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Abstract:    Cyber physical systems (CPSs) incorporate computation, communication, and physical processes. The deep coupling 
and continuous interaction between such processes lead to a significant increase in complexity in the design and implementation of 
CPSs. Consequently, whereas developing CPSs from scratch is inefficient, developing them with the aid of CPS run-time sup-
porting platforms can be efficient. In recent years, much research has been actively conducted on CPS run-time supporting plat-
forms. However, few surveys have been conducted on these platforms. In this paper, we analyze and evaluate existing CPS 
run-time supporting platforms by first classifying them into three categories from the viewpoint of software architecture: com-
ponent-based platforms, service-based platforms, and agent-based platforms. Then, for each type, we detail its design philosophy, 
key technical problems, and corresponding solutions with specific use cases. Subsequently, we compare existing platforms from 
two aspects: construction approaches for CPS tasks and support for non-functional properties. Finally, we outline several im-
portant future research issues. 
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1  Introduction 
 

The cyber physical system (CPS) (Lee, 2008; 
Sha et al., 2008; Rajkumar et al., 2010; Li RF et al., 
2012) is a recently emerging concept describing a 
broad range of next-generation engineered systems 
that tightly integrate computation, communication, 
and physical processes. For the past few years, with 
the continuous development and integration of such 
technologies as embedded computing, wireless sensor 
networks, and networked control, many complex 
systems have appeared in various application fields, 
such as smart grid, Internet of vehicles, and intelligent 
manufacturing systems. These systems deeply in-
tertwine cyber and physical spaces, and have signif-

icantly changed the manner in which people interact 
with the physical world. 

At the same time, the inherent complexity of 
CPSs challenges their design and implementation 
(Lee, 2008). In a CPS, computation and physical 
processes are deeply coupled and continuously in-
teract with each other. The events in the physical 
space are first reflected in the cyber space, where they 
are used to make control decisions that are returned to 
the physical space to adjust physical processes. To 
enable cooperation between computation and physi-
cal processes, we need to not only guarantee their 
correctness, reliability, and safety, but also consider 
the interplay between them. The highly dynamic na-
ture of both cyber and physical spaces necessitates 
that reorganization and reconfiguration are essential 
for a CPS to adapt itself to time-varying contexts. In 
addition, time-predictability is very important for CPSs. 
All the above-mentioned actions need to be con-
ducted in real time. As a consequence, developing 
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CPSs from scratch is not efficient.  
One efficient way to construct CPSs is to use 

CPS run-time supporting platforms. CPS run-time 
supporting platforms facilitate deployment, execution, 
and monitoring of CPS tasks. Using such platforms as 
a base, developers can concentrate on the core mis-
sions of the CPS tasks, and do not have to spend much 
time on common fundamental issues, thereby im-
mensely increasing the development efficiency. 

In both academic and industry communities, 
much attention has been paid to CPS run-time sup-
porting platforms. First, many research projects have 
been funded. In terms of the intelligent manufacturing 
system, SOCRADES (Karnouskos et al., 2009), IMC- 
AESOP (Karnouskos et al., 2010), and Artemis pro-
jects (Broy, 2013) are consecutively funded by the 
European Union (EU). In terms of the intelligent 
transportation system, important research projects 
include Moblie-C (Chen et al., 2009), aDAPTS 
(Wang, 2008), and NTuCab (Seow et al., 2010). In 
terms of smart grid, there have been many projects. 
One of the largest EU funded projects is the 
GRID4EU project (GRID4EU, 2012), which costs 54 
million euros. Second, several technology standards 
have been proposed. The AUTomotive Open System 
Architecture Standard (AUTOSAR) (AUTOSAR, 
2014) was proposed to describe automotive software. 
Several smart grid standardization studies have been 
conducted, such as US NIST IOP roadmap (Greer et 
al., 2014), IEC SMB SG 3 (SMB Smart Grid Strategic 
Group, 2010), and Microsoft SERA (Microsoft, 
2015). 

Summarizing existing research efforts is foun-
dation for further research on CPS run-time support-
ing platforms. In this paper, we comprehensively 
analyze and evaluate existing platforms. First, we 
classify existing platforms into three categories from 
the viewpoint of software architecture: component- 
based platforms, service-based platforms, and agent- 
based platforms. Next, we summarize existing work 
based on the above classification. For each type, we 
detail its design philosophy, key technical problems, 
and corresponding solutions with specific use cases. 
Then, we compare existing platforms from two as-
pects: construction approaches for CPS tasks, and 
support for non-functional properties. The compari-
son results show that existing platforms have both 
advantages and disadvantages as they are aimed at 

different application fields. To choose an appropriate 
platform architecture, the particular characteristics of 
the application field have to be well studied. 

 
 

2  Related work 
 

Many surveys have been conducted on CPSs to 
date. In general, these surveys can be roughly divided 
into two categories: surveys on general CPS problems 
and surveys on domain-related problems.  

In early CPS studies, much attention was paid to 
general CPS problems. Wang and Xie (2011) sum-
marized such issues as integration under heteroge-
neous environments, real-time, safety, and verifica-
tion. Li RF et al. (2012) discussed the main chal-
lenges associated with CPSs from the viewpoint of 
the computing system, network system, as well as 
control system, and subsequently surveyed recent 
research advances in available theories and technol-
ogies that can be used to design a CPS. Shi et al. 
(2011) and Wan et al. (2011) summarized recent work 
from such technological viewpoints as energy control, 
security control, transmission and management, con-
trol technique, system resource allocation, and mod-
el-based software design. Khaitan and McCalley 
(2015) surveyed recent advances in design technolo-
gies, security, resilience, reliability, quality of service 
(QoS), and real-time. In addition, there exist several 
specialized surveys on specific general CPS tech-
nology issues, such as testing (Asadollah et al., 2015), 
security (Wu et al., 2016), robustness (Hu et al., 
2016), language-based approaches to CPS develop-
ment (Soulier et al., 2015), and self-adaptation in 
CPSs (Muccini et al., 2016).  

With the gradual deepening of CPS research, 
domain-related problems have begun to receive an 
increasing amount of attention. Gunes et al. (2014) 
briefly discussed the research efforts in several ap-
plication fields, such as emergency response, air 
transportation, critical infrastructure, intelligent 
transportation, and robotic services. Moreover, more 
in-depth summaries in such domains as manufactur-
ing (Monostori et al., 2016), healthcare (Haque et al., 
2014), vehicular CPS (Jia et al., 2015), and smart 
grids (Macana et al., 2011) have been conducted. 

It is clear that virtually all the technology prob-
lems associated with the development of CPSs from 
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scratch are included in the surveys cited above. As 
discussed above, with the increasing difficulty in 
developing CPSs, building CPSs with the aid of 
run-time supporting platforms is more efficient. In 
recent years, an increasing number of studies have 
been conducted in this direction. However, few sur-
veys have been conducted on these studies. 

 
 

3  Classification 
 

Software run-time supporting technologies, e.g., 
Fractal (Bruneton et al., 2006), open services gateway 
initiative (OSGI) (Dobrev et al., 2002), and Java 
agent development framework (JADE) (Bellifemine 
et al., 2008), are more effective in handling the in-
creasing complexity compared to general software. 
These technologies have gradually matured over 
many years of development. In recent years, these 
mature technologies have gradually been receiving 
the attention of researchers in the field of CPSs. At 
present, virtually all technologies used in existing 
CPS run-time supporting platforms are modified 
versions of these well-developed ones. From the 
viewpoint of software architecture, we classify ex-
isting platforms into three categories: component- 
based platforms, service-based platforms, and agent- 
based platforms. In this section, we just give over-
views of the three types of platforms, and the concrete 
analyses of them are conducted in subsequent  
sections.  

