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Abstract: The problem of self-tuning control with a two-manipulator system holding a rigid object in the presence of inaccurate 
translational base frame parameters is addressed. An adaptive robust neural controller is proposed to cope with inaccurate trans-
lational base frame parameters, internal force, modeling uncertainties, joint friction, and external disturbances. A radial basis 
function neural network is adopted for all kinds of dynamical estimation, including undesired internal force. To validate the 
effectiveness of the proposed approach, together with simulation studies and analysis, the position tracking errors are shown to 
asymptotically converge to zero, and the internal force can be maintained in a steady range. Using an adaptive engine, this ap-
proach permits accurate online calibration of the relative translational base frame parameters of the involved manipulators. Spe-
cialized robust compensation is established for global stability. Using a Lyapunov approach, the controller is proved robust in the 
face of inaccurate base frame parameters and the aforementioned uncertainties. 
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1  Introduction 
 

In many modern manufacturing applications, 
such as material handling, grasping, and transporting, 
it is necessary to move a large and heavy payload 
using cooperative manipulators that must share the 
load and provide stiffness. Consider that certain 
kinematic and dynamic constraints will be formed 
because the manipulators have to remain in contact 
with the object while in motion, which may lead to 
undesired stress. It is much more complicated to de-
sign a controller of cooperative manipulation. All the 
manipulators have to move synchronously to track a 

certain desired position and orientation leading to 
further complex internal forces, while those internal 
forces contribute nothing to the motion of the object. 
Experiments have shown that even small kinematic 
inaccuracy can significantly affect the tracking per-
formance (Aghili, 2013), among which base frame 
parameters are usually difficult to obtain and are thus 
ignored. Such cooperative manipulator systems 
should be robust enough against these effects result-
ing from inaccurate translational base frame param-
eters, internal forces, common model uncertainty, 
joint frictions, and external disturbances. 

Various studies of cooperative manipulators are 
mostly based on the knowledge of system dynamics 
with non-adaptive or adaptive mechanisms. A dis-
tributed impedance controller (Szewczyk et al., 2002) 
was developed based on a realistic model including 
robot and object dynamics. Using a switching-sliding 
algorithm, a robust controller (Liu and Abdel-Malek, 
2000) was proposed for modeling imprecision and 
disturbances in the presence of contact and friction 
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constraints for grasping conditions. When system 
uncertainties and external disturbances are considered 
in practical applications, many adaptive control 
schemes have been proposed (Su and Stepanenko, 
1995; Parra-Vega et al., 2003; Namvar and Aghili, 
2005; Gueaieb et al., 2007b; Tavasoli et al., 2009); 
however, these schemes estimate system physical 
parameters that require certain knowledge of dy-
namics, extensive preliminary system modeling, or 
regression computing during operation. Neural net-
work (NN) algorithms have shown an outstanding 
ability in compensating for uncertainties and devel-
oping dynamic model-free controllers. Panwar et al. 
(2012) developed an adaptive neural controller for 
cooperative manipulation of a rigid object, where no 
preliminary learning was required, but internal force 
feedback was required. A radial basis function  
(RBF) NN enhanced estimator and observer were 
developed (Zhao et al., 2014b, 2014c) to estimate 
acceleration and control torque online, but they were 
designed only for leader-follower manipulator system 
circumstances. 

Although these adaptive control schemes can 
deal with dynamic uncertainties of cooperative ma-
nipulator systems, the closed kinematic chain of in-
terconnected cooperation is assumed to be precisely 
known. In the presence of uncertain kinematics, an 
adaptive synchronized tracking control approach was 
developed (Zhao et al., 2014a) using a cross-coupling 
technique, but for non-closed-loop circumstances 
with no robotic cooperation. An adaptive strategy was 
developed by Lizarralde et al. (2013), addressing the 
visual tracking problem of robot manipulators with 
non-negligible dynamics using a fixed camera, when 
the camera-robot system parameters were uncertain. 
Cheng et al. (2009) proposed an NN-based adaptive 
controller where a ‘linearity-in-parameters’ assump-
tion for the uncertain terms was unnecessary. 
Mohajerpoor et al. (2011) presented a robust hybrid 
force/position control scheme of two cooperative 
manipulators handling an unknown object interacting 
with an unknown environment, but with known ma-
nipulator dynamics. A hybrid task-space trajectory 
and force tracking based on a fuzzy system and 
adaptive mechanism (Li et al., 2015) was proposed to 
compensate for external perturbation, kinematics, and 
dynamics uncertainties. Liu (2015) designed adaptive 

controllers for a network of heterogeneous robots to 
achieve task-space synchronization in the presence of 
uncertainties in kinematic and dynamic models, based 
on which networked robot systems could be ensured 
to synchronize with imprecise measurement of sys-
tem parameters and communication delays. Other 
control algorithms and adaptive laws were developed 
(Liu and Khong, 2015) to address the impediment of 
imprecise measurement resulting from an unknown 
grasping point and orientation. 

The base frame parameters, which determine the 
relative translation and rotation between base frames 
of the coordinated manipulators, present a funda-
mental kinematic problem for coordinated coopera-
tive manipulator systems (Corke, 1996). With respect 
to negligible robotic manufacturing and assembling 
kinematic errors, the inaccurate base frame calibra-
tion contributes more obviously to interference. There 
exist some studies on multirobot base frame calibra-
tion (Gan and Dai, 2011; Zhang et al., 2011; Deng et 
al., 2015); however, precision end-point or camera- 
based measurement systems are required to calibrate 
the relative kinematic parameters of the manipulators 
(Park et al., 2012). Aghili (2011, 2013) proposed 
several self-tuning cooperative manipulator control-
lers to track motion trajectory without knowing the 
true kinematic parameters, and at the same time 
permit accurate calibration of the relative base frame 
parameters of the involved manipulators. Though 
there is no need for high-precision end-point sensing 
or force measurements, the internal force is hardly 
managed. 

