration process, a delta-
model is first obtained through model comparison,
and then a script for safe system reconfiguration is
generated according to the delta-model. Finally, the
script is executed to complete the adaptation.

Axelsson and Kobetski (2014) proposed a ver-
sion updating based reconfiguration mechanism. In
the proposed mechanism, all components are stored in
a publicly accessible server. Further, components are
downloaded to nodes according to the requirements
of tasks. Inside nodes, components are executed in a
special environment. The server is also responsible
for maintaining components, including component
recovery when failures occur, and updating compo-
nents when new versions appear. Note that a task can
be reconfigured only to a certain extent in this manner.
Afanasov et al. (2014) presented a context-oriented
reconfiguration mechanism. In their mechanism, the
environment is abstracted as a set of contexts, and
every context is associated with a group of behaviors.
Layer functions, a core concept in this mechanism,
are built on the basis of contexts and context-related
behaviors. By embedding layer functions into exist-
ing components, a reconfiguration of CPS tasks is
achieved.

Fig. 4 A multi-staged deployment and configuration pro-
cedure (Pradhan et al., 2014)
DM: deployment manager

Deployment
plan

DM2

DM1

DM3

Create
components

Create
components

Create
components

Connect
components

Connect
components

Connect
components

Publish_plan (2, P2)

Publish_plan (3, P3)

Load_plan

Publish_provided_service

Deployment plan

Deployment manager

Component actions

Finishing state
Starting state

Barrier
synchronization

Activating state

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1464

5 Service-based CPS run-time supporting
platforms

5.1 Description of CPS services

CPS services integrate operations in both cyber
and physical spaces. Describing CPS services in-
volves defining functionalities and non-functional
properties of CPS services.

Traditional service models, such as web services
description language (WSDL) (Curbera et al., 2002)
and web ontology language for services (OWL-S)
(Martin et al., 2005), cannot be directly employed to
describe CPS services, because these models are de-
signed for general software services and cannot de-
scribe the particular characteristics of CPS services.
First, operations in the physical space are integrated
into CPS services, and these operations are sensitive
to the surrounding environment. Therefore, the usa-
bility of CPS services is closely associated with the
environment. Second, some physical devices could
provide more than one CPS service, but these CPS
services cannot always execute at the same time due
to the intrinsic features of the physical devices. Third,
physical devices always have their own working areas.
Beyond these areas, CPS services provided by the
physical devices have no meaning.

Huang et al. (2009a) first extended OWL-S
(Martin et al., 2005) to develop a context-sensitive
resource-explicit CPS service model. In the model,
providers of CPS services are modeled as physical
resources, which can be specified by three properties:
profile, context, and services. A CPS service descrip-
tion consists of four parts: process, profile, grounding,
and context. Further, both physical resources and
services must declare their constraints. The relation-
ships between the CPS services provided by the same
physical resource, such as ‘concurrence’ and ‘exclu-
sivity’, are important constraints of physical re-
sources. CPS services not only inherit the constraints
of their providers, but also can define their specific
constraints.

Huang et al. (2009b) subsequently presented a
context-sensitive service model based on physical
entity ontology. In the service model, physical entities
are hierarchically organized according to their rela-
tionships. In terms of context, two new constraints,
context precondition and context effect, are incorpo-
rated and treated as a complement to traditional ser-

vice provision constraints, namely precondition and
effect. In general, service provision constraints in the
model are divided into two categories: context-free
constraints and context-sensitive constraints. The
former are described by precondition and effect,
whereas the latter are described by context precondi-
tion and context effect. The service models presented
by Huang et al. (2010) and Wang et al. (2012) are
similar to this service model.

Jin et al. (2014) proposed a service model that
can define time- and space-related characteristics.
Their model has three main concepts: device, re-
source, and service. All the main concepts are asso-
ciated with the time or space property. The concept of
available time is used to define the time slots when a
CPS service is running because a CPS service is not
always available. Because physical devices can pro-
vide CPS services only in certain areas, the concept of
‘working range’ is used to define it. Zhu et al. (2015)
studied the effect of CPS services and proposed a
concept called ‘AppliedTo’ to express the fact that
after the execution of a CPS service, the context of
some physical entities may change.

5.2 Discovery of CPS services

A service discovery mechanism is employed to
efficiently find a set of published services that meet
the given requirements. Because the scale of CPSs is
continuously increasing (Stojmenovic, 2014), the
main challenge of service discovery is how to keep its
scalability. That is, as the system size increases, the
discovery procedure should be as efficient as possible,
and the computation and communication overhead
should be as small as possible.

Universal plug and play (UPNP) (Miller et al.,
2001) is a device-level SOA technology. In UPNP,
devices are abstracted as services, and service adver-
tisement and discovery are performed using multicast
messages. These multicast messages are transmitted
periodically, resulting in rapid energy consumption
and much unnecessary network traffic. Park et al.
(2013) introduced the concept of control device
manager (CDM) to handle UPNP. In each region of
the system there is at least one CDM, which is re-
sponsible for managing all the devices in the region. A
device needs only to register its services in one of the
CDMs located in the region. In this way, these peri-
odic multicast messages are transmitted merely over

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1465

the network consisting of all the CDMs in the system.
Thus, the number of messages and the energy con-
sumption speed of the device’s battery can be signif-
icantly reduced.

From the view of service registry, CDMs behave
as decentralized service repositories because one
CDM maintains only a part of the overall service
information of the system. This kind of decentralized
service registry was also used by Vicaire et al. (2010),
Dillon et al. (2011), and Li et al. (2011). Sometimes a
CDM is also called a ‘discovery proxy’ (Jammes et al.,
2005). A discovery proxy is usually hosted by the
node with strong computation and storage capacities
(Park et al., 2013). If gateway nodes exist in the sys-
tem, it can also be hosted by a gateway (Vicaire et al.,
2010; Dillon et al., 2011; Li et al., 2011).

Wang et al. (2012) considered centralized ser-
vice repositories. As only one service repository
contains the information of a huge number of services,
searching for the required services in this kind of
large dataset is very time-consuming. Thus, they
proposed to build a service aggregation graph to
speed up the service search process. In this method,
services with similar service functionality are
grouped into a service spanning tree (SST), and all the
generated SSTs compose the service aggregation
graph. Common clustering algorithms, such as
k-means, could be employed to obtain the two-layer
service aggregation graph, but Wang et al. (2012) did
not provide details on how to use the service aggre-
gation graph to achieve efficient service search.

Hellbruck et al. (2013) presented a named ser-
vice bus to eliminate the need for explicit service
registration or a global service repository. The basic
idea underlying this method is discovery of a service
by its name. In this method, CCN-daemons, which act
as a bridge between services and service consumers,
are key components. A service needs only to locally
register itself at a CCN-daemon by its name prefixes.
CCN-daemons store the mapping relations between
name prefixes and services in forward information
bases (FIBs). Service requests, encoded as CCN in-
terests, are first submitted to the local CCN-daemon.
If there is no locally available service, the local
CCN-daemon looks for matching entries in its FIB
and forwards the CCN interests to another CCN-
daemon. Once obtaining the former CCN interests,
the CCN-daemon performs the same operation as

above until the required services are found.

5.3 Composition of CPS services

CPS tasks are composed of a number of CPS
services. In general, the composition of CPS services
falls into three categories: static composition, dy-
namic composition, and composition at design time.

In static composition, the operations of the CPS
task and the functionality requirements in each oper-
ating step are clear, but the CPS service to be invoked
in each step is unknown. At runtime, static composi-
tion is reduced to service selection. Because a CPS is
a highly dynamic system, context information is very
important for selecting the most appropriate CPS
service.

Wang et al. (2012) proposed a static service
composition mechanism that exploits the workflow
business logic model to build an abstract process
graph (APG) of the task. An APG is composed of a set
of functionality services and their relations. The
functionality services are simply placeholders that are
subsequently replaced with appropriate concrete ser-
vices. This service composition mechanism is com-
posed of two phases: service filtering and service
selection optimization. In the first phase, to eliminate
improper services as early as possible, all the SSTs
need to perform service filtering based on an elabo-
rately constructed context filtering rule. Services
matching the filtering rule are filtered out, and the
remaining services are treated as candidate services.
In the second phase, the selection procedure is re-
duced to a combinatorial optimization problem with
QoS. Because the number of candidate services is
very low, the combinatorial optimization problem can
be solved quickly.

In dynamic service composition, nothing is
known except the goal of the CPS task. In this situa-
tion, artificial intelligence (AI) planning can be used
to perform service composition. Given the initial state
of a task, its goal, and all possible operations, AI
planning can be used to find an operation sequence
fulfilling the goal of the task.