3.1  Component-based platforms  

The design philosophy of component-based CPS 
run-time supporting platforms (Obermaisser and 
Huber, 2009; Dubey et al., 2011; Bures et al., 2013; 
Martínez et al., 2013; Acosta et al., 2014; Inam et al., 
2014; Levendovszky et al., 2014; Ni et al., 2014) is 
rooted in component-based software engineering. In 
these types of platforms, CPS components are em-
ployed to encapsulate low-level operations in both 
cyber and physical spaces, and CPS tasks comprise a 
set of CPS components. The critical technical prob-
lems in these types of platforms usually exist in as-
pects such as CPS component construction, con-
struction and deployment of CPS tasks, and recon-
figuration of CPS tasks. Provision of real-time sup-
port and decoupling are the main challenges of CPS 

components. The deployment mechanism is required 
to provide support for robustness, autonomy, and 
real-time. Because of the low flexibility of traditional 
components, integrating reconfiguration mechanisms 
into these types of platforms is very essential.  

Distributed real-time managed systems (DREMS) 
(Levendovszky et al., 2014) is a typical component- 
based CPS run-time supporting platform. It is aimed 
at distributed and mobile scenarios, e.g., clusters of 
satellites, or swarms of unmanned aerial vehicles 
(UAVs). As depicted in Fig. 1, the supporting soft-
ware is distributed across the nodes of the system. 
Each node in the system manages multiple types of 
devices and the nodes can interact with each other 
through communication devices managed by them-
selves. CPS components are hosted by actors, which 
are specialized operating system (OS) processes. 
Actors can run in parallel, and can be migrated from 
node to node. Actors are configured and managed by 
the deployment manager, a privileged actor installed 
on each node of the system. The OS and middleware 
are responsible for performance isolation between 
actors of different tasks.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2  Service-based platforms 

The design philosophy of service-based CPS 
run-time supporting platforms (Cucinotta et al., 2009; 
Huang et al., 2009b; Mendes et al., 2010; Vicaire et 
al., 2010; Dillon et al., 2011; Wang et al., 2012) was 
borrowed from service oriented architecture (SOA) 
technology (Papazoglou and Heuvel, 2007). As a 
consequence, it inherits several advantages of SOA 
technology, such as loose coupling and flexibility. 
CPS services, which integrate the abilities of physical 
entities and related software, are treated as basic 
structural units of CPS tasks. In general, service- 

Fig. 1  A component-based CPS run-time supporting 
platform (Levendovszky et al., 2014) 
Comp: component; OS: operating system 
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based platforms have three layers: service provision 
layer, service repository layer, and CPS task execu-
tion layer. In the service provision layer, the functions 
of both physical devices and related software are 
abstracted into CPS services. The main challenge in 
this layer is how to describe CPS services. CPS ser-
vices are registered and discovered in the service 
repository layer. The CPS task execution layer pro-
vides an execution environment for CPS tasks. A 
service selection or composition mechanism is usu-
ally required in this layer. 

Fig. 2 depicts a typical service-based CPS 
run-time supporting platform (Mendes et al., 2010), 
which is designed for an industrial automation system. 
The industrial equipment in the system is managed by 
smart embedded devices, which interact with each 
other by the service bus. An automation entity is a 
software component inside a smart embedded device. 
Smart embedded devices serve as brokers between 
the industrial equipment and the platform. First, they 
are responsible for controlling and coordinating ac-
cesses to the industrial equipment. Second, they ex-
pose the functions of the industrial equipment as CPS 
services. Third, they can compose multiple CPS ser-
vices into higher ones using their internal orchestra-
tion engines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3  Agent-based platforms 

Agent-based CPS run-time supporting platforms 
(Lin et al., 2011; Vrba et al., 2011b; Leitão, 2013; 
Giordano et al., 2016) are currently applied in fields 
where both local autonomy and global collaboration 
have to be considered. The underlying design phi-
losophy of these types of platforms is derived from 
agent-based software engineering (Leitão et al., 2013). 

CPS agents are used to manage autonomous entities 
in the system, and CPS tasks need the collaboration of 
the sets of CPS agents. CPS tasks are usually also 
designed as CPS agents—the so-called ‘CPS task 
agents’. CPS task agents can use other CPS agents in 
negotiations. CPS agent construction and evolution of 
CPS agents are the main technical points in these 
types of platforms. Traditional agents have short-
comings in aspects such as real-time, heterogeneity, 
and dynamics, which have to be considered and han-
dled during CPS agent construction. 

A typical agent-based CPS run-time supporting 
platform (Hsieh, 2010) is depicted in Fig. 3. It is de-
signed for a holonic manufacturing system. The 
manufacturing resources, production management 
entities, and order management entities in the system 
are encapsulated as three different types of CPS 
agents. These CPS agents interact with each other by 
the agent communication language (ACL), which was 
proposed by the Foundation for Intelligent Physical 
Agents (FIPA). The directory facilitator is used to 
publish and discover the CPS agents’ abilities. The 
agent management system is responsible for naming, 
locating, and controlling the CPS agents. The mes-
sage transport service is employed to communicate 
with other platforms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4  Component-based CPS run-time support-
ing platforms 

4.1  CPS component model 

Existing studies on CPS components focus on the 
following two aspects: (1) In a CPS, non-functional 
properties such as real-time are equally important as 

Fig. 2  A service-based CPS run-time supporting platform 
(Mendes et al., 2010) 
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functional features; (2) Existing components use in-
terfaces to interact with each other, leading to strong 
dependence between components.  

4.1.1  Real-time component 

Currently, only a few CPS components support 
hard real-time operation. The ARINC-653 component 
model (ACM) (ARINC-653 is a software specifica-
tion for space and time partitioning in safety-critical 
avionics real-time operating systems) (Dubey et al., 
2011) and real-time container component model 
(RT-CCM) (Martínez et al., 2013) are two such 
components. Both components are based on the 
Lightweight CORBA (common object request broker 
architecture) component model (LwCCM) and are 
very similar. The differences between them lie in the 
number of ports and the component configuration. An 
RT-CCM component has only two kinds of ports, 
facetport and recepport, while an ACM component 
has two additional kinds of ports besides RT-CCM. In 
respect of component configuration, RT-CCM pro-
vides a series of configurable properties, which are 
assigned to concrete values during component in-
stantiation. In addition to configurable properties, 
ACM provides another kind of property: state varia-
bles. The value of a state variable cannot be modified 
outside the component; therefore, it can be used to 
monitor the internal state of a component from outside.  

To provide real-time support, an RT-CCM 
component is designed as an active component. Ac-
tive components can not only be invoked through 
facetport, but also respond to external or timed events. 
These responses are implemented by the components 
themselves and must be declared beforehand. More-
over, these responses are triggered inside the com-
ponents, and have nothing to do with invocations 
from other components; however, they can invoke 
other components that are connected to the recepport.  