In a brief summary of the control approaches in 
the literature, some scholars have done much research 
work, but there are still some issues that require im-
provement: (1) inaccurate base frame parameters (the 
base frame affects the closed kinematic chain directly, 
but most control algorithms have seldom considered 
inaccurate base frame parameters); (2) internal force 
(permanent damage to an object may occur with un-
managed internal force, but most of the existing co-
ordinated control methods ignore internal force or 
require specific force sensors); (3) uncertain dynam-
ics, joint frictions, and the external disturbances (for 
most cooperating controllers, dynamic knowledge of 
manipulators and environment is more or less neces-
sary, which is always practically out of reach). 
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2 Preparation problem formulation and  
preliminaries 
 

Fig. 1 illustrates two cooperative manipulators. 
Each manipulator holds a common rigid object at 
specified points. Coordinate frames cw, c1, and c2 are 
attached to the world origin and end effectors of the 
manipulators, respectively. The coordinate frame co is 
assumed to be located in the geometric center of  
the object and its principal axis coincides with  
the connecting line of the end effectors, i.e., 

1 2 1 2( ) .= − −c c c c co  Throughout this paper, all 
quantities are expressed with reference to the self- 
defined world frame. 
 
 
 
 
 
 
 
 
 
 
 
Assumption 1    The object is rigidly grasped by the 
end effectors, such that there is no relative transla-
tional motion between the end effectors and the  
object. 
Assumption 2    Consider that calibration equipment 
is expensive and that some bases are defined inside 
the manipulators (usually as the first two axis joints), 
and the relative positions of the manipulators’ base 
frames are not precisely obtained. In the following, 
we focus on the translational base frame parameters, 
such that the manipulators’ forward kinematics are 
supposed to be precisely known. 

All cooperative manipulators must be controlled 
synchronously and carefully to move the object and 
ensure that its center of mass tracks on a predefined 
trajectory under an inaccurate relative translational 
base frame, existing joint frictions, and other un-
known external disturbances. 

2.1  Kinematics 

Let x denote the task space vector of the object, 
including its position and orientation. The forward 
kinematics xi for manipulator i can be written as  

( ),i i iφ=x q  1,2, , ,i m=                 (1) 

( ) ,i i i i iφ= =x q J q

  1,2, , ,i m=             (2) 
 

where qi represents joint coordinates, and Ji is the 
Jacobian matrix from the joint space to the task space. 

Considering the inaccurate relative base frame 
worldwide (Fig. 1), we set additional qbi and Bi for 
orientation of the base joint and inaccurate transla-
tional base frame, respectively. We consider transla-
tional base frame parameters as part of the robotic 
kinematic parameters. Hence, with traditional joint 
coordinates qi and constant kinematic parameters θki, 
a new set of 

T
b[ , ]i i i=q q q  and 

T
k

ˆ ˆ[ , ]i i i=Bθ B θ  is de-
signed, and then we have 

 
ˆ ˆˆ ( ) ( ) ,i i i i iφ= = Bx q Y q θ                    (3) 

k
ˆ ˆˆ ( , ) ,i i i i i i= = Bx J q Y q q θ 

                    (4) 
 

where ( )iY q  and kiY (short for k ( , )i iY q q ) are the 
corresponding kinematic regression matrices. ‘ˆ’∗  
stands for an estimated term of *, and ‘ ’∗  denotes the 
relevant estimation error. Then we have kinematic 
estimation error ˆ .i i i= −B B Bθ θ θ  
Assumption 3    We assume that the manipulators 
move in a finite task space such that the Jacobian 
matrices and their estimates are of full rank. 
Assumption 4    We focus on inaccurate translational 
parameter Bi, which means that the base frame pa-
rameters here include inaccuracies along both vertical 
and horizontal axes. 

2.2  Dynamics 

The dynamic equation of the ith manipulator with 
ni joints in the cooperative system is similar to that in 
Gueaieb et al. (2007b): 

 
T

f( ( ) ( )) ,
ii i i i i i i i i it+ + − + = +D q C q G τ q d τ J f

 

     (5) 
 

where  
 

o( ) ( ) ( ),i i i i it= +D M q M q


ϖ  
T

o o( , ) ( )[ ( ) ( , )],i i i i i i i i it x= + +C Q q q J M J Q q q




 ϖ  

o( ) ( ) ( ),i i i i it= +G W q W q


ϖ  
T

o o( ) ( ) ,i i i=M q J M x J  

Fig. 1  Two cooperative manipulators holding a rigid 
object  
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T
o o( , ) ( , ) ,i i i i=Q q q J Q x x J   

T
o o( ) ( ),i i=W q J W x  

 
where τi denotes the joint torque/force applied by the 
actuators on the ith manipulator, ( )i iM q  and o ( )M x  
denote the inertial matrices, with subscripts ‘i’ and ‘o’ 
standing for the ith manipulator and the object, re-
spectively, ( , )i i iQ q q  and o ( , )Q x x  are the Coriolis 
and centrifugal matrices, respectively, Wi(qi) and 
Wo(x) represent the vectors of gravitational forces, 

f ( )
i iτ q  

stands for the joint friction, di(t) is an un-

known external disturbance, fi denotes the internal 
force, and ( )i tϖ  is considered a time-independent 
positive-definite diagonal matrix representing the 
load distribution of the object on the ith manipulator. 
The following property is important: 
Property 1    Unlike Gueaieb et al. (2007b), the ma-

trix T
o2 ( )i i i i i− +C D J M x J

 



ϖ  is a skew symmetric 

matrix, and hence T T
o(2 ( ) )i i i i i− +p C D J M x J p

 