Huang et al. (2009b) proposed an iterative two-
stage AI planning based dynamic service composition
approach. In the proposed approach, the AI planning
step consists of two stages: abstract composition and
physical composition. In the abstract composition
stage, CPS services are selected according to their

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1466

functionalities, while context related constraints are
omitted. An abstract planning framework is obtained
at the end of abstract composition. In the physical
composition stage, concrete CPS services are selected
by considering context information. Note that it is an
iterative approach. Whenever the goal of a CPS task
or the precondition of any CPS service is not satisfied,
an AI planning step is initiated.

Composition in design time (Puttonen et al.,
2008; Mendes et al., 2010) is useful in scenarios
where a CPS task needs to be analyzed before it is
executed. In this composition approach, both the CPS
services that will be invoked and the working process
of the CPS task are known. Mendes et al. (2010) used
this composition approach in a proposed industrial
automation system. In their system, a CPS service is
modeled as a Petri net, and thus the composition of
the CPS services becomes synchronizations between
two or among more Petri nets. Specifically, synchro-
nization is realized by adding a connection logic that
connects the transitions of two Petri nets.

6 Agent-based CPS run-time supporting
platforms

6.1 CPS agents

General software agents have been investigated
for decades, and many technical specifications for
them have been proposed by FIPA. However, they are
still unfit for CPSs because they do not support the
particular characteristics of CPSs. In recent years,
agents specialized for CPSs have received much at-
tention from researchers.

First, a great majority of CPS tasks have very
strict time constraints, and some low-level control
tasks can be executed only on dedicated hardware.
Provision of real-time support is an important prob-
lem. Several solutions have been proposed (Lepus-
chitz et al., 2009; Vrba et al., 2011b; Ferreira et al.,
2013). Vrba et al. (2011b) presented a real-time
guaranteed CPS agent, called a ‘holonic agent’
(Fig. 5). A holonic agent contains three core modules:
high-level control module (HLC), low-level control
module (LLC), and control interface. The HLC makes
high-level control decisions for the overall agent. The
LLC directly interacts with actuators, and its control
tasks directly run on programmable logic controllers

(PLC). Therefore, real-time operation can be guar-
anteed. The HLC communicates with the LLC
through a control interface.

Second, it is envisioned that with the emergence

of more general CPSs, the demand to integrate a CPS
with existing heterogeneous engineered systems, such
as enterprise systems and wireless sensor networks
(WSNs), will be very strong (Stojmenovic, 2014).
Nevertheless, existing agents have more defects in
interoperability compared to services. In recent years,
enhancing the interoperability of CPS agents by in-
corporating them with services has raised concerns
(Mendes et al., 2009; Leitão, 2013). A service-
oriented CPS agent for an intelligent manufacturing
system was presented by Leitão (2013). Unlike tradi-
tional agents, the abilities of CPS agents are exposed
as a number of CPS services. Such CPS agents not
only can keep their autonomy, but also inherit strong
interoperability from services.

Third, some researchers argue that existing agent
communication technologies (e.g., ACL) can guar-
antee only syntactic interoperability. To enable such
interoperability, several implicit semantics have to be
embedded in implementations of existing agents
(Vrba et al., 2011a). Therefore, existing agents have
difficulty in understanding new knowledge. Because
a CPS is a highly dynamic system, when using ex-
isting agents in a CPS, improvement of their adapta-
tion abilities is very important. Integrating CPS

Fig. 5 The structure of a holonic agent (Vrba et al., 2011b)
ACS: autonomous cooperative system; HLC: high-level con-
trol module; PLC: programmable logic controllers; LLC:
low-level control module

PLC data table

Agent communication
(FIPA)

ACS runtime

LLC
communication

HLC – Agent
(C++)

Control
interface

LLC
(IEC61131/

JAVA)

Holonic agent

tags

HLC – Agent
(C++)

Control
interface

LLC
(IEC61131/

JAVA)

Holonic agent

tags

Physical process
I/O I/O

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1467

agents with explicit semantics is an effective ap-
proach (Al-Safi and Vyatkin, 2007; Lin et al., 2011;
Vrba et al., 2011a). Such agents are sometimes called
‘semantic CPS agents’. Semantic CPS agents can not
only understand knowledge directly described by
ontology, but also reason out new facts from ontology.
If the ontology is extended with new knowledge,
semantic CPS agents can understand the new
knowledge immediately without any modification to
their current implementations.

6.2 Evolution of CPS agents

With the scale of CPSs increasing and the au-
tonomy of CPSs being enhanced, CPSs are faced with
an increasing number of uncertainties, such as dis-
turbances and failures. It requires not only that CPS
agents be able to adjust their own behaviors, but also
that a set of CPS agents can evolve through coopera-
tion. In this aspect, many different approaches are
available.

Hsieh (2010) investigated the evolution problem
when resources fail. To avoid system disorders, they
proposed an evolution mechanism based on four
types of CPS agents: detector agent, initiator agent,
standby agent, and optimizer agent. The CPS agent
that first detects a resource failure becomes a detector
agent. Because failures will inevitably block some
agents, the CPS agent that is the first to be blocked
becomes an initiator agent. An initiator agent has two
duties. First, it must send requests to other CPS agents
for discharge of contract; the CPS agents that agree
with the discharge become standby agents. Second, it
must send requests to the primary optimizer. The
primary optimizer then appoints a CPS agent as an
optimizer agent that performs optimal reconfiguration
on the basis of available resources.

Leitão and Restivo (2006) proposed a reorgani-
zation mechanism combining hierarchical and heter-
archical control approaches. In this mechanism, re-
organization is defined as a transformation of the
system between the static state and transitory state. In
the static state, the system is hierarchically organized,
and high-level agents autonomously manage its
low-level agents. When disturbances or failures occur,
agents first try to recover themselves. If a failure, they
increase their autonomy factors and propagate their
reorganization requirements to other agents in the

form of pheromone. The agents that sense the pher-
omone continue to propagate the pheromone until
some agent decides to reorganize the system. At this
point, the system is transformed to the transitory state.
In the transitory state, the system is heterarchically
organized, and top-level agents directly manage the
lowest-level agents. Then, the recovery procedure is
initiated. When the pheromone disappears, the system
is transformed to the static state again.

Self-organization and chaos theory have been
employed to conduct evolution of CPS agents by
Barbosa et al. (2015). Self-organization consists of
behavioral self-organization and structural self-
organization. Behavioral self-organization is smooth
evolution. CPS agents can select appropriate behavior
at any time according to their states and the envi-
ronment. Structural self-organization is dramatic
evolution. Its evolution goal is to maintain the stabil-
ity of the overall system. The self-organization
mechanism inside CPS agents is composed of three
main parts as depicted in Fig. 6: monitoring module,
discovery module, and reasoning module. The moni-
toring module is used to collect the system state. The
discovery module is responsible for predicting new
events according to the system state. Both events and
the system state are employed to perform behavioral
and structural reasoning. The reasoning results are
entered into a nervousness stabilizer to avoid system
disorders.

Fig. 6 A self-organization mechanism in a CPS agent
(Barbosa et al., 2015)
DB: database

Structural module

Facts Rules

Engine
Expert system

Le
ar
ni
ngBehavioral module

P
I
D

Σ Σ

Nervousness
stabilizer

Decision support intelligence

DB

Control

+

Low level events
(e.g., physical)

High level events
(e.g., from holons)

Discovery

Monitoring

Cycling

+Outcome
(outputX);

Feed engine

External
inputs

Can evolve

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1468

7 Comparison

Existing CPS run-time supporting platforms are

realized mainly for specific application fields. Their
design and implementation measures differ signifi-
cantly, leading to much difficulty for researchers to
choose an appropriate reference. Thus, in the following
subsections, we first compare existing CPS run-time
supporting platforms, and then discuss the best plat-
form architectures in different application scenarios.

7.1 Comparison of construction approaches for
CPS tasks

In general, during CPS task construction pro-
cedures, three things need to be decided: (1) How to
realize structural units of CPS tasks? (2) How to make
structural units interact with each other? (3) How to
compose a number of structural units into CPS tasks?

7.1.1 Realization of structural units

There are three kinds of measures to realize
structural units of CPS tasks: CPS component, CPS
service, and CPS agent. The main differences among
the three types of structural units lie in aspects such as
applicable scenario and realization difficulty. From
the aspect of applicable scenario, CPS components
and services are fit to encapsulate not only simple
operations (Vicaire et al., 2010; Fouquet et al., 2012)
but also complex operations comprising a number of
simple operations (Cucinotta et al., 2009; Martínez et
al., 2013; Levendovszky et al., 2014), whereas CPS
agents are fit to encapsulate more complex operations
that are required to be controlled and managed by
themselves (Lin et al., 2011; Giordano et al., 2016).
From the aspect of realization difficulty, CPS agents
are obviously more complicated than CPS compo-
nents and CPS services, thus needing more time to
realize.