4.1.2  Independent component 

The dependable emergent ensembles of com-
ponents (DEECo) (Bures et al., 2013) is aimed at 
dealing with the inherent difficulties in large-scale 
distributed CPSs, such as dynamics, openness, and 
autonomy. Compared to traditional components, a 
DEECo component system has strong independence. 
There are two key concepts in a DEECo component 
system: component and ensemble. Components are 

independent of each other regardless of whether the 
procedure is development, deployment, or execution. 
Components comprise knowledge and expose their 
functionalities as interfaces and processes. Ensembles 
are employed to link a group of components and 
manage their interactions. To reduce coupling and 
improve independence, DEECo components com-
municate with each other in the knowledge exchange 
process carried out by ensembles. Moreover, Bures et 
al. (2014) integrated gossip-based communication 
into DEECo components to further improve their 
independence. 

4.2  Construction and deployment of component- 
based CPS tasks 

In general, CPS tasks are first constructed and 
then deployed to run-time supporting platforms. In 
the construction procedure, the developer must decide 
on the composition of CPS tasks, connections be-
tween components, values of configurable properties, 
resources that have to be reserved, etc. Then, these 
pieces of information are used to generate a deploy-
ment plan, which guides the deployment procedure. 
The challenges in the construction and deployment 
procedures lie in aspects such as real-time (Martínez 
et al., 2010; Inam et al., 2014), robustness (Pradhan et 
al., 2014), and autonomy (Pradhan et al., 2014).  

Inam et al. (2014) proposed a construction and 
deployment specification for real-time CPS tasks. 
The proposed specification is modified from the real- 
time CORBA specification. On one hand, metadata 
about the temporal behaviors and resource require-
ments of components are added to the real-time 
CORBA specification, and the component based 
software engineering-modelling and analysis suite for 
real-time applications (CBSE-MAST) (Lopez et al., 
2006) is used to analyze the temporal behaviors of 
both components and tasks. On the other hand, 
metadata about the resources in the platform are also 
added. On the basis of the metadata, the schedulabil-
ity aanalysis of real-time CPS tasks can be performed. 
Thus, the feasibility of current CPS task construction 
procedures can be verified. 

Martínez et al. (2010) presented a runnable vir-
tual node (RVN) based two-stage component inte-
gration approach. In the proposed approach, at the 
first stage, RVNs are first constructed by mapping 
task sets to CPU-time partitions and assigning priori-
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ties to the task sets. Then, the time constraints of the 
RVNs are verified through simulation, test, or local 
schedulability analysis. At the second stage, RVNs 
are connected together, and the priorities of CPU-time 
partitions are assigned. Subsequently, a global dis-
patcher is employed to conduct global schedulability 
analysis. Finally, if the priority assignments are 
proved to be feasible, all codes generated in the two 
stages are compiled and linked with OS and mid-
dleware binaries. In this way, real-time CPS tasks are 
generated. 

In distributed and mobile CPSs, e.g., clusters of 
satellites or swarms of UAVs, the deployment of CPS 
tasks is required to be conducted autonomously. This 
is necessary because the dynamic nature of these 
systems is so high that even the task deployment 
procedure could be influenced. Therefore, human 
intervention to address the difficulty is not very easy. 
Pradhan et al. (2014) proposed a resilient and au-
tonomous deployment infrastructure in which all the 
nodes of systems are installed with three modules: 
deployment manager, component server, and group 
member monitor. The deployment infrastructure is 
composed of all the deployment managers. Group 
member monitors maintain group membership in-
formation and detect the failures of its members. The 
multi-staged deployment process employed is de-
picted in Fig. 4. All the nodes in the group have the 
opportunity to receive the deployment plan. The node 
that first receives the deployment plan becomes the 
deployment leader automatically. This leader is re-
sponsible for initiating the deployment process, ana-
lyzing the plan, and allocating deployment actions. 

4.3 Reconfiguration of component-based CPS 
tasks 

As is well-known, CPSs operate in dynamic and 
uncontrollable environments. The topologies of CPSs 
are dynamic as failures of nodes or communication 
links can cause changes. Further, the available re-
sources and missions of CPS tasks can change at 
times. This high dynamic nature makes reconfigura-
tion of CPS tasks absolutely essential, especially for 
component-based CPS tasks.  

A runtime@model (Morin et al., 2009) based 
reconfiguration is used in u-kevoree (Acosta et al., 
2014). The concept of runtime@model is based on the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
idea of reflection. It allows changing the composition 
of tasks and connections between components. Spe-
cifically, u-kevoree provides four kinds of adaptation 
abilities: parametric adaptation, architectural adapta-
tion, dynamic provision of component types, and 
adaptation for remote management. u-kevoree uses an 
adaptation engine as a core module to perform adap-
tation. During the reconfiguration process, a delta- 
model is first obtained through model comparison, 
and then a script for safe system reconfiguration is 
generated according to the delta-model. Finally, the 
script is executed to complete the adaptation. 

Axelsson and Kobetski (2014) proposed a ver-
sion updating based reconfiguration mechanism. In 
the proposed mechanism, all components are stored in 
a publicly accessible server. Further, components are 
downloaded to nodes according to the requirements 
of tasks. Inside nodes, components are executed in a 
special environment. The server is also responsible 
for maintaining components, including component 
recovery when failures occur, and updating compo-
nents when new versions appear. Note that a task can 
be reconfigured only to a certain extent in this manner. 
Afanasov et al. (2014) presented a context-oriented 
reconfiguration mechanism. In their mechanism, the 
environment is abstracted as a set of contexts, and 
every context is associated with a group of behaviors. 
Layer functions, a core concept in this mechanism, 
are built on the basis of contexts and context-related 
behaviors. By embedding layer functions into exist-
ing components, a reconfiguration of CPS tasks is 
achieved. 

 

Fig. 4  A multi-staged deployment and configuration pro-
cedure (Pradhan et al., 2014) 
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5  Service-based CPS run-time supporting 
platforms 

5.1  Description of CPS services 

CPS services integrate operations in both cyber 
and physical spaces. Describing CPS services in-
volves defining functionalities and non-functional 
properties of CPS services. 

Traditional service models, such as web services 
description language (WSDL) (Curbera et al., 2002) 
and web ontology language for services (OWL-S) 
(Martin et al., 2005), cannot be directly employed to 
describe CPS services, because these models are de-
signed for general software services and cannot de-
scribe the particular characteristics of CPS services. 
First, operations in the physical space are integrated 
into CPS services, and these operations are sensitive 
to the surrounding environment. Therefore, the usa-
bility of CPS services is closely associated with the 
environment. Second, some physical devices could 
provide more than one CPS service, but these CPS 
services cannot always execute at the same time due 
to the intrinsic features of the physical devices. Third, 
physical devices always have their own working areas. 
Beyond these areas, CPS services provided by the 
physical devices have no meaning.   

Huang et al. (2009a) first extended OWL-S 
(Martin et al., 2005) to develop a context-sensitive 
resource-explicit CPS service model. In the model, 
providers of CPS services are modeled as physical 
resources, which can be specified by three properties: 
profile, context, and services. A CPS service descrip-
tion consists of four parts: process, profile, grounding, 
and context. Further, both physical resources and 
services must declare their constraints. The relation-
ships between the CPS services provided by the same 
physical resource, such as ‘concurrence’ and ‘exclu-
sivity’, are important constraints of physical re-
sources.  CPS services not only inherit the constraints 
of their providers, but also can define their specific 
constraints. 