ϖ  

=0 for .in∈p   

2.3  Radial basis function neural network 

The RBF NN has some satisfactory features such 
as weight adjustment and mathematical tractability, 
and it is widely used in cooperative manipulating 
controller design (Panwar et al., 2012; Zhao et al., 
2014b, 2014c). The output vector ( )h Ξ  of an RBF 
NN with hn  units in the hidden layer is determined in 
terms of the input vector Ξ by the following mapping: 

 
T( ) ( ),=h Ξ Θ ψ Ξ                           (6) 

 
where ψ(Ξ) are the outputs of the hidden layer, with 
 

1 2( ) [ , , , ],hnθ θ θ=ψ Ξ                       (7) 

( )2 2exp ,i i ibθ = − −Ξ c                   (8) 

 
where ci is the center and bi is the width of the kernel 
unit. Each kernel node in the RBF NN provides an 
output, which depends on a radially symmetric  
function, and a better performance will be achieved 
when the input is near the centroid. In the following 
assumption, the RBF NN shows an arbitrary precision 

approach capability in a compact set range for a con-
tinuous function (Park and Sandberg, 1991). 
Assumption 5    The NN output is continuous, and for 
the object term Λ there exists an ideal NN approach of 
NN, for a very small positive number ε0: 

 

0max ( ) ,ε− ≤h Ξ Λ                  (9) 
 

where ˆ( ) ( ) ( )= −h Ξ h Ξ h Ξ  is the approximation 

error of NN, and ˆ( ),h Ξ  defined as the estimate of 
( ),h Ξ  can be given by 

 
Tˆ ˆ( ) ( ),=h Ξ Θ ψ Ξ                        (10) 

 
where Θ̂  estimates the ideal NN weights provided by 
online tuning algorithms, with corresponding weight 
estimation error .Θ  
 
 
3  Design of adaptive neural robust controller 

 
In this section, we present an adaptive neural 

network robust (ANNR) controller for cooperative 
manipulators with inaccurate translational base 
frames, unknown joint friction, and external disturb-
ances. We define the task space position error of the 
object: 

 

d ,= −e x x                            (11) 
 

where subscript ‘d’ stands for the desired term. The 
distance of the task space coordinates among the 
manipulators should be a constant during movement, 
such that internal force can be prevented. This can be 
mapped by an estimated synchronization function for 
the two manipulators: 
 

s1 s2 1 2ˆ ˆ .= − = −e e x x                     (12) 
 

To describe the relative motion among the co-
ordinated manipulators, the following task space 
cross-coupling error is defined: 

 

( )s I 0
( )d ,

t

i iβ ω ω= + + ∫ς e e K e           (13) 
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with a control coefficient taken as 
 

ri d ,iα= −x x ς                        (14) 
 

where β and α are positive constants and KI is a  
positive-definite diagonal integration matrix. Similar 
to Cheah et al. (2004), we define an adaptive task 
space sliding vector as 
 

r
ˆ ,i i i= −xs x x                        (15) 

 
and hence we have an adaptive sliding vector in the 
joint space defined as 
 

r
ˆ ,i i i i i
+= − = xs q q J s                   (16) 

 

where r r
ˆ

i i i
+=q J x   indicates the control coefficient in 

the joint space, and T T 1ˆ ˆ ˆ ˆ( )i i i i
+ −=J J J J  is the pseudo- 

inverse of the estimated Jacobian matrix. According 
to Eq. (24) in Erhart and Hirche (2013), we can infer 
that the cooperative internal force here can be ex-
pressed in the form:  
 

( )o 1 2, , , .i i=f f c c c x                 (17) 
 

Considering the preliminaries and using the 
forward kinematic relationships, Eq. (17) can be re-
written as 
 

( ) ( )e1 e2 s 1 2 s
ˆ, , , , , , , ,i i i i i i= = Bf f p p e x f q q e x θ   (18) 

 
where pe1 and pe2 denote the positions of each ma-
nipulator’s end effector. Substituting Eq. (16) into the 
system dynamics (5), we obtain the filtered tracking 
error as 

 
T

r r ,
ii i i i i i i i i i i i = − + + − − + +  dD s D q C q G J f C s τ τ

   

    

(19) 
 

where ( ) ( ).
i i i i t= +d fτ τ q d  Using an RBF NN 

( ),i ih Ξ  we can obtain  
 

( )
r r

T
1 2 s

( , , ) ( , , , )
ˆ  ( , , ) , , , ,

( ) ,

i i i i i i i i i i

i i i i i i i

i i i

= +

+ −

= +

B

Λ D q J x q C q q J x q

G q J x J f q q e x θ

h Ξ ε



  



  (20) 

where iΞ  can be chosen as d d d[ , , , , ,i i i=Ξ q q x x x    

s
ˆ, ]i iBe θ  and εi is the NN functional approximation 

error. Based on the aforementioned design, the adap-
tive robust neural control scheme is proposed in the 
following form: 

 
T

1 2
ˆ ˆ( ) ,i i i i i i i= − − +τ h Ξ J E w E w           (21) 

 
where Tˆ ˆ( ) ( )i i i i=h Ξ Θ ψ Ξ  is the estimation term of  

the system nonlinear function Λi, V Pi i i= +E K ς K ς  
with positive-definite diagonal matrices KV and KP, 
and w1i and w2i are the robust adaptive term and the 
robust estimation term of the network, respectively, 
given by 

 

( )T T T
1 s I( ) ,i i iβ β+= +w s e K e              (22) 

T T
2 0 b s 1F

ˆ sgn( ) sgn( ),i i i i ib b= − −w Θ Y e s s s   (23) 

 
where β, b0, and b1 are positive constants, and F

*  

stands for the Frobenius norm. To guarantee the 
convergence of the position error and to make it 
converge in a synchronous manner, the terms eT and 