7.1.2 Interaction between structural units

The interaction between structural units can be
conducted in three ways: interface, standardized
protocol, and knowledge. Interfaces, which define the
data types of all input and output parameters, are
primarily used to invoke CPS components. CPS ser-
vices are invoked through a standardized protocol
(e.g., WSDL). In essence, a standardized protocol can
be treated as a kind of complex interface. Using this

standardized method, we can clearly describe the
structural units with more complicated functionalities,
and can also perform various kinds of interactions.
The communication between CPS agents can also be
conducted through a standardized protocol (e.g.,
FIPA-ACL). Note that by using such standardized
methods, we can decouple the interdependences be-
tween structural units to a substantial degree. To fur-
ther lower the coupling, knowledge-based interaction
is used (Kim et al., 2013; Bures et al., 2014), and in
several situations, ontology is even employed to ex-
press the knowledge (Lin et al., 2011).

7.1.3 Composition of structural units

The composition of structural units can be
roughly divided into three categories: fully static
composition (Cucinotta et al., 2009; Vicaire et al.,
2010; Martínez et al., 2013; Acosta et al., 2014), fully
dynamic composition (Huang et al., 2009b), and
dynamic-static hybrid composition (Wang et al., 2012;
Leitão, 2013). Fully static composition can be used
for all kinds of structural units. Its characteristic is
that structural units are statically connected with each
other before running. At present, CPS tasks that need
early analysis are usually constructed in this manner.
For example, we can perform schedulability analysis
during the fully static composition procedure.

Fully dynamic composition and dynamic-static
hybrid composition are usually used for CPS services
and CPS agents. CPS services and agents have not
only static properties, but also dynamic properties,
which are related to the context or environment.
Because fully static composition is performed before
the execution of a CPS task, it cannot use the dynamic
properties. Nevertheless, fully dynamic composition
and dynamic-static hybrid composition can employ
both static and dynamic properties. In dynamic-static
hybrid composition, the operational steps of the CPS
task can be known before execution, but the structural
units that will be invoked are not known before
runtime. In fully dynamic composition, only the goal
of the CPS task is known. Thus, AI planning is usu-
ally used to obtain the operating steps of the CPS task
at runtime.

Moreover, not all CPS tasks are constructed by
composition of structural units. In several platforms,
CPS tasks can be built by programming frameworks
using provided system-level application program-

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1469

ming interfaces (APIs) (Srbljic et al., 2012; Vicaire et
al., 2012; Kim et al., 2013), and executed in corre-
sponding run-time environments.

7.1.4 Summary

From the aspect of autonomy, CPS agents are
better than CPS components and CPS services be-
cause autonomy is an essential attribute of CPS agents.
In general, we consider that CPS services have stronger
interoperability than CPS agents (Leitão, 2013), and
that CPS agents have stronger interoperability than
CPS components. If semantics is integrated, both CPS
services and CPS agents will have the strongest
interoperability.

Fully static composition can be used for all kinds
of structural units, while fully dynamic composition
and dynamic-static hybrid composition are usually
used for CPS services and CPS agents. Because fully
static composition cannot leverage dynamic proper-
ties, and fully dynamic composition and dynamic-
static hybrid composition can employ dynamic prop-
erties, CPS services and CPS agents have stronger
adaptability than CPS components. These com-
parision results are listed in Table 1.

7.2 Comparison of support for non-functional
properties

The following performance indicators are used
in the comparison: real-time, reconfigurability,
scalability, context-awareness, resilience, and security.

7.2.1 Real-time

In general, there are two kinds of real-time ac-
tivities: hard real-time activity and soft real-time
activity. A hard real-time activity must always be
completed before its deadline (Buttazzo, 2011); oth-
erwise, the correctness of the entire system may be
influenced. A soft real-time activity has fewer critical

requirements; also, it should be completed before its
deadline. If the deadline is missed, there will be no
catastrophic outcome, excepting that the QoS of the
system may be influenced.

Providing real-time support in run-time sup-
porting platforms is onerous. Only a few platforms
have such ability (Cucinotta et al., 2009; Dubey et al.,
2011; Vrba et al., 2011b; Martínez et al., 2013; Wu et
al., 2016). An active component-based approach was
presented by Martínez et al. (2013). To build real-
time CPS tasks on the basis of their approach, a cor-
responding task construction and deployment mech-
anism is needed. Note that the real-time CPS task
construction procedure is fully static and cannot be
applied in highly dynamic scenarios. Cucinotta et al.
(2009) proposed a QoS negotiation mechanism. With
the web services agreement framework (Aiello et al.,
2005), service providers and service requestors can
negotiate the QoS level. Because allocations of CPU
time are based on a reservation-based scheduling
framework, the key issue during the negotiations is
the choice of appropriate scheduling parameters for
service providers. If the current QoS level cannot be
met, the service provider will decrease the QoS level
in the next negotiation. Note that such a QoS negoti-
ation mechanism is used only for soft real-time
activities.

7.2.2 Reconfigurability

Existing research on adaptability is focused on
two aspects: reconfiguration of CPS tasks and scala-
bility of run-time supporting platforms. For CPS task
reconfiguration, many different approaches exist.
Acosta et al. (2014) employed a model comparison
approach. In their approach, the difference between a
new model and an old model, the so-called ‘delta-
model’, is first compiled to a reconfiguration script.
Then, the script is executed to reconfigure the CPS
task. Vicaire et al. (2010) and Bures et al. (2013)
conducted reconfiguration by adjusting the members
of the group. Barbosa et al. (2015) investigated an
evolution-based reconfiguration mechanism. Real-
time operation is still important in the CPS task
reconfiguration. Valls et al. (2013) proposed an
approach for reconfiguration of service-based soft
real-time systems. In their approach, reconfiguration
is viewed as a transformation of a CPS task from an
execution graph to another graph. In the approach, a

Table 1 Comparison of three types of structural units

Structural
unit Autonomy Interoperability Adaptability

CPS com-
ponent ● ● ●

CPS
service ●● ●●● ●●

CPS agent ●●● ●● ●●
The number of black spots is used to indicate the degree of such
aspects as autonomy, interoperability, and adaptability

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1470

reconfiguration manager first expands an application
graph, and then performs an admission control test on
the expanded graph to obtain a schedulable expanded
graph. Finally, a service composition module chooses
an appropriate path from the schedulable expanded
graph as the new execution graph of the CPS task. All
the operations are performed in a time-bounded
manner.

7.2.3 Scalability

Many CPS scalability studies have been con-
ducted (Vicaire et al., 2010; Li et al., 2011; Bures et
al., 2013; Hellbruck et al., 2013; Park et al., 2013;
Bures et al., 2014). The common method used to
enhance scalability is replacing centralized control
with decentralized control. Vicaire et al. (2010) and
Li et al. (2011) used a gateway to locally manage
some of the physical devices in the system. Park et al.
(2013) chose devices with strong computation and
storage capacity as discovery proxies for local regions.
By adding more local managers, increases in the scale
of the system can be easily accommodated. However,
such a decentralized solution is not fit for highly
dynamic scenarios. Consequently, knowledge-based
approaches have been proposed. Bures et al. (2014)
proposed integration of gossip-based communication
into DEECo components. In the proposed approach,
membership evaluations for DEECo components are
conducted by propagating the knowledge of DEECo
components. Thus, local managers are not needed.
The named service bus (Hellbruck et al., 2013) is also
a knowledge-based approach. In this approach, the
FIBs are constructed by sharing knowledge between
all the nodes of the system.

7.2.4 Context-awareness

Context in CPSs refers to physical resources and
environment. As we have discussed, physical re-
sources and environment are more important in CPSs
than in general software systems. First, CPS structural
units are integrations of many low-level operations in
cyber and physical spaces, such as sensing, compu-
ting, communicating, and actuating. Therefore, the
execution of CPS structural units requires the partic-
ipation of one or more physical resources. Second, the
execution of CPS structural units has an influence on
their surrounding environment, further influencing
other CPS structural units.