Huang et al. (2009b) subsequently presented a 
context-sensitive service model based on physical 
entity ontology. In the service model, physical entities 
are hierarchically organized according to their rela-
tionships. In terms of context, two new constraints, 
context precondition and context effect, are incorpo-
rated and treated as a complement to traditional ser-

vice provision constraints, namely precondition and 
effect. In general, service provision constraints in the 
model are divided into two categories: context-free 
constraints and context-sensitive constraints. The 
former are described by precondition and effect, 
whereas the latter are described by context precondi-
tion and context effect. The service models presented 
by Huang et al. (2010) and Wang et al. (2012) are 
similar to this service model. 

Jin et al. (2014) proposed a service model that 
can define time- and space-related characteristics. 
Their model has three main concepts: device, re-
source, and service. All the main concepts are asso-
ciated with the time or space property. The concept of 
available time is used to define the time slots when a 
CPS service is running because a CPS service is not 
always available. Because physical devices can pro-
vide CPS services only in certain areas, the concept of 
‘working range’ is used to define it. Zhu et al. (2015) 
studied the effect of CPS services and proposed a 
concept called ‘AppliedTo’ to express the fact that 
after the execution of a CPS service, the context of 
some physical entities may change. 

5.2  Discovery of CPS services 

A service discovery mechanism is employed to 
efficiently find a set of published services that meet 
the given requirements. Because the scale of CPSs is 
continuously increasing (Stojmenovic, 2014), the 
main challenge of service discovery is how to keep its 
scalability. That is, as the system size increases, the 
discovery procedure should be as efficient as possible, 
and the computation and communication overhead 
should be as small as possible.  

Universal plug and play (UPNP) (Miller et al., 
2001) is a device-level SOA technology. In UPNP, 
devices are abstracted as services, and service adver-
tisement and discovery are performed using multicast 
messages. These multicast messages are transmitted 
periodically, resulting in rapid energy consumption 
and much unnecessary network traffic. Park et al. 
(2013) introduced the concept of control device 
manager (CDM) to handle UPNP. In each region of 
the system there is at least one CDM, which is re-
sponsible for managing all the devices in the region. A 
device needs only to register its services in one of the 
CDMs located in the region. In this way, these peri-
odic multicast messages are transmitted merely over 



Sun et al. / Front Inform Technol Electron Eng   2017 18(10):1458-1478 1465 

the network consisting of all the CDMs in the system. 
Thus, the number of messages and the energy con-
sumption speed of the device’s battery can be signif-
icantly reduced. 

From the view of service registry, CDMs behave 
as decentralized service repositories because one 
CDM maintains only a part of the overall service 
information of the system. This kind of decentralized 
service registry was also used by Vicaire et al. (2010), 
Dillon et al. (2011), and Li et al. (2011). Sometimes a 
CDM is also called a ‘discovery proxy’ (Jammes et al., 
2005). A discovery proxy is usually hosted by the 
node with strong computation and storage capacities 
(Park et al., 2013). If gateway nodes exist in the sys-
tem, it can also be hosted by a gateway (Vicaire et al., 
2010; Dillon et al., 2011; Li et al., 2011).  

Wang et al. (2012) considered centralized ser-
vice repositories. As only one service repository 
contains the information of a huge number of services, 
searching for the required services in this kind of 
large dataset is very time-consuming. Thus, they 
proposed to build a service aggregation graph to 
speed up the service search process. In this method, 
services with similar service functionality are 
grouped into a service spanning tree (SST), and all the 
generated SSTs compose the service aggregation 
graph. Common clustering algorithms, such as 
k-means, could be employed to obtain the two-layer 
service aggregation graph, but Wang et al. (2012) did 
not provide details on how to use the service aggre-
gation graph to achieve efficient service search. 

Hellbruck et al. (2013) presented a named ser-
vice bus to eliminate the need for explicit service 
registration or a global service repository. The basic 
idea underlying this method is discovery of a service 
by its name. In this method, CCN-daemons, which act 
as a bridge between services and service consumers, 
are key components. A service needs only to locally 
register itself at a CCN-daemon by its name prefixes. 
CCN-daemons store the mapping relations between 
name prefixes and services in forward information 
bases (FIBs). Service requests, encoded as CCN in-
terests, are first submitted to the local CCN-daemon. 
If there is no locally available service, the local 
CCN-daemon looks for matching entries in its FIB 
and forwards the CCN interests to another CCN- 
daemon. Once obtaining the former CCN interests, 
the CCN-daemon performs the same operation as 

above until the required services are found. 

5.3  Composition of CPS services 

CPS tasks are composed of a number of CPS 
services. In general, the composition of CPS services 
falls into three categories: static composition, dy-
namic composition, and composition at design time.  

In static composition, the operations of the CPS 
task and the functionality requirements in each oper-
ating step are clear, but the CPS service to be invoked 
in each step is unknown. At runtime, static composi-
tion is reduced to service selection. Because a CPS is 
a highly dynamic system, context information is very 
important for selecting the most appropriate CPS 
service.  

Wang et al. (2012) proposed a static service 
composition mechanism that exploits the workflow 
business logic model to build an abstract process 
graph (APG) of the task. An APG is composed of a set 
of functionality services and their relations. The 
functionality services are simply placeholders that are 
subsequently replaced with appropriate concrete ser-
vices. This service composition mechanism is com-
posed of two phases: service filtering and service 
selection optimization. In the first phase, to eliminate 
improper services as early as possible, all the SSTs 
need to perform service filtering based on an elabo-
rately constructed context filtering rule. Services 
matching the filtering rule are filtered out, and the 
remaining services are treated as candidate services. 
In the second phase, the selection procedure is re-
duced to a combinatorial optimization problem with 
QoS. Because the number of candidate services is 
very low, the combinatorial optimization problem can 
be solved quickly. 

In dynamic service composition, nothing is 
known except the goal of the CPS task. In this situa-
tion, artificial intelligence (AI) planning can be used 
to perform service composition. Given the initial state 
of a task, its goal, and all possible operations, AI 
planning can be used to find an operation sequence 
fulfilling the goal of the task. 

Huang et al. (2009b) proposed an iterative two- 
stage AI planning based dynamic service composition 
approach. In the proposed approach, the AI planning 
step consists of two stages: abstract composition and 
physical composition. In the abstract composition 
stage, CPS services are selected according to their 
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functionalities, while context related constraints are 
omitted. An abstract planning framework is obtained 
at the end of abstract composition. In the physical 
composition stage, concrete CPS services are selected 
by considering context information. Note that it is an 
iterative approach. Whenever the goal of a CPS task 
or the precondition of any CPS service is not satisfied, 
an AI planning step is initiated. 

Composition in design time (Puttonen et al., 
2008; Mendes et al., 2010) is useful in scenarios 
where a CPS task needs to be analyzed before it is 
executed. In this composition approach, both the CPS 
services that will be invoked and the working process 
of the CPS task are known. Mendes et al. (2010) used 
this composition approach in a proposed industrial 
automation system. In their system, a CPS service is 
modeled as a Petri net, and thus the composition of 
the CPS services becomes synchronizations between 
two or among more Petri nets. Specifically, synchro-
nization is realized by adding a connection logic that 
connects the transitions of two Petri nets. 

 
 

6 Agent-based CPS run-time supporting 
platforms 

6.1  CPS agents 

General software agents have been investigated 
for decades, and many technical specifications for 
them have been proposed by FIPA. However, they are 
still unfit for CPSs because they do not support the 
particular characteristics of CPSs. In recent years, 
agents specialized for CPSs have received much at-
tention from researchers.  