T
sie  are both adopted in w1i. Considering both dy-

namic and kinematic estimation errors, we use a 

combination as T
b sF

ˆ sgn( )i iΘ Y e s  for estimation 

robustness. Furthermore, joint frictions and external 
disturbances are handled by a common T sgn( )i is s  

design, to achieve overall robustness. T
b siY e  main-

tains the component of sie  with a gain according to 
the inaccurate translational base frame (here as X- and 
Y-axis component for simplicity), which means that 
the base frame parameters here are inaccurate along 
both the X- and Y-axis. The adaptive NN control rule 
can be selected as 
 

( )T T Tˆ ˆ ˆ( ) sgn( ) ,i i i i i i i iη= − + + BΘ ψ Ξ s s Θ θ s s  (24) 

 
with the translational base frame adaptive law: 

 

T T T
b s

ˆ sgn( ),i k i i i ik k= −Bθ Y E Y e s s

       (25) 
 

where η and κ are positive constants. 
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Theorem 1    Consider a cooperative manipulator 
system (5) with Assumptions 1–5. Together with the 
adaptive update laws (24) and (25), and the control 
robustness, the estimation error iΘ  can be uniformly 

bounded ultimately, as iBθ  and ςi can. The controller 
(21) guarantees the ultimate uniform boundedness of 
si, the asymptotic stability of ei and esi, and the desired 
value of x. 
Proof    Consider the Lyapunov function candidate 

1
,m

ii
V V

=
= ∑  where 

 

T T T

T
V P

1 1 1
2 2 2

1      ( ) ,
2

i i i i i i i i

i i

V
η κ

α

= + +

+ +

B Bs D s Θ Θ θ θ

ς K K ς



   

      (26) 

 
Vi and V are all nonnegative scalars, and the deriva-
tive of Eq. (26) becomes 
 

T T T T

T
V P

1 1 1
2

      ( ) .

i i i i i i i i i i i

i i

V
η κ

α

= + + +

+ +

B Bs D s s D s Θ Θ θ θ

ς K K ς

 

 

   





  (27) 

 
Substituting Eqs. (19), (24), and (25) into Eq. (27), 
and using Eq. (21), we have 
 

( )
( )

( )
( )
( )

T T T T T T
s k

T T
V P

T T T T T
1 b s

T T T T

T T
0 b sF

1 2 3 4

1 ˆ=
2

 ( )

 sgn( ) ( sgn( ))

ˆ ˆ sgn( )

ˆ sgn( )

,

i

i i i i i i i i i i

i i i i

i i i i i i i

i i i i i i

i i i i

i i i i

V

b

b

V V V V

b

α

 − + − − − 
 

+ + + −

+ − +

+ +

+ −

= + + +

B

d

B

B

s D C s s J e θ Y E

ς K K ς s τ ε

s s s θ Y e s s

Θ s Θ θ s s

s Θ Y e s



















   

 

(28) 

where  

1 T 1 ,
2i i i i iV  = − 

 
s D C s







                                              
( )2 T T T T T T

s I k

T
V P

ˆ

       ( ) ,

i i i i i i

i i

V β β

α

= − − − −

+ +

Bs J e K e θ Y E

ς K K ς







         (29) 

 
( ) ( )
( )

3 T T T
1

T T T T

sgn( )

ˆ ˆ       sgn( ) ,

ii i i i i i

i i i i i i

V b= − + −

+ +

d

B

s τ ε s s s

Θ s Θ θ s s



            (30) 

( )
4 T T T

b s

T T
0 sF

( sgn( ))

ˆ       sgn( ) .

i i i i i

i i i i i

V

b

=

+ −

Bθ Y e s s

s Θ Y e s







          (31)
 

 
Considering Property 1 and time-independent matrix 

,iϖ  we can infer that 
 

1 T T T
o

1 1 ( ) 0.
2 2i i i i i i i i i iV    = − = =   

   
s D C s s J M x J s







ϖ  

(32)
 From Eqs. (14) and (15), we find that 

 

p k d k( , ) .i i i i i i i i i iα α= − − + = − +B Bs x Y q q θ x ς e Y θ ς 

  

  
(33) 

 

Thus, 
 

( )

( ) ( )

2 T T T T T T
s I k

T
V P

T T
V P V P

T T
V P

ˆ

  ( )

( )

.

i i i i i i i

i i

i i i i i i

i i i i

V β β

α

α α

α

= − − − −

+ +

= − − + + +

= − −

Bs J e K e θ Y E

ς K K ς

ς ς K ς K ς ς K K ς

ς K ς ς K ς







    

   

 

(34)

 

 

Because KV and KP are all positive-definite diagonal, 
it is easy to see that 2 0iV ≤ . The ideal NN weights are 

bounded so that MFi Θ≤Θ  with known M.Θ  Similar 

to Lewis et al. (1998), we find that with positive 
constants a0, a1, and a2, T ( )

ii i− ≤ds τ ε  

( )T
0 1 2F F

.i i i ia a a+ +s Θ s Θ   We can also infer 

that 
2T T

MF F
ˆtr( ) tr( ( )) ;i i i i i i iΘ= − ≤ −Θ Θ Θ Θ Θ Θ Θ      

hence, 
 

( ) ( )
( )
(

)
(

)

3 T T T
1

T T T T

T T
0 1 2 1F F

2

MF F F

2T
1 2 MF

T
0 1F

sgn( )

ˆ ˆ sgn( )

sgn( )

ˆ 

ˆ sgn( ) .

ii i i i i i
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Let 1 2 M
ˆ .i i ia a Θγ = + + + Bs θ  Then 

 

( )23 T T
0 1F F

2 2
T T

0 1F

sgn( )

sgn( ) .
2 4

i i i i i i i

i i
i i i i

V a b

a b

g

gg

= − + + −

  = − − + + −  
   

s Θ Θ s s

s Θ s s

 



 
 