The focus of existing physical resource studies is
on management and modeling of physical resources.
Nikam and Ingle (2014) argued that while composing
a new CPS service, providing appropriate physical
resources was very challenging because of the het-
erogeneity of physical resources and related CPS
services. Therefore, they proposed a physical re-
source provision algorithm to deal with it. Huang et al.
(2009b) proposed to incorporate a physical resource
ontology into CPS service models. Huang et al.
(2009a) proposed the concept of ‘service provision
constraint’ to define the relationship among the CPS
services provided by a physical resource. Wan et al.
(2014) presented a resource-centric service model. In
this model, a resource description template is em-
ployed to model physical resources.

The emphasis of existing environment research
efforts is sensing and processing of environmental
information. The majority of existing platforms have
the ability to sense the environment. In the DEECo
component system (Bures et al., 2013), environmen-
tal information sensed by components is represented
as knowledge and stored in the knowledge repository
layer. Because the execution of CPS services has an
influence on the environment, many CPS service
models are incorporated with environmental infor-
mation, such as the environment related precondition
and effect. In the architecture of Rainbow (Giordano
et al., 2016), sensors and actuators are abstracted as
virtual objects (VOs), and a computational node
manages several VOs. Environmental information
sensed by VOs feeds into CPS agents in computa-
tional nodes.

Under certain circumstances, raw environmental
information is less meaningful, and must be further
processed to obtain more meaningful results. The
most common type of processing used is complex
event processing (CEP), which generates complex
events from raw environmental information in ac-
cordance with the predefined rules. Many studies (Tan
et al., 2009; Ahmadi et al., 2010) have been conducted
on CPS CEP. These studies have been adequately
surveyed by Li F et al. (2012). Among existing plat-
forms, only a few platforms, e.g., Rainbow (Giordano
et al., 2016), are explicitly integrated with a CEP
mechanism. However, it is worth pointing out that the
proposed CEP technologies can be easily incorpo-
rated into any existing platform when necessary.

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1471

7.2.5 Resilience

CPSs are expected to provide correct behavior
under failures. Many different approaches have been
proposed for this resilience aspect.

Several researchers have proposed algorithms
and techniques for enhancing the resilience of CPSs
toward different kinds of failures. Parvin et al. (2013)
proposed to use multi-computational units to handle
the failures of computing subsystems in CPSs. Woo et
al. (2008) presented a software engineering method-
ology to design resilient CPSs. Specifically, Woo et al.
used feedback control laws to define a protocol that
makes CPSs resilient to software failures. Andersson
et al. (2008) presented a distributed algorithm that
transmits and receives physical information in the
presence of sensor faults.

Some researchers have proposed mechanisms
that make CPSs resilient to multiple kinds of failures.
In wireless sensor actuator systems, the topology,
links, and nodes are all unreliable, and multiple kinds
of failures may occur. To make this kind of CPSs
resilient, Pajic et al. (2012) introduced the embedded
virtual machine (EVM), a programming abstraction
in which controller tasks are maintained across
physical node boundaries and functionality is capable
of migrating to the most competent set of physical
controllers. The corresponding EVM-based algorithms
allow network control algorithms to operate seam-
lessly over less reliable wireless networks with top-
ological changes. Xiao et al. (2008) proposed an
external coordination layer that is used to separate
fault-tolerance mechanisms from business logics. The
coordination layer is also used to manage the
fault-tolerant mechanism. Therefore, it is possible to
use different kinds of fault-tolerant mechanisms to
handle different kinds of failures.

7.2.6 Security

Security refers to the ability to ensure the privacy
of data, control access, and resist attacks in CPSs. To
the best of our knowledge, only a few existing plat-
forms support security. DREMS (Otte et al., 2014)
employs a secure transport (ST) mechanism to ensure
secure information exchange. Specifically, ST is a
network transport layer that enforces information
flow partitions based on security classifications. Vegh
and Miclea (2016) proposed a secure CEP mechanism
that uses a public-key algorithm. To ensure that each

user has limited access to the data, the access level is
granted by the private key possessed by each user.

7.2.7 Summary

Most of existing platforms have varying levels
of reconfigurability. In general, agent-based platforms
have the strongest reconfigurability, whereas com-
ponent-based platforms have the weakest reconfigu-
rability. Naturally, there are several exceptions. For
example, as u-kevoree (Acosta et al., 2014) uses a
runtime@model-based reconfiguration mechanism, it
can achieve the same reconfigurability as common
service-based platforms.

As discussed above, several studies have been
conducted on scalability, but the majority of them are
not integrated into existing platforms. In general,
knowledge-based approaches can obtain better scala-
bility than decentralized control-based approaches.

Almost all of the platforms are able to leverage
context information and handle failures. In general,
the platforms using centralized management (the
majority of component- and service-based platforms)
have lower resilience than the platforms using de-
centralized management (the majority of agent-based
platforms).

Real-time is supported only by several platforms.
As far as we know, only a few existing platforms
support security. However, it is worth pointing out
that existing security solutions can be easily inte-
grated with any existing platform when necessary.

Table 2 compares several typical CPS run-time
supporting platforms in terms of non-functional
properties support.

7.3 Best platform architectures in different ap-
plication scenarios

In this section, we consider such representative
CPS application scenarios as vehicle electronic sys-
tems, intelligent manufacturing systems, smart grids,
swarms of UAVs, and intelligent transportation
systems.

A vehicle electronic system consists of many
electronic control units, such as engine control, fuel
control, antiskid control, and brake control. Among
these control units, engine control has the highest
real-time deadline, as the engine itself is a very fast
and complex part of a vehicle. Many engine parame-
ters, such as pressure, temperature, flow, engine speed,

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1472

and oxygen level, must be actively monitored and
controlled in real time. Thus, it is clear that real-time
speed is the most typical feature of vehicle electronic
systems. Because component-based platforms can
support hard real-time CPS tasks, they best fit vehicle
electronic systems.

As a new-generation manufacturing system, the
intelligent manufacturing system (IMS) is faced with
strong demand to swiftly adapt to dynamics because
mass customization is becoming an appealing pro-
duction mode. The main characteristics of mass cus-
tomization are dynamic requirements regarding lot
sizes, product variants, lead time, and cost. One of the
difficulties in building an IMS is that much legacy
equipment exists in manufacturing enterprises.
Although legacy equipment might have lower pro-
duction capacity and might be less flexible than new
intelligent equipment, replacing all legacy equipment
in a short time is still uneconomical. Therefore, in-
teroperability (compatibility with legacy equipment)
is also very important in IMSs. Although both CPS
services and CPS agents can deal with the dynamic
nature of IMSs, we consider that service-based plat-
forms are more suitable for IMSs because CPS ser-
vices have stronger interoperability than CPS agents.

Smart grid is the next-generation electrical grid
in which information and communication technolo-
gies are used to make production, distribution, and
use of electricity more efficient and more cost-
effective (Fang et al., 2012). Compared with a con-
ventional electrical grid, a smart grid is integrated
with more renewable energy sources (mainly solar

and wind) and new energy consumers, such as electric
vehicles and smart home appliances. Because of the
volatile and stochastic nature of these new energy
sources and consumers, a smart grid is highly dy-
namic. These result in current centralized automation
software control power grids (primarily supervisory
control and data acquisition systems) reaching their
limits in terms of scalability, computational com-
plexity, and communication. Inevitably, in future
smart grids, to provide more flexibility and scalability,
decentralized software architectures with stronger
local autonomy will be more appealing (Vrba et al.,
2014). From this viewpoint, agent-based platforms
are the best fit for smart grids.

Swarms of UAVs are representative highly dy-
namic and distributed CPSs. A single UAV has very
limited resources and can complete only very simple
tasks. Thus, several UAVs often form a cluster to
complete complex tasks. Swarms of UAVs often op-
erate in risky and unknown environments; hence, it is
impossible to make plans in advance as not enough
information is available. To handle unknown envi-
ronments, a single UAV must have strong local au-
tonomy. Hence, we consider that agent-based plat-
forms are the most suitable for swarms of UAVs.

The intelligent transportation system (ITS) has
been proposed to leverage information and commu-
nication technologies to reduce traffic congestion and
improve traffic safety. ITSs have three specific char-
acteristics (Chen and Cheng, 2010): (1) ITSs are ge-
ographically distributed; (2) Vehicles exist in dy-
namic environments; (3) Vehicles need to interact

Table 2 Comparison of several typical CPS run-time supporting platforms in terms of support for non-functional
properties

Typical platform Structural
unit Real-time Reconfigurability Scalability Context-

awareness Resilience Security

DREMS (Levend-
ovszky et al., 2014)

CPS
component ● ● ●● ●

RT-CCM (Martínez
et al., 2013)

CPS
component ● ● ●

DEECo (Bures et al.,
2013)

CPS
component ● ●● ● ●●

Physicalnet (Vicaire
et al., 2010) CPS service ● ● ●●● ●

Huang et al. (2009b) CPS service ●● ●●● ●
Cucinotta et al. (2009) CPS service ● ●● ● ●
Rainbow (Giordano
et al., 2016) CPS agent ●●● ●● ●●●

Vrba et al. (2011b) CPS agent ● ●●● ● ●●●
The performance indicators are measured by the number of black spots

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1473

with each other flexibly. Because of such character-
istics, vehicles in ITSs have to increase their auton-
omies. Therefore, using an agent-based platform is a
natural choice.