First, a great majority of CPS tasks have very 
strict time constraints, and some low-level control 
tasks can be executed only on dedicated hardware. 
Provision of real-time support is an important prob-
lem. Several solutions have been proposed (Lepus-
chitz et al., 2009; Vrba et al., 2011b; Ferreira et al., 
2013). Vrba et al. (2011b) presented a real-time 
guaranteed CPS agent, called a ‘holonic agent’  
(Fig. 5). A holonic agent contains three core modules: 
high-level control module (HLC), low-level control 
module (LLC), and control interface. The HLC makes 
high-level control decisions for the overall agent. The 
LLC directly interacts with actuators, and its control 
tasks directly run on programmable logic controllers 

(PLC). Therefore, real-time operation can be guar-
anteed. The HLC communicates with the LLC 
through a control interface. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Second, it is envisioned that with the emergence 

of more general CPSs, the demand to integrate a CPS 
with existing heterogeneous engineered systems, such 
as enterprise systems and wireless sensor networks 
(WSNs), will be very strong (Stojmenovic, 2014). 
Nevertheless, existing agents have more defects in 
interoperability compared to services. In recent years, 
enhancing the interoperability of CPS agents by in-
corporating them with services has raised concerns 
(Mendes et al., 2009; Leitão, 2013). A service- 
oriented CPS agent for an intelligent manufacturing 
system was presented by Leitão (2013). Unlike tradi-
tional agents, the abilities of CPS agents are exposed 
as a number of CPS services. Such CPS agents not 
only can keep their autonomy, but also inherit strong 
interoperability from services.  

Third, some researchers argue that existing agent 
communication technologies (e.g., ACL) can guar-
antee only syntactic interoperability. To enable such 
interoperability, several implicit semantics have to be 
embedded in implementations of existing agents 
(Vrba et al., 2011a). Therefore, existing agents have 
difficulty in understanding new knowledge. Because 
a CPS is a highly dynamic system, when using ex-
isting agents in a CPS, improvement of their adapta-
tion abilities is very important. Integrating CPS 

Fig. 5  The structure of a holonic agent (Vrba et al., 2011b) 
ACS: autonomous cooperative system; HLC: high-level con-
trol module; PLC: programmable logic controllers; LLC: 
low-level control module 
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agents with explicit semantics is an effective ap-
proach (Al-Safi and Vyatkin, 2007; Lin et al., 2011; 
Vrba et al., 2011a). Such agents are sometimes called 
‘semantic CPS agents’. Semantic CPS agents can not 
only understand knowledge directly described by 
ontology, but also reason out new facts from ontology. 
If the ontology is extended with new knowledge, 
semantic CPS agents can understand the new 
knowledge immediately without any modification to 
their current implementations. 

6.2  Evolution of CPS agents 

With the scale of CPSs increasing and the au-
tonomy of CPSs being enhanced, CPSs are faced with 
an increasing number of uncertainties, such as dis-
turbances and failures. It requires not only that CPS 
agents be able to adjust their own behaviors, but also 
that a set of CPS agents can evolve through coopera-
tion. In this aspect, many different approaches are 
available.  

Hsieh (2010) investigated the evolution problem 
when resources fail. To avoid system disorders, they 
proposed an evolution mechanism based on four 
types of CPS agents: detector agent, initiator agent, 
standby agent, and optimizer agent. The CPS agent 
that first detects a resource failure becomes a detector 
agent. Because failures will inevitably block some 
agents, the CPS agent that is the first to be blocked 
becomes an initiator agent. An initiator agent has two 
duties. First, it must send requests to other CPS agents 
for discharge of contract; the CPS agents that agree 
with the discharge become standby agents. Second, it 
must send requests to the primary optimizer. The 
primary optimizer then appoints a CPS agent as an 
optimizer agent that performs optimal reconfiguration 
on the basis of available resources.  

Leitão and Restivo (2006) proposed a reorgani-
zation mechanism combining hierarchical and heter-
archical control approaches. In this mechanism, re-
organization is defined as a transformation of the 
system between the static state and transitory state. In 
the static state, the system is hierarchically organized, 
and high-level agents autonomously manage its 
low-level agents. When disturbances or failures occur, 
agents first try to recover themselves. If a failure, they 
increase their autonomy factors and propagate their 
reorganization requirements to other agents in the 

form of pheromone. The agents that sense the pher-
omone continue to propagate the pheromone until 
some agent decides to reorganize the system. At this 
point, the system is transformed to the transitory state. 
In the transitory state, the system is heterarchically 
organized, and top-level agents directly manage the 
lowest-level agents. Then, the recovery procedure is 
initiated. When the pheromone disappears, the system 
is transformed to the static state again. 

Self-organization and chaos theory have been 
employed to conduct evolution of CPS agents by 
Barbosa et al. (2015). Self-organization consists of 
behavioral self-organization and structural self- 
organization. Behavioral self-organization is smooth 
evolution. CPS agents can select appropriate behavior 
at any time according to their states and the envi-
ronment. Structural self-organization is dramatic 
evolution. Its evolution goal is to maintain the stabil-
ity of the overall system. The self-organization 
mechanism inside CPS agents is composed of three 
main parts as depicted in Fig. 6: monitoring module, 
discovery module, and reasoning module. The moni-
toring module is used to collect the system state. The 
discovery module is responsible for predicting new 
events according to the system state. Both events and 
the system state are employed to perform behavioral 
and structural reasoning. The reasoning results are 
entered into a nervousness stabilizer to avoid system 
disorders. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  A self-organization mechanism in a CPS agent 
(Barbosa et al., 2015) 
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7  Comparison 
 
Existing CPS run-time supporting platforms are 

realized mainly for specific application fields. Their 
design and implementation measures differ signifi-
cantly, leading to much difficulty for researchers to 
choose an appropriate reference. Thus, in the following 
subsections, we first compare existing CPS run-time 
supporting platforms, and then discuss the best plat-
form architectures in different application scenarios.  

7.1  Comparison of construction approaches for 
CPS tasks 

In general, during CPS task construction pro-
cedures, three things need to be decided: (1) How to 
realize structural units of CPS tasks? (2) How to make 
structural units interact with each other? (3) How to 
compose a number of structural units into CPS tasks?  

7.1.1  Realization of structural units 

There are three kinds of measures to realize 
structural units of CPS tasks: CPS component, CPS 
service, and CPS agent. The main differences among 
the three types of structural units lie in aspects such as 
applicable scenario and realization difficulty. From 
the aspect of applicable scenario, CPS components 
and services are fit to encapsulate not only simple 
operations (Vicaire et al., 2010; Fouquet et al., 2012) 
but also complex operations comprising a number of 
simple operations (Cucinotta et al., 2009; Martínez et 
al., 2013; Levendovszky et al., 2014), whereas CPS 
agents are fit to encapsulate more complex operations 
that are required to be controlled and managed by 
themselves (Lin et al., 2011; Giordano et al., 2016). 
From the aspect of realization difficulty, CPS agents 
are obviously more complicated than CPS compo-
nents and CPS services, thus needing more time to 
realize.  