Thus, 3 0iV ≤

 

as long as 
 

2

0F
,

2 4
i i

i aγ γ
≥ + +Θ                  (36) 

or 

( )1 M 0FT

1 2 F

ˆ
sgn( ) ,

i i

i i i
i

a a

b a

Θ+ + +
≥ ≥

−

Bθ Θ
s s s

Θ





 (37) 

 

where 1 2 F
0.ib a− >Θ  Select proper parameters 

leading to M
0 B F

ˆ ;ib θ≥ Θ  hence, 

 

( )4 T T
0 b sF

T T T
b s

ˆ sgn( )

       ( sgn( )) 0.

i i i i i

i i i i

V b= −

+ ≤B

s Θ Y e s

θ Y e s s









          (38) 

 

Therefore, 4

1
0j

i ij
V V

=
= ≤∑   and it is negative outside 

a compact set, iD


 is uniformly positive definite 

(PDT), and Vi is PDT with si, ,i
Θ  ,iB

θ  ςi. Because 

0,iV ≤  Vi is bounded, si, ,i
Θ  ,iB

θ  ςi are all bounded, 
ˆ

iΘ  and iB
θ are bounded, and ixs  is bounded as from 

Eq. (16). From Eq. (13) we find that ςi is linear with ei 
and esi. ei and esi are also bounded, and x is bounded if 
xd is bounded, and rix  is bounded if dx  is bounded. 
Therefore, riq  is bounded from Eq. (16), with 

bounded ˆ ;i
+J  that is, ˆ

iJ  is of full rank and is 
bounded. Because ri i i= −s q q   is bounded, iq  is 
bounded, and x  is bounded with a bounded Jacobian 
matrix. Thus, ie  is bounded, so is s ,ie  and rix  is 
bounded with bounded d .x  Therefore, si i iβ= +ς e e    
is bounded. From Barbalat’s lemma, ei, esi, and ςi are 
all uniformly continuous, which means that 
lim it→∞

=e 0  and slim .it→∞
=e 0  As 0,t →  the controller 

guarantees the asymptotic stability of the tracking 
errors ei and esi. Thus, x is guaranteed to be their de-
sired values. 

The uniform ultimate boundedness of ||si|| and 

Fi
Θ  is proved according to the Lyapunov theorem 

extension (Lewis et al., 1998). The uniform ultimate 
boundedness of si is guaranteed. From Eq. (28), error 
||si|| can be slightly adjusted arbitrarily by increasing 
the result of ( )1 2 Fib a− Θ  and decreasing the result 

of ( )1 M 0F
ˆ .i ia aΘ+ + +Bθ Θ  

 
 

4  Simulation and discussion 

4.1  Simulation settings 

To illustrate the performance of the adaptive 
tracking controller, numerical studies are presented in 
this subsection. The two planar three-degree-of- 
freedom (3-DOF) robotic manipulators’ dynamics is 
similar to that in Zribi et al. (2000), and they hold a 
common circular disc rigidly. The object model is 
expressed as  

 

o o

o o o

o o

0 0 0
0 0 ,
0 0 0

x

y

z

m x F
m y m g F

I R F

      
      + =      
                

where mo=1.5 kg is the mass of the circular disc, ro-
tational inertia Io=0.3 kg·m2, gravitational accelera-
tion g=9.8 N/kg, and the circular radius is 0.2 m. (x, y, 
R) represent the center and angle of the disc diameter 
contact points, joining with the world frame axis 
separately. The stiffness is assumed to be 300 kN/m 
only for computing force during simulation. 

Uncertain kinematic parameters are given as 

k 1 2 3
ˆ ˆ ˆ[ ;  ] [ ;  ;  ;  ;  1;  1;  1;  1],i i i i l l l= =Bθ B θ B  where l1, l2, 

and l3 denote the link length of manipulators as 0.6, 
0.6, and 0.2 m, respectively. The bases of the two 
manipulators are set to (B1x, B1y)=(−0.4, 0) and (B2x, 
B2y)=(0.4, 0) in reality, with inaccurate 1 1

ˆ ˆ( ,  )x yB B =  

(−0.39, 0.01) and 2 2
ˆ ˆ( ,  ) 0.3 ,( )9  0x yB B =  for nominal 

known (regarded as calibration error) with controller 
design. Thus, the relative base frame parameters are 
(0.8, 0) in reality, with (0.78, 0.01) for initialization as 
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inaccurate translational parameters in both vertical 
and horizontal dimensions. 

Joint friction is introduced as f ( )
i i =τ q  

diag(0.15, 0.05, 0.01) +diag(0.02, 0.01, 0.005)sgn( ),i iq q 

and the external disturbance di(t)=[0.1, 0.1, 0.04]T· 
sin(0.2πt)+[0.2, 0.2, 0.1]T. The initial values for ob-
ject motion are set as x(0)=0.2, y(0)=0.8, R(0)=0, 

(0) 0,x =  (0) 0,y =  (0) 0.R =  The desired trajectory 
for the circular disc is a circle described as Xd= 
0.2cos(0.2πt), Yd=0.2sin(0.2πt)+0.8, and the disc is 
always held steady horizontally with zero rotation and 
without any internal force. The simulation time is set 
as 15 s at a frequency of 250 Hz. 