In general, in situations where the demand for
real-time support is strong, such as vehicle electronic
systems, using a component-based platform is the
best choice. In dynamic environments, using either a
service-based platform or an agent-based platform is
feasible. However, if interoperability is also strongly
needed, such as in IMSs, service-based platforms are
the best. If local autonomy is obvious, such as in
smart grids, swarms of UAVs, ITSs, agent-based
platforms are the best. The results are also listed in
Table 3.

8 Conclusions and future research issues

In this paper, we comprehensively analyzed and
evaluated existing CPS run-time supporting platforms.
The following conclusions can be drawn. First, ex-
isting platforms have both advantages and disad-
vantages because they aim at different application
fields. Second, to choose an appropriate platform
architecture, the particular characteristics of the ap-
plication field have to be well known. Specifically:
(1) if real-time support is very important, the best
choice is a component-based platform; (2) in general,
a service-based platform or an agent-based platform
is better for dynamic scenarios; (3) if interoperability
is also very essential in dynamic scenarios, a ser-
vice-based platform is better than an agent-based
platform; (4) if the system exists in a dynamic envi-
ronment and has strong local autonomy, an agent-
based platform is the best choice.

In further study, it will be very necessary to
consider the following issues:

1. Verification of CPS tasks
In model-driven development (Zhou et al., 2014),

a model of the system is first constructed. Then, with
the model constructed, the system is analyzed
and verified before implementation. However, in
platform-based design, CPS tasks are composed of a
number of prebuilt structural units. The largest dif-
ference between these two approaches is that in
platform-based design, the correctness of all prebuilt
structural units cannot be guaranteed because the
formulation models of the prebuilt structural units are
unknown. Further, even if all structural units are
known to be correct, the correctness of the CPS tasks
composed of them cannot be guaranteed, because in a
CPS, functional properties and non-functional prop-
erties are equally important. Therefore, how to con-
duct comprehensive verification of such CPS tasks
before their executions becomes a problem to be
solved.

2. Support for human-in-the-loop applications
In human-in-the-loop applications, humans are

brought into the feedback loops. There are two
common types of human-in-the-loop applications. In
the first type, humans are treated as sensors. Humans’
intents are first inferred by processing the electro-
physiological signals of humans. Then, embedded
computing systems are employed to transform the
intents into robot control signals. Thus, robots are
able to take the place of humans to interact with the
physical environment (Schirner et al., 2013). In the
second type, humans are treated as actuators. By
monitoring the system operating state, operators can
immediately receive alerts when anomalies occur. On
receiving an alert, operators can use their experience
and knowledge to adjust the system (Wu and Kaiser,

Table 3 The best platform architectures in different application scenarios

Application scenario Real-time Autonomy Dynamics Interoperability The best platform
architectures

Vehicle electronic systems ●●● ● ● ●
Component-based

platforms
Intelligent manufacturing systems ● ● ●● ●●● Service-based platforms
Smart grids ● ●● ●● ●● Agent-based platforms
Swarm of UAVs ●● ●● ●● ● Agent-based platforms
Intelligent transportation systems ● ●● ●● ●● Agent-based platforms
The number of black spots indicates the degree of the key features

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1474

2012). Note that intent inferences and system moni-
toring are data- and computation-intensive tasks that
need to be handled on time. In addition, in a CPS, the
inputs of such tasks are susceptible to disturbance.
Therefore, to support human-in-the-loop applications,
provision of a timely processing mechanism for data-
and computation-intensive tasks is essential.

3. Runtime monitoring of CPS tasks
To enhance resilience and safety of existing

platforms, we consider that one possible solution is to
add a runtime monitoring mechanism to existing
platforms. By online tracking execution traces of CPS
tasks, the occurrence of failures and behaviors that
may violate safety-critical rules can be realized in a
timely manner or even be predicted (Zhao et al.,
2010). This could then enable on-time start of recov-
ery procedures. Note that existing runtime monitoring
technologies are software system oriented. Their
monitoring targets are computation processes, and
they cannot monitor the operation of physical pro-
cesses. This aspect should be dealt with in future
research.

References
Acosta, F.J., Weis, F., Bourcier, J., 2014. Towards a Mod-

el@Runtime middleware for cyber physical systems.
Proc. 9th Workshop on Middleware for Next Generation
Internet Computing, Article 6.
https://doi.org/10.1145/2676733.2676741

Afanasov, M., Mottola, L., Ghezzi, C., 2014. Towards
context-oriented self-adaptation in resource-constrained
cyberphysical systems. Proc. IEEE 38th Annual Int.
Computers, Software and Applications Conf. Workshops,
p.372-377.
https://doi.org/10.1109/COMPSACW.2014.64

Ahmadi, H., Abdelzaher, T.F., Gupta, I., 2010. Congestion
control for spatio-temporal data in cyber-physical sys-
tems. Proc. 1st ACM/IEEE Int. Conf. on Cyber-Physical
Systems, p.89-98.
https://doi.org/10.1145/1795194.1795207

Aiello, M., Frankova, G., Malfatti, D., 2005. What’s in an
agreement? An analysis and an extension of WS-
agreement. In: Benatallah, B., Casati, F., Traverso, P.
(Eds.), Service-Oriented Computing-ICSOC 2005.
Springer-Verlag Berlin Heidelberg, p.424-436.

 https://doi.org/10.1007/11596141_32
Al-Safi, Y., Vyatkin, V., 2007. An ontology-based reconfigu-

ration agent for intelligent mechatronic systems. In:
Mařík, V., Vyatkin, V., Colombo, A.W. (Eds.), Holonic
and Multi-agent Systems for Manufacturing. Springer-
Verlag Berlin Heidelberg, p.114-126.

 https://doi.org/10.1007/978-3-540-74481-8_12

Andersson, B., Pereira, N., Tovar, E., 2008. How a cyber-
physical system can efficiently obtain a snapshot of
physical information even in the presence of sensor faults.
Proc. Int. Workshop on Intelligent Solutions in Embed-
ded Systems, p.1-10.

 https://doi.org/10.1109/WISES.2008.4623298
Asadollah, S.A., Inam, R., Hansson, H., 2015. A survey on

testing for cyber physical system. In: El-Fakih, K., Barlas,
G., Yevtushenko, N. (Eds.), Testing Software and Sys-
tems. Springer International Publishing, Cham, Switzer-
land, p.194-207.

 https://doi.org/10.1007/978-3-319-25945-1_12
AUTOSAR, 2014. AUTomotive Open System ARchitecture

(AUTOSAR). http://www.autosar.org/about/technical-
overview/ [Accessed on Nov. 20, 2016].

Axelsson, J., Kobetski, A., 2014. Architectural concepts for
federated embedded systems. Proc. European Conf. on
Software Architecture Workshops, p.25:1-25:8.

 https://doi.org/10.1145/2642803.2647716
Barbosa, J., Leitão, P., Adam, E., et al., 2015. Dynamic

self-organization in holonic multi-agent manufacturing
systems: the ADACOR evolution. Comput. Ind., 66:99-
111. https://doi.org/10.1016/j.compind.2014.10.011

Bellifemine, F., Caire, G., Poggi, A., et al., 2008. JADE: a
software framework for developing multi-agent applica-
tions: lessons learned. Inform. Softw. Technol., 50(1):
10-21. https://doi.org/10.1016/j.infsof.2007.10.008

Broy, M., 2013. Cyber-physical systems: concepts, challenges
and foundations. https://artemis-ia.eu/publication/down
load/877-magazine-14.pdf [Accessed on Nov. 20, 2016].

Bruneton, E., Coupaye, T., Leclercq, M., et al., 2006. The
FRACTAL component model and its support in Java.
Softw. Pract. Exp., 36(11-12):1257-1284.

 https://doi.org/10.1002/spe.767
Bures, T., Gerostathopoulos, I., Hnetynka, P., et al., 2013.