7.1.2  Interaction between structural units 

The interaction between structural units can be 
conducted in three ways: interface, standardized 
protocol, and knowledge. Interfaces, which define the 
data types of all input and output parameters, are 
primarily used to invoke CPS components. CPS ser-
vices are invoked through a standardized protocol 
(e.g., WSDL). In essence, a standardized protocol can 
be treated as a kind of complex interface. Using this 

standardized method, we can clearly describe the 
structural units with more complicated functionalities, 
and can also perform various kinds of interactions. 
The communication between CPS agents can also be 
conducted through a standardized protocol (e.g., 
FIPA-ACL). Note that by using such standardized 
methods, we can decouple the interdependences be-
tween structural units to a substantial degree. To fur-
ther lower the coupling, knowledge-based interaction 
is used (Kim et al., 2013; Bures et al., 2014), and in 
several situations, ontology is even employed to ex-
press the knowledge (Lin et al., 2011).  

7.1.3  Composition of structural units 

The composition of structural units can be 
roughly divided into three categories: fully static 
composition (Cucinotta et al., 2009; Vicaire et al., 
2010; Martínez et al., 2013; Acosta et al., 2014), fully 
dynamic composition (Huang et al., 2009b), and  
dynamic-static hybrid composition (Wang et al., 2012; 
Leitão, 2013). Fully static composition can be used 
for all kinds of structural units. Its characteristic is 
that structural units are statically connected with each 
other before running. At present, CPS tasks that need 
early analysis are usually constructed in this manner. 
For example, we can perform schedulability analysis 
during the fully static composition procedure.  

Fully dynamic composition and dynamic-static 
hybrid composition are usually used for CPS services 
and CPS agents. CPS services and agents have not 
only static properties, but also dynamic properties, 
which are related to the context or environment.  
Because fully static composition is performed before 
the execution of a CPS task, it cannot use the dynamic 
properties. Nevertheless, fully dynamic composition 
and dynamic-static hybrid composition can employ 
both static and dynamic properties. In dynamic-static 
hybrid composition, the operational steps of the CPS 
task can be known before execution, but the structural 
units that will be invoked are not known before 
runtime. In fully dynamic composition, only the goal 
of the CPS task is known. Thus, AI planning is usu-
ally used to obtain the operating steps of the CPS task 
at runtime.  

Moreover, not all CPS tasks are constructed by 
composition of structural units. In several platforms, 
CPS tasks can be built by programming frameworks 
using provided system-level application program-
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ming interfaces (APIs) (Srbljic et al., 2012; Vicaire et 
al., 2012; Kim et al., 2013), and executed in corre-
sponding run-time environments.  

7.1.4  Summary 

From the aspect of autonomy, CPS agents are 
better than CPS components and CPS services be-
cause autonomy is an essential attribute of CPS agents. 
In general, we consider that CPS services have stronger 
interoperability than CPS agents (Leitão, 2013), and 
that CPS agents have stronger interoperability than 
CPS components. If semantics is integrated, both CPS 
services and CPS agents will have the strongest  
interoperability. 

Fully static composition can be used for all kinds 
of structural units, while fully dynamic composition 
and dynamic-static hybrid composition are usually 
used for CPS services and CPS agents. Because fully 
static composition cannot leverage dynamic proper-
ties, and fully dynamic composition and dynamic- 
static hybrid composition can employ dynamic prop-
erties, CPS services and CPS agents have stronger 
adaptability than CPS components. These com-
parision results are listed in Table 1.  

 

 

7.2 Comparison of support for non-functional 
properties  

The following performance indicators are used 
in the comparison: real-time, reconfigurability, 
scalability, context-awareness, resilience, and security.  

7.2.1  Real-time 

In general, there are two kinds of real-time ac-
tivities: hard real-time activity and soft real-time 
activity. A hard real-time activity must always be 
completed before its deadline (Buttazzo, 2011); oth-
erwise, the correctness of the entire system may be 
influenced. A soft real-time activity has fewer critical 

requirements; also, it should be completed before its 
deadline. If the deadline is missed, there will be no 
catastrophic outcome, excepting that the QoS of the 
system may be influenced. 

Providing real-time support in run-time sup-
porting platforms is onerous. Only a few platforms 
have such ability (Cucinotta et al., 2009; Dubey et al., 
2011; Vrba et al., 2011b; Martínez et al., 2013; Wu et 
al., 2016). An active component-based approach was 
presented by Martínez et al. (2013). To build real- 
time CPS tasks on the basis of their approach, a cor-
responding task construction and deployment mech-
anism is needed. Note that the real-time CPS task 
construction procedure is fully static and cannot be 
applied in highly dynamic scenarios. Cucinotta et al. 
(2009) proposed a QoS negotiation mechanism. With 
the web services agreement framework (Aiello et al., 
2005), service providers and service requestors can 
negotiate the QoS level. Because allocations of CPU 
time are based on a reservation-based scheduling 
framework, the key issue during the negotiations is 
the choice of appropriate scheduling parameters for 
service providers. If the current QoS level cannot be 
met, the service provider will decrease the QoS level 
in the next negotiation. Note that such a QoS negoti-
ation mechanism is used only for soft real-time  
activities. 

7.2.2  Reconfigurability 

Existing research on adaptability is focused on 
two aspects: reconfiguration of CPS tasks and scala-
bility of run-time supporting platforms. For CPS task 
reconfiguration, many different approaches exist. 
Acosta et al. (2014) employed a model comparison 
approach. In their approach, the difference between a 
new model and an old model, the so-called ‘delta- 
model’, is first compiled to a reconfiguration script. 
Then, the script is executed to reconfigure the CPS 
task. Vicaire et al. (2010) and Bures et al. (2013) 
conducted reconfiguration by adjusting the members 
of the group. Barbosa et al. (2015) investigated an 
evolution-based reconfiguration mechanism. Real- 
time operation is still important in the CPS task  
reconfiguration. Valls et al. (2013) proposed an  
approach for reconfiguration of service-based soft 
real-time systems. In their approach, reconfiguration 
is viewed as a transformation of a CPS task from an 
execution graph to another graph. In the approach, a 

Table 1  Comparison of three types of structural units 

Structural 
unit Autonomy Interoperability Adaptability 

CPS com-
ponent ● ● ● 

CPS  
service ●● ●●● ●● 

CPS agent ●●● ●● ●● 
The number of black spots is used to indicate the degree of such 
aspects as autonomy, interoperability, and adaptability 
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reconfiguration manager first expands an application 
graph, and then performs an admission control test on 
the expanded graph to obtain a schedulable expanded 
graph. Finally, a service composition module chooses 
an appropriate path from the schedulable expanded 
graph as the new execution graph of the CPS task. All 
the operations are performed in a time-bounded 
manner. 

7.2.3  Scalability 

Many CPS scalability studies have been con-
ducted (Vicaire et al., 2010; Li et al., 2011; Bures et 
al., 2013; Hellbruck et al., 2013; Park et al., 2013; 
Bures et al., 2014). The common method used to 
enhance scalability is replacing centralized control 
with decentralized control. Vicaire et al. (2010) and 
Li et al. (2011) used a gateway to locally manage 
some of the physical devices in the system. Park et al. 
(2013) chose devices with strong computation and 
storage capacity as discovery proxies for local regions. 
By adding more local managers, increases in the scale 
of the system can be easily accommodated. However, 
such a decentralized solution is not fit for highly  
dynamic scenarios. Consequently, knowledge-based 
approaches have been proposed. Bures et al. (2014) 
proposed integration of gossip-based communication 
into DEECo components. In the proposed approach, 
membership evaluations for DEECo components are 
conducted by propagating the knowledge of DEECo 
components. Thus, local managers are not needed. 
The named service bus (Hellbruck et al., 2013) is also 
a knowledge-based approach. In this approach, the 
FIBs are constructed by sharing knowledge between 
all the nodes of the system. 