4.2  Simulation results 

To address the effectiveness of the proposed 
approach with practical consideration, together with 
the proposed ANNR, three controllers are adopted 
and compared in simulation. A traditional propor-
tional-integral-derivative (PID) controller is 

 

P I Dd ,i i i it= + +∫τ K q K q K q  

           
   (39) 

 
and an efficient robust control (ERC) method is 

 
T ( )( ),

i i i i ii r i iφ= − − −d d φτ K s J q φ K φ
        

 (40) 

 
where ,

i i ir i i i qα− = − =ds σ s s s  0( )
0( )e ,i

i

k t t
i t − −=ds s  

and ˆ ( )( ).i i i
+= +s J q x γ x

   Details can be found in 
Gueaieb et al. (2007a) for ERC. The following  
parameter values are taken: (1) For PID, inverse 
kinematic is adopted with an inaccurate translational 
base frame, and KP=3000, KD=80, and KI=190; (2) 
For ERC, inverse kinematic is adopted with an inac-
curate translational base frame, and 0,

i
=fK  

2,
i
=dK  

αi=10, γi=diag(70, 70, 70), and ki=5; (3) For 

ANNR, zero inverse kinematic calculation is adopted, 
and KI=diag(0.005, 0.005, 0.005), KV=diag(80, 80, 
20), KP=diag(8000, 8000, 3000), α=0.1, κ=0.05, 
b0=0.1, b1=0.5, 1 2 0.5ϖ ϖ= = , and β=0.5. An NN has 
27 inputs, five hidden RBFs, and three outputs for 
each, b=0.2 and η=0.2 for learning weight, and  

b

1200 0 0 0 0 0 0 0 0
0 120 0 0 0 0 0 0 0 .
0 0 0 0 0 0 0 0 0

 
 =  
  

Y  

 
Considering the ranges of the NN inputs, the 

centers of Gaussian functions are chosen as c=[−0.5, 
−0.25, 0, 0.25, 0.5; −0.5, −0.25, 0, 0.25, 0.5; −0.5, 
−0.25, 0, 0.25, 0.5; −0.2, −0.1, 0, 0.1, 0.2; −0.2, −0.1, 
0, 0.1, 0.2; −0.2, −0.1, 0, 0.1, 0.2; −0.2, −0.1, 0, 0.1, 
0.2; −1, −0.5, 0, 0.5, 1; −0.1, −0.05, 0, 0.05, 0.1; −0.2, 
−0.1, 0, 0.1, 0.2; −0.2, −0.1, 0, 0.1, 0.2; −0.1, −0.05, 0, 
0.05, 0.1; −0.1, −0.05, 0, 0.05, 0.1; −0.1, −0.05, 0, 
0.05, 0.1; −0.1, −0.05, 0, 0.05, 0.1; −0.1, −0.05, 0, 
0.05, 0.1; −0.1, −0.05, 0, 0.05, 0.1; −0.1, −0.05, 0, 
0.05, 0.1; −0.1, −0.05, 0, 0.05, 0.1; −0.4, −0.2, 0, 0.2, 
0.4; −0.6, −0.3, 0, 0.3, 0.6; −0.6, −0.3, 0, 0.3, 0.6; −0.4, 
−0.2, 0, 0.2, 0.4; −1, −0.5, 0, 0.5, 1; −1, −0.5, 0, 0.5, 1; 
−1, −0.5, 0, 0.5, 1; −1, −0.5, 0, 0.5, 1].  

In the presence of inaccurate two-dimensional 
translational base parameters, joint frictions, and 
external disturbances, the object’s global position and 
internal force tracking errors can be found in Fig. 2. 
Using the proposed ANNR, the translational tracking 
error (ΔX and ΔY) and rotational tracking error (ΔR) 
converge to zero within 2 s. Although ANNR shows 
little oscillation with ΔX, it converges faster and is 
more precise than the other two. PID is far more af-
fected by those uncertainties than ANNR. The control 
performance using ERC is less satisfactory, because 
an obvious oscillation occurs (Fig. 2d). The results 
show excellent robustness within the proposed 
ANNR. In addition, internal force fi remains small 
and steady using ANNR, whereas other controllers 
exhibit excessive or unstable internal forces in com-
parison. This illustrates that the proposed approach 
not only guarantees position error convergence but 
also makes it converge in a synchronous manner. 

Little difference can be found within the joint 
angle (Fig. 3a). However, PID and ANNR provide 
smooth joint velocity plots, whereas the plots of ERC 
chatter. Note that inverse kinematics is essential for 
both PID and ERC, but not for the proposed ANNR. It 
is also important to note that, for traditional regressor 
matrix-based adaptive controllers (Cheah et al., 2006; 
Gueaieb et al., 2007b; Zhao et al., 2014a), the re-
gressor matrix would become much more complex 
due to the increase of the number of manipulator 
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degrees and the number of the estimated parameters. 
Unlike those regressor matrix-based methods, the 
proposed ANNR avoids common dynamical regres-
sion with NN estimation. Only the kinematic regres-
sion is required. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To strengthen the verification, another test is 
established including another straight trajectory. The 
initial values for object motion are set with x(0)=0, 
y(0)=0.6, R(0)=0, (0) 0,x =  (0) 0,y =  and (0) 0.R =  
The desired straight trajectory is described as Xd=0,  

Fig. 2  Position and internal force tracking errors under a circular trajectory, with inaccurate translational base frame 
parameters, amplified friction, and external disturbances: (a) ΔX; (b) ΔY; (c) ΔR; (d) fi 
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Fig. 3  Joint angle and velocity under a circular trajectory: (a) joint angle; (b) joint velocity 
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Yd=0.8−0.2cos(0.2πt). All other parameters and 
weights are exactly the same as in the former circular 
trajectory simulation. In this case, we examine the 
joint angle and velocity (Fig. 4). Fig. 5 illustrates the 
object’s task space tracking errors, where the pro-
posed ANNR exhibits significant robustness against 
those inaccuracies and disturbances. In spite of in-
significant internal force, an acceptable tracking ac-
curacy can always be obtained, while the internal  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
force can be reduced by weight tuning. 