DEECO: an ensemble-based component system. Proc.
16th ACM Sigsoft Symp. on Component-Based Software
Engineering, p.81-90.
https://doi.org/10.1145/2465449.2465462

Bures, T., Gerostathopoulos, I., Hnetynka, P., et al., 2014.
Gossiping components for cyber-physical systems. In:
Avgeriou, P., Zdun, U. (Eds.), Software Architecture.
Springer International Publishing, Cham, Switzerland,
p.250-266.
https://doi.org/10.1007/978-3-319-09970-5_23

Buttazzo, G., 2011. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications.
Springer US, New York, USA, p.1-22.

Chen, B., Cheng, H.H., 2010. A review of the applications of
agent technology in traffic and transportation systems.
IEEE Trans. Intell. Transp., 11(2):485-497.

 https://doi.org/10.1109/TITS.2010.2048313
Chen, B., Cheng, H.H., Palen, J., 2009. Integrating mobile

agent technology with multi-agent systems for distributed
traffic detection and management systems. Transp. Res.
C-Emerg., 17(1):1-10.

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1475

https://doi.org/10.1016/j.trc.2008.04.003
Cucinotta, T., Mancina, A., Anastasi, G.F., et al., 2009. A

real-time service-oriented architecture for industrial au-
tomation. IEEE Trans. Ind. Inform., 5(3):267-277.

 https://doi.org/10.1109/TII.2009.2027013
Curbera, F., Duftler, M., Khalaf, R., et al., 2002. Unraveling

the web services web: an introduction to SOAP, WSDL,
and UDDI. IEEE Internet Comput., 6(2):86-93.

 https://doi.org/10.1109/4236.991449
Dillon, T.S., Zhuge, H., Wu, C., et al., 2011. Web-of-things

framework for cyber-physical systems. Concurr. Comp.-
Pract. E., 23(9):905-923.

 https://doi.org/10.1002/cpe.1629
Dobrev, P., Famolari, D., Kurzke, C., et al., 2002. Device and

service discovery in home networks with OSGi. IEEE
Commun. Mag., 40(8):86-92.

 https://doi.org/10.1109/MCOM.2002.1024420
Dubey, A., Karsai, G., Mahadevan, N., 2011. A component

model for hard real-time systems: CCM with ARINC-653.
Softw. Pract. Exper., 41(12):1517-1550.

 https://doi.org/10.1002/spe.1083
Fang, X., Misra, S., Xue, G., et al., 2012. Smart grid—the new

and improved power grid: a survey. IEEE Commun. Surv.
Tutor., 14(4):944-980.

 https://doi.org/10.1109/SURV.2011.101911.00087
Ferreira, P., Doltsinis, S., Anagnostopoulos, A., et al., 2013. A

performance evaluation of industrial agents. Proc. 39th
Annual Conf. of the IEEE Industrial Electronics Society,
p.7404-7409.

 https://doi.org/10.1109/IECON.2013.6700365
Fouquet, F., Morin, B., Fleurey, F., et al., 2012. A dynamic

component model for cyber physical systems. Proc. 15th
ACM Sigsoft Symp. on Component Based Software En-
gineering, p.135-144.

 https://doi.org/10.1145/2304736.2304759
Giordano, A., Spezzano, G., Vinci, A., 2016. A smart platform

for large-scale cyber-physical systems. In: Guerrieri, A.,
Loscri, V., Rovella, A., et al. (Eds.), Management of
Cyber Physical Objects in the Future Internet of Things.
Springer International Publishing, Cham, Switzerland,
p.115-134. https://doi.org/10.1007/978-3-319-26869-9_6

Greer, C., Wollman, D.A., Prochaska, D.E., et al., 2014. NIST
framework and roadmap for smart grid interoperability
standards, release 3.0. Specical Publication 1108r3, US
National Institute of Standards and Technology,
Gaithersburg, USA.

 https://doi.org/10.6028/NIST.SP.1108r3
GRID4EU, 2012. Specification and Requirements. http://

grid4eu.blob.core.windows.net/media-prod/6578/Grid4E
U_dD1.1_Demo_1_V1.0.pdf [Accessed on Nov. 20,
2016].

Gunes, V., Peter, S., Givargis, T., et al., 2014. A survey on
concepts, applications, and challenges in cyber-physical
systems. KSII Trans. Internet Inform. Syst., 8(12):
4242-4268.
https://doi.org/10.3837/tiis.2014.12.001

Haque, S.A., Aziz, S.M., Rahman, M., 2014. Review of
cyber-physical system in healthcare. Int. J. Distrib. Sens.
Netw., 2014:217415:1-217415:20.

 https://doi.org/10.1155/2014/217415
Hellbruck, H., Teubler, T., Fischer, S., 2013. Name-centric

service architecture for cyber-physical systems. Proc.
IEEE 6th Int. Conf. on Service-Oriented Computing and
Applications, p.77-82.
https://doi.org/10.1109/SOCA.2013.63

Hsieh, F.S., 2010. Design of reconfiguration mechanism for
holonic manufacturing systems based on formal models.
Eng. Appl. Artif. Intel., 23(7):1187-1199.

 https://doi.org/10.1016/j.engappai.2010.05.008
Hu, F., Lu, Y., Vasilakos, A.V., et al., 2016. Robust

cyber–physical systems: concept, models, and imple-
mentation. Fut. Gener. Comp. Syst., 56:449-475.

 https://doi.org/10.1016/j.future.2015.06.006
Huang, J., Bastani, F., Yen, I.L., et al., 2009a. Extending

service model to build an effective service composition
framework for cyber-physical systems. Proc. IEEE Int.
Conf. on Service-Oriented Computing and Applications,
p.1-8. https://doi.org/10.1109/SOCA.2009.5410453

Huang, J., Bastani, F., Yen, I.L., et al., 2009b. Toward a smart
cyber-physical space: a context-sensitive resource-
explicit service model. Proc. 33rd Annual IEEE Int.
Computer Software and Applications Conf., p.122-127.
https://doi.org/10.1109/COMPSAC.2009.125

Huang, J., Bastani, F.B., Yen, I.L., et al., 2010. A framework
for efficient service composition in cyber-physical sys-
tems. Proc. 5th IEEE Int. Symp. on Service Oriented
System Engineering, p.291-298.

 https://doi.org/10.1109/SOSE.2010.46
Inam, R., Carlson, J., Sjödin, M., et al., 2014. Predictable

integration and reuse of executable real-time components.
J. Syst. Softw., 91:147-162.

 https://doi.org/10.1016/j.jss.2013.12.040
Jammes, F., Mensch, A., Smit, H., 2005. Service-oriented

device communications using the devices profile for web
services. Proc. 3rd Int. Workshop on Middleware for
Pervasive and Ad-Hoc Computing, p.1-8.

 https://doi.org/10.1145/1101480.1101496
Jia, D., Lu, K., Wang, J., et al., 2015. A survey on platoon-

based vehicular cyber-physical systems. IEEE Commun.
Surv. Tutor., 18(1):263-284.

 https://doi.org/10.1109/COMST.2015.2410831
Jin, X., Chun, S., Jung, J., et al., 2014. IoT service selection

based on physical service model and absolute dominance
relationship. Proc. IEEE 7th Int. Conf. on Service-
Oriented Computing and Applications, p.65-72.

 https://doi.org/10.1109/SOCA.2014.24
Karnouskos, S., Bangemann, T., Diedrich, C., 2009. Integra-

tion of legacy devices in the future SOA-based factory.
IFAC Proc. Vol., 42(4):2113-2118.

 https://doi.org/10.3182/20090603-3-RU-2001.0487
Karnouskos, S., Colombo, A.W., Jammes, F., et al., 2010.

Towards an architecture for service-oriented process

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1476

monitoring and control. Proc. IECON 36th Annual Conf.
on IEEE Industrial Electronics Society, p.1385-1391.

 https://doi.org/10.1109/IECON.2010.5675482
Khaitan, S.K., McCalley, J.D., 2015. Design techniques and

applications of cyberphysical systems: a survey. IEEE
Syst. J., 9(2):350-365.

 https://doi.org/10.1109/JSYST.2014.2322503
Kim, M., Stehr, M.O., Kim, J., et al., 2013. An application

framework for loosely coupled networked cyber-physical
systems. Proc. IEEE/IFIP 8th Int. Conf. on Embedded and
Ubiquitous Computing, p.144-153.

 https://doi.org/10.1109/EUC.2010.30
Lee, E.A., 2008. Cyber physical systems: design challenges.