7.2.4  Context-awareness 

Context in CPSs refers to physical resources and 
environment. As we have discussed, physical re-
sources and environment are more important in CPSs 
than in general software systems. First, CPS structural 
units are integrations of many low-level operations in 
cyber and physical spaces, such as sensing, compu-
ting, communicating, and actuating. Therefore, the 
execution of CPS structural units requires the partic-
ipation of one or more physical resources. Second, the 
execution of CPS structural units has an influence on 
their surrounding environment, further influencing 
other CPS structural units.  

The focus of existing physical resource studies is 
on management and modeling of physical resources. 
Nikam and Ingle (2014) argued that while composing 
a new CPS service, providing appropriate physical 
resources was very challenging because of the het-
erogeneity of physical resources and related CPS 
services. Therefore, they proposed a physical re-
source provision algorithm to deal with it. Huang et al. 
(2009b) proposed to incorporate a physical resource 
ontology into CPS service models. Huang et al. 
(2009a) proposed the concept of ‘service provision 
constraint’ to define the relationship among the CPS 
services provided by a physical resource. Wan et al. 
(2014) presented a resource-centric service model. In 
this model, a resource description template is em-
ployed to model physical resources. 

The emphasis of existing environment research 
efforts is sensing and processing of environmental 
information. The majority of existing platforms have 
the ability to sense the environment. In the DEECo 
component system (Bures et al., 2013), environmen-
tal information sensed by components is represented 
as knowledge and stored in the knowledge repository 
layer. Because the execution of CPS services has an 
influence on the environment, many CPS service 
models are incorporated with environmental infor-
mation, such as the environment related precondition 
and effect. In the architecture of Rainbow (Giordano 
et al., 2016), sensors and actuators are abstracted as 
virtual objects (VOs), and a computational node 
manages several VOs. Environmental information 
sensed by VOs feeds into CPS agents in computa-
tional nodes.  

Under certain circumstances, raw environmental 
information is less meaningful, and must be further 
processed to obtain more meaningful results. The 
most common type of processing used is complex 
event processing (CEP), which generates complex 
events from raw environmental information in ac-
cordance with the predefined rules. Many studies (Tan 
et al., 2009; Ahmadi et al., 2010) have been conducted 
on CPS CEP. These studies have been adequately 
surveyed by Li F et al. (2012). Among existing plat-
forms, only a few platforms, e.g., Rainbow (Giordano 
et al., 2016), are explicitly integrated with a CEP 
mechanism. However, it is worth pointing out that the 
proposed CEP technologies can be easily incorpo-
rated into any existing platform when necessary. 
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7.2.5  Resilience 

CPSs are expected to provide correct behavior 
under failures. Many different approaches have been 
proposed for this resilience aspect.  

Several researchers have proposed algorithms 
and techniques for enhancing the resilience of CPSs 
toward different kinds of failures. Parvin et al. (2013) 
proposed to use multi-computational units to handle 
the failures of computing subsystems in CPSs. Woo et 
al. (2008) presented a software engineering method-
ology to design resilient CPSs. Specifically, Woo et al. 
used feedback control laws to define a protocol that 
makes CPSs resilient to software failures. Andersson 
et al. (2008) presented a distributed algorithm that 
transmits and receives physical information in the 
presence of sensor faults.  

Some researchers have proposed mechanisms 
that make CPSs resilient to multiple kinds of failures. 
In wireless sensor actuator systems, the topology, 
links, and nodes are all unreliable, and multiple kinds 
of failures may occur. To make this kind of CPSs 
resilient, Pajic et al. (2012) introduced the embedded 
virtual machine (EVM), a programming abstraction 
in which controller tasks are maintained across 
physical node boundaries and functionality is capable 
of migrating to the most competent set of physical 
controllers. The corresponding EVM-based algorithms 
allow network control algorithms to operate seam-
lessly over less reliable wireless networks with top-
ological changes. Xiao et al. (2008) proposed an  
external coordination layer that is used to separate 
fault-tolerance mechanisms from business logics. The 
coordination layer is also used to manage the 
fault-tolerant mechanism. Therefore, it is possible to 
use different kinds of fault-tolerant mechanisms to 
handle different kinds of failures.  

7.2.6  Security 

Security refers to the ability to ensure the privacy 
of data, control access, and resist attacks in CPSs. To 
the best of our knowledge, only a few existing plat-
forms support security. DREMS (Otte et al., 2014) 
employs a secure transport (ST) mechanism to ensure 
secure information exchange. Specifically, ST is a 
network transport layer that enforces information 
flow partitions based on security classifications. Vegh 
and Miclea (2016) proposed a secure CEP mechanism 
that uses a public-key algorithm. To ensure that each 

user has limited access to the data, the access level is 
granted by the private key possessed by each user.  

7.2.7  Summary 

Most of existing platforms have varying levels 
of reconfigurability. In general, agent-based platforms 
have the strongest reconfigurability, whereas com-
ponent-based platforms have the weakest reconfigu-
rability. Naturally, there are several exceptions. For 
example, as u-kevoree (Acosta et al., 2014) uses a 
runtime@model-based reconfiguration mechanism, it 
can achieve the same reconfigurability as common 
service-based platforms.  

As discussed above, several studies have been 
conducted on scalability, but the majority of them are 
not integrated into existing platforms. In general, 
knowledge-based approaches can obtain better scala-
bility than decentralized control-based approaches. 

Almost all of the platforms are able to leverage 
context information and handle failures. In general, 
the platforms using centralized management (the 
majority of component- and service-based platforms) 
have lower resilience than the platforms using de-
centralized management (the majority of agent-based 
platforms). 

Real-time is supported only by several platforms. 
As far as we know, only a few existing platforms 
support security. However, it is worth pointing out 
that existing security solutions can be easily inte-
grated with any existing platform when necessary. 

Table 2 compares several typical CPS run-time 
supporting platforms in terms of non-functional 
properties support. 

7.3  Best platform architectures in different ap-
plication scenarios 

In this section, we consider such representative 
CPS application scenarios as vehicle electronic sys-
tems, intelligent manufacturing systems, smart grids, 
swarms of UAVs, and intelligent transportation  
systems. 

A vehicle electronic system consists of many 
electronic control units, such as engine control, fuel 
control, antiskid control, and brake control. Among 
these control units, engine control has the highest 
real-time deadline, as the engine itself is a very fast 
and complex part of a vehicle. Many engine parame-
ters, such as pressure, temperature, flow, engine speed, 
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and oxygen level, must be actively monitored and 
controlled in real time. Thus, it is clear that real-time 
speed is the most typical feature of vehicle electronic 
systems. Because component-based platforms can 
support hard real-time CPS tasks, they best fit vehicle 
electronic systems. 

As a new-generation manufacturing system, the 
intelligent manufacturing system (IMS) is faced with 
strong demand to swiftly adapt to dynamics because 
mass customization is becoming an appealing pro-
duction mode. The main characteristics of mass cus-
tomization are dynamic requirements regarding lot 
sizes, product variants, lead time, and cost. One of the 
difficulties in building an IMS is that much legacy 
equipment exists in manufacturing enterprises.  
Although legacy equipment might have lower pro-
duction capacity and might be less flexible than new 
intelligent equipment, replacing all legacy equipment 
in a short time is still uneconomical. Therefore, in-
teroperability (compatibility with legacy equipment) 
is also very important in IMSs. Although both CPS 
services and CPS agents can deal with the dynamic 
nature of IMSs, we consider that service-based plat-
forms are more suitable for IMSs because CPS ser-
vices have stronger interoperability than CPS agents. 