In the merit of system adaptation and neural es-
timation, the proposed ANNR can stabilize position 
tracking of each manipulator while adjusting its rela-
tive base frame parameters. Fig. 6 depicts the esti-
mation of relative translational base frame parameters 
between the two cooperative manipulators, for both 
circular and straight trajectories. One can see that the 
proposed approach provides satisfactory self-tuning 

Fig. 4  Joint angle and velocity under a straight trajectory: (a) joint angle; (b) joint velocity 
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Fig. 5  Position and internal force tracking errors under a straight trajectory, with inaccurate translational base frame 
parameters, amplified friction, and external disturbances: (a) ΔX; (b) ΔY; (c) ΔR; (d) fi 
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and estimation, especially in the circular trajectory, 
because we maintain the weight setting to the straight 
trajectory. This also illustrates the potential for accu-
rate online calibration. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
5  Conclusions 
 

By theoretical analysis and simulation demon-
strations, a novel adaptive, robust neural controller 
has been constructed to cope with inaccurate transla-
tional base frame parameters, modeling uncertainty, 
unknown joint frictions, and external disturbances 
within cooperative manipulation. This controller has 
the following characteristics: 

1. No prior knowledge of the system dynamics is 
required. The adopted RBF NN estimation performs 
well despite uncertain modeling, joint frictions, ex-
ternal disturbances, and more importantly, the internal 
force. Inaccurate translational base frame parameters 
can be calibrated online to achieve a satisfactory ac-
curacy with another adaptive engine.  

2. Besides NN estimation, robustness is achieved 
with an additional robust control procedure that could 
cope with dynamic and kinematic estimation errors.  

3. The proposed approach guarantees that both 
the global tracking error and the synchronization error 
converge to 0 asymptotically and simultaneously, and 
keeps the internal force in an acceptable range  
steadily. 

The overall stability is proved through a Lya-
punov function and simulations. The controller is also 
feasible for cooperative systems with more than two 

manipulators, but will need some redesign to ac-
commodate an appropriate estimated synchronization 
function to cover all manipulators. Orientation inac-
curacy may be considered, but first with another 
compact rearrangement of forward kinematics as in 
Figs. 4 and 5, because accurate access to kinematic 
regression matrices would no longer be obtained. 
Because we pay attention to translational inaccuracy 
here and more issues may occur with other kinds of 
base frame error, future work may focus on situations 
with more complicated inaccurate base frame pa-
rameters. NNs with various network topologies, dif-
ferent numbers of neurons, layers, or activation func-
tions may work here, but not with respect to our main 
concern, which is also taken as a future scope of  
research.

 

 
References 
Aghili F, 2011. Self-tuning cooperative control of manipulators 

with position/orientation uncertainties in the closed- 
kinematic loop. IEEE/RSJ Int Conf on Intelligent Robots 
and Systems, p.4187-4193.  

 https://doi.org/10.1109/IROS.2011.6094470 
Aghili F, 2013. Adaptive control of manipulators forming 

closed kinematic chain with inaccurate kinematic model. 
IEEE/ASME Trans Mechatron, 18(5):1544-1554. 
https://doi.org/10.1109/tmech.2012.2207964 

Cheah CC, Liu C, Slotine J, 2004. Approximate Jacobian 
adaptive control for robot manipulators. IEEE Int Conf on 
Robtics and Automation, p.3075-3080.  
https://doi.org/10.1109/ROBOT.2004.1307529 

Cheah CC, Liu C, Slotine JJE, 2006. Adaptive Jacobian 
tracking control of robots with uncertainties in kinematic, 
dynamic and actuator models. IEEE Trans Autom Contr, 
51(6):1024-1029. 
https://doi.org/10.1109/TAC.2006.876943 

Cheng L, Hou ZG, Tan M, 2009. Adaptive neural network 
tracking control for manipulators with uncertain kine-
matics, dynamics and actuator model. Automatica, 
45(10):2312-2318.   
https://doi.org/10.1016/j.automatica.2009.06.007 

Corke P, 1996. A robotics toolbox for Matlab. IEEE Robot 
Autom Mag, 3(1):24-32.  
https://doi.org/10.1109/100.486658 

Deng H, Wu H, Yang C, et al., 2015. Base frame calibration for 
multi-robot coordinated systems. IEEE Int Conf on Ro-
botics and Biomimetics, p.1489-1494.  
https://doi.org/10.1109/ROBIO.2015.7418981 

Erhart S, Hirche S, 2013. Adaptive force/velocity control for 
multi-robot cooperative manipulation under uncertain 
kinematic parameters. IEEE/RSJ Int Conf on Intelligent 
Robots and Systems, p.307-314. 
https://doi.org/10.1109/IROS.2013.6696369 

 

Fig. 6  Estimation of relative translational base frame 
parameters 

0 5 10 15

0.78

0.80

0.82

0.84
Straight trajectory
Circular trajectory

0 5 10 15
Time (s)

−0.02

0

0.02

Y
 (m

)
X

 (m
)

https://doi.org/10.1109/TAC.2006.876943
https://doi.org/10.1109/100.486658


Xu et al. / Front Inform Technol Electron Eng   2018 19(11):1316-1327 1327 

Gan Y, Dai X., 2011. Base frame calibration for coordinated 
industrial robots. Robot Auton Syst, 59(7-8):563-570. 
https://doi.org/10.1016/j.robot.2011.04.003 

Gueaieb W, Al-Sharhan S, Bolic M, 2007a. Robust computa-
tionally efficient control of cooperative closed-chain 
manipulators with uncertain dynamics. Automatica, 43(5): 
842-851. 
https://doi.org/10.1016/j.automatica.2006.10.025 

Gueaieb W, Karray F, Al-Sharhan S, 2007b. A robust hybrid 
intelligent position/force control scheme for cooperative 
manipulators. IEEE/ASME Trans Mechatron, 12(2):109- 
125. https://doi.org/10.1109/TMECH.2007.892820 

Lewis F, Jagannathan S, Yesildirak A, 1998. Neural Network 
Control of Robot Manipulators and Non-linear Systems. 
CRC Press, France, p.1-468. 