Proc. 11th IEEE Symp. on Object/Component/Service-
Oriented Real-Time Distributed Computing, p.363-369.
https://doi.org/10.1109/ISORC.2008.25

Leitão, P., 2013. Towards self-organized service-oriented
multi-agent systems. In: Borangiu, T., Thomas, A.,
Trentesaux, D. (Eds.), Service Orientation in Holonic and
Multi Agent Manufacturing and Robotics. Springer Ber-
lin Heidelberg, p.41-56.

 https://doi.org/10.1007/978-3-642-35852-4_3
Leitão, P., Restivo, F., 2006. ADACOR: a holonic architecture

for agile and adaptive manufacturing control. Comput.
Ind., 57(2):121-130.

 https://doi.org/10.1016/j.compind.2005.05.005
Leitão, P., Marik, V., Vrba, P., 2013. Past, present, and future

of industrial agent applications. IEEE Trans. Ind. Inform.,
9(4):2360-2372.

 https://doi.org/10.1109/TII.2012.2222034
Lepuschitz, W., Vallee, M., Merdan, M., et al., 2009. Integra-

tion of a heterogeneous low level control in a multi-agent
system for the manufacturing domain. Proc. 14th IEEE
Int. Conf. on Emerging Technologies Factory Automa-
tion, p.574-581.

 https://doi.org/10.1109/ETFA.2009.5347061
Levendovszky, T., Dubey, A., Otte, W.R., et al., 2014. Dis-

tributed real-time managed systems: a model-driven dis-
tributed secure information architecture platform for
managed embedded systems. IEEE Softw., 31(2):62-69.

 https://doi.org/10.1109/MS.2013.143
Li, F., Xu, J., Yu, G., 2012. A survey on event processing for

CPS. In: Wang, R., Xiao, F. (Eds.), Advances in Wireless
Sensor Networks. Springer Berlin Heidelberg, p.157-166.

 https://doi.org/10.1007/978-3-642-36252-1_15
Li, Q., Qin, W., Han, B., et al., 2011. A case study on rest-style

architecture for cyber-physical systems: restful smart
gateway. Comput. Sci. Inform. Syst., 8(4):1317-1329.

 https://doi.org/10.2298/CSIS110310062L
Li, R.F., Xie, Y., Li, R., et al., 2012. Survey of cyber-physical

systems. J. Comput. Res. Dev., 49(6):1149-1161 (in
Chinese).

Lin, J., Sedigh, S., Miller, A., 2011. A semantic agent
framework for cyber-physical systems. In: Elçi, A., Koné,
M.T., Orgun, M.A. (Eds.), Semantic Agent Systems.
Springer Berlin Heidelberg, p.189-213.

https://doi.org/10.1007/978-3-642-18308-9_9
Lopez, P., Medina, J.L., Drake, J.M., 2006. Real-time model-

ling of distributed component-based applications. Proc.
32nd EUROMICRO Conf. on Software Engineering and
Advanced Applications, p.92-99.

 https://doi.org/10.1109/EUROMICRO.2006.52
Macana, C.A., Quijano, N., Mojica-Nava, E., 2011. A survey

on cyber physical energy systems and their applications
on smart grids. Proc. IEEE PES Conf. on Innovative
Smart Grid Technologies, p.1-7.

 https://doi.org/10.1109/ISGT-LA.2011.6083194
Martin, D., Paolucci, M., McIlraith, S., et al., 2005. Bringing

semantics to web services: the OWL-S approach. In:
Cardoso, J., Sheth, A. (Eds.), Semantic Web Services and
Web Process Composition. Springer-Verlag Berlin Hei-
delberg, p.26-42.

 https://doi.org/10.1007/978-3-540-30581-1_4
Martínez, P.L., Cuevas, C., Drake, J.M., 2010. RT-D&C:

deployment specification of real-time component-based
applications. Proc. 36th EUROMICRO Conf. on Soft-
ware Engineering and Advanced Applications, p.147-155.
https://doi.org/10.1109/SEAA.2010.22

Martínez, P.L., Barros, L., Drake, J.M., 2013. Design of
component-based real-time applications. J. Syst. Softw.,
86(2):449-467.

 https://doi.org/10.1016/j.jss.2012.09.036
Mendes, J.M., Leitão, P., Restivo, F., et al., 2009. Service-

oriented agents for collaborative industrial automation
and production systems. In: Mařík, V., Strasser, T., Zoitl,
A. (Eds.), Holonic and Multi-agent Systems for Manu-
facturing. Springer-Verlag Berlin Heidelberg, p.13-24.
https://doi.org/10.1007/978-3-642-03668-2_2

Mendes, J.M., Leitão, P., Restivo, F., et al., 2010. Composition
of Petri nets models in service-oriented industrial auto-
mation. Proc. 8th IEEE Int. Conf. on Industrial Infor-
matics, p.578-583.

 https://doi.org/10.1109/INDIN.2010.5549677
Microsoft, 2015. Smart Energy Reference Architecture Version

2.0. https://msenterprise.global.ssl.fastly.net/wordpress/
Reference_Architecture_pdf_whitepaper_2.pdf
[Accessed on Nov. 20, 2016].

Miller, B.A., Nixon, T., Tai, C., et al., 2001. Home networking
with universal plug and play. IEEE Commun. Mag.,
39(12):104-109. https://doi.org/10.1109/35.968819

Monostori, L., Kadar, B., Bauernhansl, T., et al., 2016.
Cyber-physical systems in manufacturing. CIRP Ann.
Manuf. Techn., 65(2):621-641.

 https://doi.org/10.1016/j.cirp.2016.06.005
Morin, B., Barais, O., Nain, G., et al., 2009. Taming dynami-

cally adaptive systems using models and aspects. Proc.
31st Int. Conf. on Software Engineering, p.122-132.

 https://doi.org/10.1109/ICSE.2009.5070514
Muccini, H., Sharaf, M., Weyns, D., 2016. Self-adaptation for

cyber-physical systems: a systematic literature review.
Proc. 11th Int. Workshop on Software Engineering for
Adaptive and Self-Managing Systems, p.75-81.

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1477

 https://doi.org/10.1145/2897053.2897069
Ni, Z., Kobetski, A., Axelsson, J., 2014. Design and imple-

mentation of a dynamic component model for federated
AUTOSAR systems. Proc. 51st Annual Design Automa-
tion Conf., p.94:1-94:6.

 https://doi.org/10.1145/2593069.2593121
Nikam, S., Ingle, R., 2014. Resource provisioning algorithms

for service composition in Cyber Physical Systems. Proc.
Int. Conf. on Advances in Computing, Communications
and Informatics, p.2797-2802.

 https://doi.org/10.1109/ICACCI.2014.6968650
Obermaisser, R., Huber, B., 2009. The GENESYS architecture:

a conceptual model for component-based distributed
real-time systems. In: Lee, S., Narasimhan, P. (Eds.),
Software Technologies for Embedded and Ubiquitous
Systems. Springer-Verlag Berlin Heidelberg, p.296-307.

 https://doi.org/10.1007/978-3-642-10265-3_27
Otte, W.R., Dubey, A., Karsai, G., 2014. A resilient and secure

software platform and architecture for distributed space-
craft. SPIE, 9085:90850J.

 https://doi.org/10.1117/12.2054055
Pajic, M., Chernoguzov, A., Mangharam, R., 2012. Robust

architectures for embedded wireless network control and
actuation. ACM Trans. Embed. Comput. Syst., 11(4):82.

 https://doi.org/10.1145/2362336.2362349
Papazoglou, M.P., Heuvel, W.J., 2007. Service oriented ar-

chitectures: approaches, technologies and research issues.
VLDB J., 16(3):389-415.

 https://doi.org/10.1007/s00778-007-0044-3
Park, S.O., Do, T.H., Jeong, Y.S., et al., 2013. A dynamic

control middleware for cyber physical systems on an
IPv6-based global network. Int. J. Commun. Syst., 26(6):
690-704. https://doi.org/10.1002/dac.1382

Parvin, S., Hussain, F.K., Hussain, O.K., et al., 2013. Multi-
cyber framework for availability enhancement of cyber
physical systems. Computing, 95(10-11):927-948.

 https://doi.org/10.1007/s00607-012-0227-7
Pradhan, S., Otte, W.R., Dubey, A., et al., 2014. Towards a

resilient deployment and configuration infrastructure for
fractionated spacecraft. ACM SIGBED Rev., 10(4):29-32.
https://doi.org/10.1145/2583687.2583694

Puttonen, J., Lobov, A., Lastra, J.L.M., 2008. An application
of BPEL for service orchestration in an industrial envi-
ronment. Proc. 13th IEEE Int. Conf. on Emerging Tech-
nologies and Factory Automation, p.530-537.

 https://doi.org/10.1109/ETFA.2008.4638450
Rajkumar, R., Lee, I., Sha, L., et al., 2010. Cyber-physical

systems: the next computing revolution. Proc. 47th
ACM/IEEE Design Automation Conf., p.731-736.

 https://doi.org/10.1145/1837274.1837461
Schirner, G., Erdogmus, D., Chowdhury, K., et al., 2013. The

future of human-in-the-loop cyber-physical systems.
Computer, 46(1):36-45.

 https://doi.org/10.1109/MC.2013.31
Seow, K.T., Dang, N.H., Lee, D.H., 2010. A collaborative

multiagent taxi-dispatch system. IEEE Trans. Autom. Sci.