Smart grid is the next-generation electrical grid 
in which information and communication technolo-
gies are used to make production, distribution, and 
use of electricity more efficient and more cost- 
effective (Fang et al., 2012). Compared with a con-
ventional electrical grid, a smart grid is integrated 
with more renewable energy sources (mainly solar 

and wind) and new energy consumers, such as electric 
vehicles and smart home appliances. Because of the 
volatile and stochastic nature of these new energy 
sources and consumers, a smart grid is highly dy-
namic. These result in current centralized automation 
software control power grids (primarily supervisory 
control and data acquisition systems) reaching their 
limits in terms of scalability, computational com-
plexity, and communication. Inevitably, in future 
smart grids, to provide more flexibility and scalability, 
decentralized software architectures with stronger 
local autonomy will be more appealing (Vrba et al., 
2014). From this viewpoint, agent-based platforms 
are the best fit for smart grids. 

Swarms of UAVs are representative highly dy-
namic and distributed CPSs. A single UAV has very 
limited resources and can complete only very simple 
tasks. Thus, several UAVs often form a cluster to 
complete complex tasks. Swarms of UAVs often op-
erate in risky and unknown environments; hence, it is 
impossible to make plans in advance as not enough 
information is available. To handle unknown envi-
ronments, a single UAV must have strong local au-
tonomy. Hence, we consider that agent-based plat-
forms are the most suitable for swarms of UAVs. 

The intelligent transportation system (ITS) has 
been proposed to leverage information and commu-
nication technologies to reduce traffic congestion and 
improve traffic safety. ITSs have three specific char-
acteristics (Chen and Cheng, 2010): (1) ITSs are ge-
ographically distributed; (2) Vehicles exist in dy-
namic environments; (3) Vehicles need to interact 

Table 2  Comparison of several typical CPS run-time supporting platforms in terms of support for non-functional 
properties  

Typical platform Structural 
unit Real-time Reconfigurability Scalability Context- 

awareness Resilience Security 

DREMS (Levend-
ovszky et al., 2014) 

CPS  
component  ●  ● ●● ● 

RT-CCM (Martínez  
et al., 2013) 

CPS  
component ●   ● ●  

DEECo (Bures et al., 
2013) 

CPS  
component  ● ●● ● ●●  

Physicalnet (Vicaire  
et al., 2010) CPS service  ● ● ●●● ●  

Huang et al. (2009b) CPS service  ●●  ●●● ●  
Cucinotta et al. (2009) CPS service ● ●●  ● ●  
Rainbow (Giordano  
et al., 2016) CPS agent  ●●●  ●● ●●●  

Vrba et al. (2011b) CPS agent ● ●●●  ● ●●●  
The performance indicators are measured by the number of black spots 
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with each other flexibly. Because of such character-
istics, vehicles in ITSs have to increase their auton-
omies. Therefore, using an agent-based platform is a 
natural choice. 

In general, in situations where the demand for 
real-time support is strong, such as vehicle electronic 
systems, using a component-based platform is the 
best choice. In dynamic environments, using either a 
service-based platform or an agent-based platform is 
feasible. However, if interoperability is also strongly 
needed, such as in IMSs, service-based platforms are 
the best. If local autonomy is obvious, such as in 
smart grids, swarms of UAVs, ITSs, agent-based 
platforms are the best. The results are also listed in 
Table 3. 

 
 

8  Conclusions and future research issues 
 

In this paper, we comprehensively analyzed and 
evaluated existing CPS run-time supporting platforms. 
The following conclusions can be drawn. First, ex-
isting platforms have both advantages and disad-
vantages because they aim at different application 
fields. Second, to choose an appropriate platform 
architecture, the particular characteristics of the ap-
plication field have to be well known. Specifically:  
(1) if real-time support is very important, the best 
choice is a component-based platform; (2) in general, 
a service-based platform or an agent-based platform 
is better for dynamic scenarios; (3) if interoperability 
is also very essential in dynamic scenarios, a ser-
vice-based platform is better than an agent-based 
platform; (4) if the system exists in a dynamic envi-
ronment and has strong local autonomy, an agent- 
based platform is the best choice. 

In further study, it will be very necessary to 
consider the following issues:  

1. Verification of CPS tasks 
In model-driven development (Zhou et al., 2014), 

a model of the system is first constructed. Then, with 
the model constructed, the system is analyzed  
and verified before implementation. However, in 
platform-based design, CPS tasks are composed of a 
number of prebuilt structural units. The largest dif-
ference between these two approaches is that in 
platform-based design, the correctness of all prebuilt 
structural units cannot be guaranteed because the 
formulation models of the prebuilt structural units are 
unknown. Further, even if all structural units are 
known to be correct, the correctness of the CPS tasks 
composed of them cannot be guaranteed, because in a 
CPS, functional properties and non-functional prop-
erties are equally important. Therefore, how to con-
duct comprehensive verification of such CPS tasks 
before their executions becomes a problem to be 
solved. 

2. Support for human-in-the-loop applications 
In human-in-the-loop applications, humans are 

brought into the feedback loops. There are two 
common types of human-in-the-loop applications. In 
the first type, humans are treated as sensors. Humans’ 
intents are first inferred by processing the electro-
physiological signals of humans. Then, embedded 
computing systems are employed to transform the 
intents into robot control signals. Thus, robots are 
able to take the place of humans to interact with the 
physical environment (Schirner et al., 2013). In the 
second type, humans are treated as actuators. By 
monitoring the system operating state, operators can 
immediately receive alerts when anomalies occur. On 
receiving an alert, operators can use their experience 
and knowledge to adjust the system (Wu and Kaiser, 

Table 3  The best platform architectures in different application scenarios 

Application scenario Real-time Autonomy Dynamics Interoperability The best platform 
architectures 

Vehicle electronic systems ●●● ● ● ● 
Component-based  

platforms 
Intelligent manufacturing systems ● ● ●● ●●● Service-based platforms 
Smart grids ● ●● ●● ●● Agent-based platforms 
Swarm of UAVs ●● ●● ●● ● Agent-based platforms 
Intelligent transportation systems ● ●● ●● ●● Agent-based platforms 
The number of black spots indicates the degree of the key features 
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2012). Note that intent inferences and system moni-
toring are data- and computation-intensive tasks that 
need to be handled on time. In addition, in a CPS, the 
inputs of such tasks are susceptible to disturbance. 
Therefore, to support human-in-the-loop applications, 
provision of a timely processing mechanism for data- 
and computation-intensive tasks is essential.  

3. Runtime monitoring of CPS tasks 
To enhance resilience and safety of existing 

platforms, we consider that one possible solution is to 
add a runtime monitoring mechanism to existing 
platforms. By online tracking execution traces of CPS 
tasks, the occurrence of failures and behaviors that 
may violate safety-critical rules can be realized in a 
timely manner or even be predicted (Zhao et al., 
2010). This could then enable on-time start of recov-
ery procedures. Note that existing runtime monitoring 
technologies are software system oriented. Their 
monitoring targets are computation processes, and 
they cannot monitor the operation of physical pro-
cesses. This aspect should be dealt with in future 
research. 
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