Li Z, Xiao S, Ge SS, et al., 2015. Constrained multilegged 
robot system modeling and fuzzy control with uncertain 
kinematics and dynamics incorporating foot force opti-
mization. IEEE Trans Syst Man Cybern Syst, 46(1):1-15. 
https://doi.org/10.1109/TSMC.2015.2422267 

Liu JF, Abdel-Malek K, 2000. Robust control of planar dual- 
arm cooperative manipulators. Robot Comput-Integr 
Manuf, 16(2):109-119.  

 https://doi.org/10.1016/S0736-5845(99)00043-5 
Liu YC, 2015. Distributed synchronization for heterogeneous 

robots with uncertain kinematics and dynamics under 
switching topologies. J Franklin Instit, 352(9):3808- 
3826. https://doi.org/10.1016/j.jfranklin.2014.11.018 

Liu YC, Khong MH, 2015. Adaptive control for nonlinear 
teleoperators with uncertain kinematics and dynamics. 
IEEE/ASME Trans Mechatron, 20(5):2550-2562. 
https://doi.org/10.1109/TMECH.2015.2388555 

Lizarralde F, Leite AC, Hsu L, et al., 2013. Adaptive visual 
servoing scheme free of image velocity measurement for 
uncertain robot manipulators. Automatica, 49(5):1304- 
1309. https://doi.org/10.1016/j.automatica.2013.01.047  

Mohajerpoor R, Rezaei M, Talebi A, et al., 2011. A robust 
adaptive hybrid force/position control scheme of two 
planar manipulators handling an unknown object inter-
acting with an environment. Proc Instit Mech Eng Part I J 
Syst Contr Eng, 226(4):509-522. 
https://doi.org/10.1177/0959651811424251 

Namvar M, Aghili F, 2005. Adaptive force-motion control of 
coordinated robots interacting with geometrically un-
known environments. IEEE Trans Robot, 21(4):678-694.  
https://doi.org/10.1109/TRO.2004.842346 

Panwar V, Kumar N, Sukavanam N, et al., 2012. Adaptive 
neural controller for cooperative multiple robot manipu-

lator system manipulating a single rigid object. Appl Soft 
Comput, 12(1):216-227. 
https://doi.org/10.1016/j.asoc.2011.08.051 

Park IW, Lee BJ, Cho SH, et al., 2012. Laser-based kinematic 
calibration of robot manipulator using differential kine-
matics. IEEE/ASME Trans Mechatron, 17(6):1059-1067.  
https://doi.org/10.1109/TMECH.2011.2158234 

Park J, Sandberg IW, 1991. Universal approximation using 
radial-basis-function networks. Neur Comput, 3(2):246- 
257. https://doi.org/10.1162/neco.1991.3.2.246 

Parra-Vega V, Arimoto S, Liu YH, et al., 2003. Dynamic slid-
ing pid control for tracking of robot manipulators: theory 
and experiments. IEEE Trans Robot Autom, 19(6):967- 
976. https://doi.org/10.1109/TRA.2003.819600 

Su CY, Stepanenko Y, 1995. Adaptive sliding mode coordi-
nated control of multiple robot arms attached to a con-
strained object. IEEE Trans Syst Man Cybern, 25(5):871- 
878. https://doi.org/10.1109/21.376500 

Szewczyk J, Plumet F, Bidaud P, 2002. Planning and control-
ling cooperating robots through distributed impedance. J 
Robot Syst, 19(6):283-297. 
https://doi.org/10.1002/rob.10041 

Tavasoli A, Eghtesad M, Jafarian H, 2009. Two-time scale 
control and observer design for trajectory tracking of two 
cooperating robot manipulators moving a flexible beam. 
Robot Auton Syst, 57(2):212-221.  

 https://doi.org/10.1016/j.robot.2008.04.003 
Zhang YH, Wei W, Dan YU, et al., 2011. A tracking and pre-

dicting scheme for ping pong robot. J Zhejiang Univ-Sci 
C (Comput & Electron), 12(2):110-115.  

 https://doi.org/10.1631/jzus.C0910528 
Zhao D, Li S, Zhu Q, 2014a. Adaptive synchronised tracking 

control for multiple robotic manipulators with uncertain 
kinematics and dynamics. Int J Syst Sci, 47(4):1-14. 
https://doi.org/10.1080/00207721.2014.906681 

Zhao D, Ni W, Zhu Q, 2014b. A framework of neural networks 
based consensus control for multiple robotic manipulators. 
Neurocomputing, 140:8-18.  
https://doi.org/10.1016/j.neucom.2014.03.041 

Zhao D, Zhu Q, Li N, et al., 2014c. Synchronized control with 
neuro-agents for leader–follower based multiple robotic 
manipulators. Neurocomputing, 124:149-161. 
 https://doi.org/10.1016/j.neucom.2013.07.016 

Zribi M, Karkoub M, Huang L, 2000. Modelling and control of 
two robotic manipulators handling a constrained object. 
Appl Math Model, 24(12):881-898.  

 https://doi.org/10.1016/S0307-904X(00)00022-6 
 

 

https://doi.org/10.1109/TSMC.2015.2422267
https://doi.org/10.1016/j.automatica.2013.01.047
https://doi.org/10.1177%2F0959651811424251
https://doi.org/10.1109/TRO.2004.842346
http://dx.doi.org/10.1002/rob.10041
https://doi.org/10.1080/00207721.2014.906681

	Fan XU, Jin WANG†‡, Guo-dong LU
	Abstract: The problem of self-tuning control with a two-manipulator system holding a rigid object in the presence of inaccurate translational base frame parameters is addressed. An adaptive robust neural controller is proposed to cope with inaccurate ...
	Key words: Cooperative manipulators; Neural networks; Inaccurate translational base frame; Adaptive control; Robust control