Eng., 7(3):607-616.
 https://doi.org/10.1109/TASE.2009.2028577
Sha, L., Gopalakrishnan, S., Liu, X., et al., 2008. Cyber-

physical systems: a new frontier. Proc. IEEE Int. Conf. on
Sensor Networks, Ubiquitous and Trustworthy Compu-
ting, p.1-9.

 https://doi.org/10.1109/SUTC.2008.85
Shi, J., Wan, J., Yan, H., et al., 2011. A survey of

cyber-physical systems. Proc. Int. Conf. on Wireless
Communications and Signal Processing, p.1-6.

 https://doi.org/10.1109/WCSP.2011.6096958
SMB Smart Grid Strategic Group, 2010. IEC Smart Grid

Standardization Roadmap. http://www.iec.ch/smartgrid/
downloads/sg3_roadmap.pdf [Accessed on Nov. 20, 2016].

Soulier, P., Li, D., Williams, J.R., 2015. A survey of
language-based approaches to Cyber-Physical and em-
bedded system development. Tsinghua Sci. Technol.,
20(2):130-141.

 https://doi.org/10.1109/TST.2015.7085626
Srbljic, S., Skvorc, D., Popovic, M., 2012. Programming lan-

guages for end-user personalization of cyber-physical
systems. Automatika, 53(3):294-310.

 https://doi.org/10.7305/automatika.53-3.84
Stojmenovic, I., 2014. Machine-to-machine communications

with in-network data aggregation, processing, and actua-
tion for large-scale cyber-physical systems. IEEE IOT J.,
1(2):122-128.

 https://doi.org/10.1109/JIOT.2014.2311693
Tan, Y., Vuran, M.C., Goddard, S., 2009. Spatio-temporal

event model for cyber-physical systems. Proc. 29th IEEE
Int. Conf. on Distributed Computing Systems Workshops,
p.44-50. https://doi.org/10.1109/ICDCSW.2009.82

Valls, M.G., Lopez, I.R., Villar, L.F., 2013. iLand: an en-
hanced middleware for real-time reconfiguration of ser-
vice oriented distributed real-time systems. IEEE Trans.
Ind. Inform., 9(1):228-236.

 https://doi.org/10.1109/TII.2012.2198662
Vegh, L., Miclea, L., 2016. Secure and efficient communica-

tion in cyber-physical systems through cryptography and
complex event processing. Proc. Int. Conf. on Commu-
nications, p.273-276.

 https://doi.org/10.1109/ICComm.2016.7528290
Vicaire, P.A., Xie, Z., Hoque, E., et al., 2010. Physicalnet: a

generic framework for managing and programming
across pervasive computing networks. Proc. 16th IEEE
Real-Time and Embedded Technology and Applications
Symp., p.269-278.

 https://doi.org/10.1109/RTAS.2010.17
Vicaire, P.A., Hoque, E., Xie, Z., et al., 2012. Bundle: a

group-based programming abstraction for cyber-physical
systems. IEEE Trans. Ind. Inform., 8(2):379-392.

 https://doi.org/10.1109/TII.2011.2166772
Vrba, P., Radakovič, M., Obitko, M., et al., 2011a. Semantic

technologies: latest advances in agent-based manufac-
turing control systems. Int. J. Prod. Res., 49(5):1483-
1496. https://doi.org/10.1080/00207543.2010.518746

Sun et al. / Front Inform Technol Electron Eng 2017 18(10):1458-1478 1478

Vrba, P., Tichý, P., Mařík, V., et al., 2011b. Rockwell auto-
mation’s holonic and multiagent control systems com-
pendium. IEEE Trans. Syst. Man Cybern. C, 41(1):14-
30. https://doi.org/10.1109/TSMCC.2010.2055852

Vrba, P., Mařík, V., Siano, P., et al., 2014. A review of agent
and service-oriented concepts applied to intelligent energy
systems. IEEE Trans. Ind. Inform., 10(3):1890-1903.
https://doi.org/10.1109/TII.2014.2326411

Wan, J., Yan, H., Suo, H., et al., 2011. Advances in
cyber-physical systems research. KSII Trans. Internet
Inform., 5(11):1891-1908.

 https://doi.org/10.3837/tiis.2011.11.001
Wan, K., Alagar, V., Dong, Y., 2014. Specifying resource-

centric services in cyber physical systems. In: Yang, G.C.,
Ao, S.I., Huang, X., et al. (Eds.), Transactions on Engi-
neering Technologies. Springer Netherlands, Dordrecht,
the Netherland, p.83-97.

 https://doi.org/10.1007/978-94-007-7684-5_7
Wang, F.Y., 2008. Toward a revolution in transportation op-

erations: AI for complex systems. IEEE Intell. Syst., 23(6):
8-13. https://doi.org/10.1109/MIS.2008.112

Wang, T., Cheng, L., Zheng, K., 2012. Automatic and effec-
tive service provision with context-aware service com-
position mechanism in cyber-physical systems. Adv. In-
form. Sci. Serv. Sci., 4(11):151-160.

 https://doi.org/10.4156/AISS.vol4.issue11.18
Wang, Z.J., Xie, L.L., 2011. Cyber-physical systems: a survey.

Acta Autom. Sin., 37(10):1157-1166 (in Chinese).

Woo, H., Yi, J., Browne, J.C., et al., 2008. Design and de-
velopment methodology for resilient cyber-physical sys-
tems. Proc. 28th Int. Conf. on Distributed Computing
Systems Workshops, p.525-528.

 https://doi.org/10.1109/ICDCS.Workshops.2008.62
Wu, G., Sun, J., Chen, J., 2016. A survey on the security of

cyber-physical systems. J. Contr. Theory Technol.,
14(1):2-10. https://doi.org/10.1007/s11768-016-5123-9

Wu, L., Kaiser, G., 2012. An autonomic reliability improve-
ment system for cyber-physical systems. Proc. IEEE 14th
Int. Symp. on High-Assurance Systems Engineering,
p.56-61. https://doi.org/10.1109/HASE.2012.33

Xiao, K., Ren, S., Kwiat, K., 2008. Retrofitting cyber physical
systems for survivability through external coordination.
Proc. 41st Annual Hawaii Int. Conf. on System Sciences,
p.465-465. https://doi.org/10.1109/HICSS.2008.377

Zhao, C., Dong, W., Qi, Z., 2010. Active monitoring for con-
trol systems under anticipatory semantics. Proc. 10th Int.
Conf. on Quality Software, p.318-325.

 https://doi.org/10.1109/QSIC.2010.82
Zhou, X.S., Yang, Y.L., Yang, G., 2014. Modeling methods

for dynamic behaviors of cyber-physical system. Chin. J.
Comp. 37(6):1411-1423 (in Chinese).

Zhu, W., Zhou, G., Yen, I.L., et al., 2015. A PT-SOA model
for CPS/IoT services. Proc. IEEE Int. Conf. on Web
Services, p.647-654.

 https://doi.org/10.1109/ICWS.2015.91

	Yuan SUN†‡, Gang YANG, Xing-she ZHOU
	Abstract: Cyber physical systems (CPSs) incorporate computation, communication, and physical processes. The deep coupling and continuous interaction between such processes lead to a significant increase in complexity in the design and implementatio...
	Key words: Cyber physical system (CPS); Run-time supporting platforms; Component; Service; Agent
	1 Introduction
	2 Related work
	3 Classification
	3.1 Component-based platforms
	3.2 Service-based platforms
	3.3 Agent-based platforms

	4 Component-based CPS run-time supporting platforms
	4.1 CPS component model
	4.2 Construction and deployment of component- based CPS tasks
	4.3 Reconfiguration of component-based CPS tasks

	5 Service-based CPS run-time supporting platforms
	5.1 Description of CPS services
	5.2 Discovery of CPS services
	5.3 Composition of CPS services

	6 Agent-based CPS run-time supporting platforms
	6.1 CPS agents
	6.2 Evolution of CPS agents

	7 Comparison
	7.1 Comparison of construction approaches for CPS tasks
	7.2 Comparison of support for non-functional properties
	7.3 Best platform architectures in different application scenarios

	8 Conclusions and future research issues
	References

